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Abstract.
Background: Amnestic mild cognitive impairment (aMCI), considered as the prodromal stage of Alzheimer’s disease, is
characterized by isolated memory impairment and cerebral gray matter volume (GMV) alterations. Previous structural MRI
studies in aMCI have been mainly based on univariate statistics using voxel-based morphometry.
Objective: We investigated structural network differences between aMCI patients and cognitively normal older adults by
using source-based morphometry, a multivariate approach that considers the relationship between voxels of various parts of
the brain.
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Methods: Ninety-one aMCI patients and 80 cognitively normal controls underwent structural MRI and neuropsychological
assessment. Spatially independent components (ICs) that covaried between participants were estimated and a multivariate
analysis of covariance was performed with ICs as dependent variables, diagnosis as independent variable, and age, sex,
education level, and site as covariates.
Results: aMCI patients exhibited reduced GMV in the precentral, temporo-cerebellar, frontal, and temporal network, and
increased GMV in the left superior parietal network compared to controls (pFWER < 0.05, Holm-Bonferroni correction).
Moreover, we found that diagnosis, more specifically aMCI, moderated the positive relationship between occipital network
and Mini-Mental State Examination scores (pFWER < 0.05, Holm-Bonferroni correction).
Conclusions: Our results showed GMV alterations in temporo-fronto-parieto-cerebellar networks in aMCI, extending pre-
vious results obtained with univariate approaches.

Keywords: Alzheimer’s disease, amnestic mild cognitive impairment, magnetic resonance imaging, source-based morphom-
etry, structural network

INTRODUCTION

Mild cognitive impairment (MCI) is considered
as an intermediate stage between normal aging and
Alzheimer’s disease (AD), in which patients do not
meet the criteria for dementia but they show objective
cognitive impairment beyond that expected for their
age and education while having normal capabilities
to carry out everyday activities.1–3 Amnestic MCI
(aMCI) is a subtype of MCI predominantly marked
by impairment of episodic memory4,5 that has been
linked to an increased risk of progression to AD.
Annually, 10–15% of aMCI patients were reported
to progress to AD and 80% of them convert into AD
within six years.2,6 Therefore, a better understanding
of brain changes in aMCI may contribute to enhance
the treatment of early symptoms and to slowdown of
disease progression.

Previous meta-analytic studies in aMCI have
reported gray matter (GM) atrophy in subcortical
regions such as the nucleus basalis of Meynert, amyg-
dala, hippocampus and thalamus, as well as in a
wide variety of cortical regions.7,8 The atrophy in
frontal, temporal and parietal-occipital regions were
reported in studies using various imaging modalities
in aMCI.9–14 A recent study using three differ-
ent methods to analyze the pattern of GM atrophy
(two based on gray matter volume (GMV) and one
on cortical thickness) in 27 aMCI and 58 controls
revealed a pattern of temporo-fronto-parietal atrophy
with source-based morphometry (SBM), anterior and
posterior cingulate atrophy with voxel-based mor-
phometry (VBM), and thinning of fronto-occipital
areas using cortical surface-based analysis.15 Corti-
cal thinning in aMCI has also been found in temporal,
superior lateral parietal, prefrontal cortex and frontal
lobes, as well in the precuneus.16–18 Remarkably,

other studies have also reported cortical thickening
in older individuals at risk for AD showing abnormal
amyloid-� (A�) levels.19–21

The vast majority of the structural findings in
MCI were obtained with VBM, a univariate statis-
tical approach that is commonly used to assess group
differences in local GM or white matter (WM) signal
intensity using a voxel-wise comparison approach.22

As VBM focuses on regional differences, it may not
unveil complex associations between distant brain
regions that may parallel a similar level of atrophy.
To counteract this drawback, here we have applied
the multivariate SBM approach, which comprises
voxels into separate networks that exhibit similar
information and capture shared GMV features,23,24 to
identify GM structural network alterations capable of
distinguishing aMCI from cognitively normal older
adults. To date, only one study has employed SBM to
investigate GMV changes in a relatively small sample
of 27 aMCI patients compared to healthy controls.15

A larger sample would allow for higher sensitiv-
ity in detecting subtle GMV alterations across the
whole brain. We hypothesized that, relative to cog-
nitively healthy elderly, aMCI patients would show
GMV alterations in widespread networks encompass-
ing frontal, temporal and parietal regions.

MATERIALS AND METHODS

Participants

One hundred and seventy-one participants, com-
prising 91 aMCI and 80 cognitively normal older
adults (control group) were included in the analy-
sis. Participants were recruited from two centers: 1)
University of Medical Centre Groningen (UMCG),
Groningen, The Netherlands (n = 51; 20 controls and
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31 aMCI patients) and 2) Pablo de Olavide Univer-
sity, Seville, Spain (n = 120; 60 controls and 60 aMCI
patients). A written informed consent was obtained
from all participants and studies were approved by
the Ethical Committee for Clinical Research of Uni-
versity Medical Center Groningen and the Junta de
Andalucı́a, according to the principles outlined in the
Declaration of Helsinki.

aMCI participants were primarily recruited from
memory clinics. Diagnosis of aMCI was established
by Petersen’s criteria,3 which requires presence of
an isolated memory disorder with no impairment in
other cognitive domains. The diagnosis was deter-
mined by a trained neuropsychologist and further
confirmed by a neurologist. Cognitively normal older
adults were recruited through advertisements and
from senior citizen’s associations, health-screening
programs, and hospital outpatient services. Inclusion
criteria for the control group were - no subjective
memory complaints (at UPO-Seville it was assessed
with the Spanish version of the Memory Functioning
Questionnaire),25 no objective memory complaints,
as indicated by normal cognitive performance on neu-
ropsychological assessment relative to appropriate
reference values for age and education, a Clini-
cal Dementia Rating scale global score of 0 (no
dementia), and normal independent function. General
exclusion criteria included MRI contra-indications,
the anatomical abnormalities (e.g., brain tumor, cere-
bral infarction, hippocampal sclerosis, intracranial
mass, large periventricular/deep WM lesions, and/or
vascular malformations) found on the MRI scan,
epilepsy, head trauma accompanied by a loss of con-
sciousness, history of neurodevelopmental disease,
mental retardation, alcohol abuse, hydrocephalus,
and any current or history of psychiatric or neuro-
logical disorders, with the exception of depressive
symptoms. All participants were not on any medi-
cation that might affect cognition at recruitment or
during the study. At the UPO-Seville cohort, the
absence of secondary causes of cognitive deficits
(e.g., thyroid function, vitamin B12/folate) was con-
firmed with laboratory tests.

At UMCG, the education level was determined
using the Dutch Verhage26 scores (ranging from 1
to 7) which classified into low (Verhage 1 and 2),
middle (Verhage 3, 4, and 5), and high (Verhage 6
and 7). They correspond with US years of education
as follows: Verhage 1:1 to 5 years; 2:6 years; 3:7 to 8
years; 4:7 to 9 years; 5:7–10 years; 6:7–16 years; and
7:17–20 years.27 Subsequently, we classified years of
education from both centers into the following three

categories: low (1–6 years), middle (7–10 years), and
high (≥11 years of education).

Behavioral and neuropsychological assessment

The 30-item Geriatric Depression Scale (GDS)
was used to assess depressive symptoms, consist-
ing of a self-report screening scale containing 30
“yes/no” questions with higher scores indicating
more depressive symptoms.28 A set of neuropsycho-
logical assessments was administered, including the
Mini-Mental State Examination (MMSE) as a mea-
sure of global cognitive function29 and the two forms
of Trail Making Test (TMT part A and B) as measures
of executive function.30,31

Statistical analysis of demographic data

Statistical analyses for demographic, behavioral
and neuropsychological data were performed using
the IBM SPSS Statistics for Windows, Version 28.0
(IBM Corp, Armonk, NY, 2021). We first assessed the
normality assumption of all the variables using the
Shapiro-Wilk test. Group differences were analyzed
using nonparametric Mann-Whitney U test for non-
normally distributed data (i.e., age, MMSE, GDS-30,
TMT A, and TMT B), and Chi-square tests for sex
and education level. Level of significance for all tests
was set at p < 0.05 (2-tailed).

Neuroimaging methods

Magnetic resonance imaging acquisition
At the UMCG, MRI data were acquired using a

3.0-Tesla Philips Intera scanner (Philips Medical
Systems, Best, The Netherlands) equipped with a 32-
channel synergy SENSE head coil for excitation and
signal collection. High-resolution three-dimensional
T1-weighted images were acquired with the fol-
lowing acquisition parameters (repetition time
[TR] = 9 ms; echo time [TE] = 3.6 ms; field of view
[FOV] = 232 × 170 × 256 mm; voxel size = 1 × 1 ×
1 mm; flip angle [FA] = 8◦; acquisition time =
4.2 min). At the UPO-Seville cohort, MRI data were
acquired using a 3.0-Tesla Philips Achieva scanner
(Philips Medical Systems, Best, The Netherlands)
equipped with an 8-channel head coil for excitation
and signal collection. High-resolution three-
dimensional T1-weighted images were acquired with
the following acquisition parameters (repetition time
[TR] = 11 ms; echo time [TE] = 4.5 ms; field of view
[FOV] = 250 × 250 × 183 mm; 0.8 × 0.8 × 0.8 mm
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isotropic voxel resolution; flip angle [FA] = 8◦;
acquisition time = 9.1 min).

Image preprocessing

The data were preprocessed and analyzed using
Statistical Parametric Mapping (SPM12 v.7487;
http://www.fil.ion.ucl.ac.uk/spm/) implemented in
MATLAB 2015a (Mathworks Inc., Natick, MA,
USA). First, the PAR/REC-files were converted
to NIfTI, using an in-house script. Then the T1-
images were reoriented manually to the Anterior
Commissure-Posterior Commissure (AC-PC) plane
and segmented into six different compartments (i.e.,
GM, WM, cerebrospinal fluid, bone, soft tissue,
and air) with bias correction. The diffeomorphic
anatomical registration through exponential lie alge-
bra (DARTEL) tools was used to register the
images.32 First, a template for the DARTEL proce-
dures was created using the data from all participants
using default parameter settings. The modulated GM
images were spatially normalized to Montreal Neu-
rological Institute (MNI) atlas space, resampled to
1.5 × 1.5 × 1.5 mm voxels, and smoothed using an
8 mm Full Width Half Maximum Gaussian kernel to
increase signal to noise ratio.

Source-based morphometry analysis

SBM is a multivariate approach used to identify
naturally grouping patterns of GM volume variations
among participants using independent component
analysis (ICA). ICA captures and separates sig-
nals from sMRI images and identifies spatially
independent components (ICs) that covary between
participants.23

The SBM analysis was carried out with the
Group ICA fMRI Toolbox (GIFT) software v4.0b
(http://mialab.mrn.org/software/gift/). Nineteen ICs
were automatically estimated by GIFT using the
minimum description length method.33 ICA was per-
formed using an Infomax algorithm that attempted to
maximize the recognition of the independent com-
ponents by exploiting signal intensities from the
images.34,35 The component reliability was assessed
with ICASSO (http://research.ics.aalto.fi/ica/icasso/)
using 20 iterations. Reliability was quantified using
a quality index (Iq) that ranges between 0 and 1.36

All 19 components extracted from the GM images
showed an Iq > 0.95, indicating a highly stable ICA
decomposition, and therefore they were subsequently
included in the rest of the analysis.

Each GM volume was converted into a one-
dimensional vector by SBM. In this study, we
obtained a matrix comprised of 171 rows which
represented 171 participants (the first 80 rows rep-
resent controls, and the following 91 rows aMCI)
and each column indicated a voxel. This matrix
was decomposed into two matrices by ICA, result-
ing in a “mixing matrix” and “source matrix”.
The mixing matrix comprised one subject per row
and one IC per column. The values of this mix-
ing matrix are called “loading coefficients” which
demonstrates how representative each subject is
on the specific component and were subsequently
used for statistical analysis. The latter matrix is the
source matrix, which shows the relation between
the ICs and the voxels. To visualize the GMV
component, the source matrix was converted into
a 3D image, scaled to unit standard deviation (Z
maps) and thresholded at |Z | = 3, thus showing only
the voxels that strongly contributed to these com-
ponents. Maps of components showing significant
differences between aMCI and controls were then
overlaid onto MNI normalized anatomical atlas. The
anatomic region was defined according to automated
anatomical labeling atlas37 based on the transformed
locations of the largest clusters in the component
maps and were visually confirmed using MRIcroGL
(https://www.nitrc.org/projects/mricrogl/).

A greater loading coefficient indicates that the
group’s corresponding spatial pattern has stronger
weight than the other group. The sign of the loading
coefficients of a component alone does not directly
provide the direction of change in absolute GMV
in a region. For example, if the group mean load-
ings show aMCI > controls and the spatial component
is predominantly comprised of negative voxels, it
can be inferred that GM volume is lower in aMCI
than in controls. The interpretation of differences in
the loading coefficient should therefore be carefully
done as it depends upon the spatial distribution of the
component.15,38

Statistical analysis

We applied the Yeo-Johnson transformation
to the ICs to improve normality and alleviate
heteroscedasticity.39 One subject was removed from
analysis since it was detected as an outlier via the
Mahalanobis distance outlier detection.

First, a Multivariate Analysis of Covariance
(MANCOVA) was performed to assess the main
effect of diagnosis on the 19 ICs. The multiple linear

http://www.fil.ion.ucl.ac.uk/spm/
http://mialab.mrn.org/software/gift/
http://research.ics.aalto.fi/ica/icasso/
https://www.nitrc.org/projects/mricrogl/
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Table 1
Demographic characteristics

aMCI (n = 91) Control (n = 80) Group comparison (p)
Mean (SD) Range Mean (SD) Range

Age 68.9 (5.9) 51–83 68.1 (3.9) 61–79 U = 3289.5 (0.28)
Sex Female, n (%) 35 (38.5) 32 (40) χ2 = 0.04 (0.84)
Education category, n (%) χ2 = 1.27 (0.53)
Low 64 (70.3) 50 (62.5)
Middle 11 (12.1) 11 (13.7)
High 16 (17.6) 19 (23.8)
MMSE 27.6 (2.2) 22–30 29 (1.1) 26–30 U = 2115 (<0.001)∗
GDS-30 3.5 (5.4) 0–25 1.2 (2.1) 0–12 U = 2716.5 (0.003)∗
TMT A 46.5 (22.5) 20–147 38.2 (14.3) 15–94 U = 2660.5 (0.003)∗
TMT B 134.3 (72.4) 40–539 103.7 (54.6) 39–360 U = 2450 (<0.001)∗

Group comparisons were performed with Mann-Whitney U-test for age, MMSE, GDS-30, TMT A, TMT B, and Pearson’s chi-square tests for
sex and educational level. aMCI, amnestic Mild Cognitive Impairment; MMSE, Mini-Mental State Examination; GDS, Geriatric Depression
Scale; TMT A and B, Trail Making Test (forms A and B) in seconds. ∗p < 0.05.

regression model was created using the fitlm function
in MATLAB, with 19 ICs as dependent variables,
diagnosis as independent variable, and age, sex, edu-
cation level and site as covariates. We also analyzed
the effect of site on the 19 ICs while controlling for
age, diagnosis, sex, and education level. The analysis
was performed using in-house developed scripts in
MATLAB.

Second, we performed receiver operating char-
acteristic (ROC) curve using logistic regression
analyses to investigate whether significant ICs iden-
tified by the MANCOVA were able to distinguish
between aMCI and controls, adjusting by the same
covariates. We conducted a cross-validation pro-
cedure with 1000 permutations and calculated the
Youden’s index, area under the curve (AUC), and
the overall accuracy to assess the performance of the
logistic regression model. Each score ranged from
0 to 1, with higher values indicating better perfor-
mance. In addition, we performed relative weight
analysis to determine the magnitude of each predictor
and their contribution to the model.

Third, we evaluated 1) whether ICs were associ-
ated with MMSE, GDS-30, TMT A, and TMT B,
regardless of diagnosis, and 2) whether the interac-
tion between diagnosis and ICs accounted for the
variability in MMSE, GDS-30, TMT A, and TMT
B. All statistical models were adjusted for age, sex,
education level, and site. Three cases who had no data
for the TMT test and one outlier were removed from
further analyses.

For all analyses, we report p-values corrected for
multiple comparisons using the Holm-Bonferroni
(pFWER < 0.05, 2-tailed) and the False Discovery

Rate (FDR) methods. In addition, we calculated
the Bayes factor (BF10) to assess the evidence in
favor of the alternative hypothesis relative to the
null hypothesis. We used the classification by Lee
& Wagenmakers, where larger BF10 value indi-
cates stronger evidence in favor of the alternative
hypothesis.40 The standardized effect size (Cohen’s
g) was obtained to estimate the magnitude of differ-
ence between groups and categorized as small effect
(0.2–0.5), moderate effect (0.5–0.8), and large effect
(>0.8).41 We then estimated the accuracy of the effect
size by calculating the bias-corrected and accelerated
(BCa) bootstrap 95% confidence intervals (CI95%).

RESULTS

Participants’ characteristics

Table 1 shows demographic, behavioral, and neu-
ropsychological data of the study sample. There were
no significant differences between groups on age, sex,
and education level. As expected, the aMCI group
showed significantly lower global cognition scores
as measured by the MMSE and executive function as
measured by TMT A and B. The aMCI group also
showed higher GDS-30 scores relative to controls.
Using the GDS-30’s cut-off score of 11,28 80 par-
ticipants with aMCI and 79 controls did not meet
the criteria for depression (scored 0–10), 9 aMCI
and 1 control exhibited mild depressive symptoms
(scored 11–20), and 2 aMCI patients were consid-
ered to have moderate to severe depressive symptoms
(scored above 20).
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Table 2
SBM components showing significant differences between aMCI and Controls ordered by the decreasing BF10 value

pFWER pFDR R2 F(1,164) Effect size (G) CI95% BF10

IC 5 <0.0001 <0.0001 0.53 0.06 –0.99L –1.42 – –0.52 10.39S

IC 8 <0.005 <0.005 0.21 18.49 –0.64M –0.96 – –0.30 5.02M

IC 12 0.02 0.01 0.22 24.38 –0.59M –0.91 – –0.24 3.43M

IC 2 0.03 0.01 0.37 45.10 0.61M 0.25–0.97 3.14M

Statistical significance was set to pFWER < 0.05, Holm-Bonferroni correction. Effect size Cohen’s G (Llarge,Mmoderate); BF10: magnitude
of the evidence in favor of the alternative hypothesis (Sstrong, Mmoderate).

Fig. 1. Spatial maps of the 4 ICs showing significant group differences (aMCI versus Ct). For IC 5, 8, and 12: Light-dark blue colored
regions show decreased GM in aMCI relative to Ct. Red-yellow-colored regions show increased gray matter in aMCI relative to Ct. For IC
2: Red-yellow-colored regions show increased gray matter in Ct relative to aMCI (or vice versa, decreased gray matter in aMCI relative to
Ct). x,y,z, MNI coordinates of cluster maximum intensity. The color bar indicates the color mapping for the normalized component weights
(Z-scores, thresholded at | 3 |). aMCI, amnestic mild cognitive impairment; Ct, controls; IC, Independent Component.

Group differences in cerebral gray matter
structural networks

Nineteen independent components (GM structural
networks) were estimated with ICA. There were no
obvious artifacts observed on visual inspection. As
shown in Table 2 and Fig. 1, after adjusting for age,
sex, education level, and site, MANCOVA revealed

significant main effects of diagnosis on four com-
ponents (ICs): IC 2, 5, 8, and 12 which survived
correction for multiple comparisons.

After performing the logistic regression analy-
sis with these four ICs, two components, IC 5
(p < 0.0001) and IC 8 (p < 0.05), exhibited signifi-
cant diagnostic accuracy in distinguishing aMCI and
controls, with Youden’s index of 0.56, overall accu-
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Fig. 2. Receiver operating characteristic (ROC) analysis of com-
ponents that showed significant group differences (IC 2, 5, 8, and
12). ROC curve and the corresponding area under the curve (AUC)
to differentiate between aMCI and Controls.

racy of 79.4%, and AUC of 0.76 (CI95% = 0.70–0.82)
(Fig. 2). Additionally, the relative weight analysis
showed that IC 5 had the highest relative weight
(0.13) and rescaled relative weight (0.46) with
CI95% = 0.04–0.30 among the other significant com-
ponents.

To evaluate the predictive capacity of these IC
networks (IC 5 and IC 8) compared to the hip-
pocampal volume, we employed additional logistic
regression analyses. First, we built a model using
overall hippocampal volume (i.e., sum of bilateral
volumes relative to total intracranial volume, TIV)
alone with age, site, sex, and education level as covari-
ates. As expected, hippocampal volume (p < 0.0001)
exhibited significant diagnostic accuracy in distin-
guishing aMCI and controls, with Youden’s index
of 0.53, overall accuracy of 78%, and AUC of
0.72 (CI95% = 0.65–0.78). Second, we developed an
additional model by incorporating IC 5, IC 8 and hip-
pocampal volume as regressors of interest together
with the nuisance variables. IC 5 (p < 0.0001), IC 8
(p < 0.05) and hippocampal volume (p < 0.005) also
showed good discrimination ability with Youden’s
index of 0.60, overall accuracy of 81%, and AUC
of 0.78 (CI95% = 0.72–0.83). In this model, IC 5 had
a higher relative weight (0.11) and rescaled rela-
tive weight (0.34) with CI95% = 0.05–0.43 compared
to the hippocampal volume (relative weight = 0.09,
rescaled relative weight = 0.29, CI95% = 0.04–0.21).
Lastly, we compared the model including IC 5 and

IC 8, and another model including hippocampal vol-
ume and the covariates. Using Wilcoxon-Test, the
model incorporating IC 5 and IC 8 exhibited sig-
nificantly better accuracy (p < 0.0001) compared to
the model comprising hippocampal volume alone.
However, there was no significant difference in AUC
between the two models (p = 0.18).

The largest significant difference between aMCI
and controls was shown by IC 5, which had greater
loading weights (i.e., a combination of volume and
covariation between the volumes in each voxel within
the component) in the aMCI group compared to con-
trols (a loading directionality of aMCI > Ct). This
component consisted mainly of negative voxels in
the precentral gyrus, indicating lower GMV in aMCI
compared to controls. IC 8 included areas with both
negative and positive voxels, and it had greater load-
ing weight in aMCI than in controls. The negative
regions were primarily located in bilateral middle
temporal gyrus and cerebellum, while the positive
regions mostly included the left superior parietal
lobule. IC 12 included negative voxels in bilat-
eral middle frontal gyrus. The loading directionality
for this component was aMCI > Ct. IC 2 showed
greater loading weights in controls compared to
aMCI (Ct > aMCI) and affected areas containing pos-
itive voxels mostly in bilateral fusiform gyrus and
parahippocampal gyrus (see Supplementary Table 1
and Supplementary Figures 1–4 for all regions com-
prising the significant components).

Relationship between site and ICs and the
interaction between site and diagnosis with ICs

MANCOVA revealed significant main effects of
site on five components, i.e., IC 5, 7, 15, 16, and 19
(See Supplementary Table 4). Among these, IC 5 is
particularly noteworthy due to its superior discrimi-
nation ability between controls and aMCI. However,
we found no significant interaction effects between
site and diagnosis on any of the ICs.

Relationship between ICs and MMSE, GDS-30,
TMT A, and TMT B

We found a positive relationship between IC 6
and TMT B regardless of the diagnosis (t = 2.29,
pFDR < 0.05) but did not survive the corrected signif-
icance threshold (pFWER Holm-Bonferroni = 0.26,
BF10 = 4.98) (Fig. 3, Supplementary Table 2). There
was no significant relationship between other ICs and
MMSE, GDS-30, or TMT A.
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Fig. 3. Association between IC 6 and TMT B scores in the whole
sample (pFDR < 0.05, pFWER Holm-Bonferroni = 0.26). IC, Inde-
pendent Component; TMT B, Trail Making Test Part B.

Relationship of the interaction between ICs and
diagnosis with MMSE, GDS-30, TMT A, and
TMT B

On assessing the interaction between ICs and diag-
nosis, a significant interaction effect was observed
between IC 15 and diagnosis on MMSE scores. As
displayed in Fig. 4A, the loading in IC 15 showed sig-
nificant positive correlations with the MMSE scores
only in the aMCI group (red) (r = 0.22, pFDR = 0.04,
pFWER Holm-Bonferroni = 0.02, BF10 = 41.9). Note

that the spatial distribution of IC 15 showed load-
ing directionality of aMCI < Ct and included both
positive (red) and negative (blue) voxels (Fig. 4B).
Thus, our result indicated that among aMCI patients,
higher MMSE scores were associated with alterations
mainly in the right calcarine region (blue-green),
while lower MMSE scores were associated with alter-
ations mainly in the left calcarine, right occipital
superior gyrus and fusiform gyrus (red-yellow). The
association of ICs with GDS-30, TMT A, or TMT B
did not differ between groups.

DISCUSSION

The present study utilized SBM, a data-driven
and multivariate method, to investigate differences
in GM structural networks between aMCI and cog-
nitively normal older individuals. Particularly, aMCI
patients exhibited reduced GMV mainly in the pre-
central network (IC 5), temporo-cerebellar network
(IC 8), frontal network (IC 12), and temporal net-
work (IC 2), and increased GMV in the left superior
parietal network (IC 8) compared to controls. While
the effect of site was significant on IC 5, the group
differences observed in IC 2, 5, 8, and 12 were not
modulated by site. Moreover, we found a positive
relationship between diagnosis and alterations in the
occipital network (IC 15) with MMSE specifically
in aMCI group, indicating that the effect of alter-

Fig. 4. A) Significant positive correlations between IC 15 and diagnosis’ interaction and MMSE in the aMCI group (red, pFDR = 0.036,
pFWER Holm-Bonferroni = 0.02). Negative correlations in the Ct group were not significant and are displayed in blue. B) Spatial map of IC
15. Light-dark blue colored regions show decreased gray matter in Ct relative to aMCI (or vice versa, increased gray matter in aMCI relative to
Ct). Red-yellow colored regions showed decreased gray matter in aMCI relative to Ct. (Z-scores, thresholded at | 3 |). x,y,z, MNI coordinates
of cluster maximum intensity. The color bar indicates the color mapping for the normalized component weights (Z-scores, thresholded at |
3 |). aMCI, amnestic mild cognitive impairment; Ct, controls; IC, Independent Component; MMSE, Mini-Mental State Examination.
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ations in the occipital network on MMSE scores was
more pronounced among aMCI patients compared to
cognitively healthy elderly.

The atrophy detected in the precentral network (IC
5) in aMCI patients is in line with previous stud-
ies that have reported a loss of GM in the same
regions in both MCI and AD patients.12,16,42 This
network mainly involves the precentral gyrus, also
known as the primary motor cortex, and extends to
the postcentral gyrus (primary somatosensory cor-
tex). The primary motor cortex plays a significant
role in initiating and regulating complex voluntary
movements. Moreover, decreased GMV in parts of
the primary somatosensory cortex may affect the pro-
cess of somatosensory feedback and the integration
of sensory and motor signals necessary for voluntary
movement43 to the brainstem and spinal cord through
motor pathways such as corticospinal and corticob-
ulbar tracts.44 Thus, the decreased GMV found in the
precentral network and connected area could be asso-
ciated with a deficit in motor control and coordination
and impaired sensorimotor function in aMCI patients.
A number of studies have also emphasized the role of
motor cortex and somatosensory cortex in emotional
regulation and complex cognitive functions such as
spatial navigation45–48 which are affected in AD.
This further supports the involvement of the precen-
tral gyrus in aMCI. Furthermore, changes in sensory
and motor function may increase the risk of AD and
may occur earlier than cognitive symptoms in AD.49

Our findings of decreased GMV in the temporo-
cerebellar network (IC 8) in aMCI were mainly
located in bilateral middle temporal gyrus and pos-
terior cerebellum. The GMV atrophy found in the
temporal lobe is largely in line with the result derived
from a recent meta-analysis of 45 studies8 and with
previous neuroimaging reports in both MCI and
AD.7,18,50–52 The pattern of cerebellum and lat-
eral temporal network atrophy in this study was
not found in a previous study using SBM, whose
results were limited to the temporo-fronto-parietal
network.15 However, there is evidence of an increased
cerebellar atrophy with disease progression from nor-
mal aging to MCI and further to AD.53 This pattern
of cerebellar GMV atrophy has been reported to
occur first in the vermis in the anterior cerebellum in
aMCI extending to the hemispheric part of the pos-
terior cerebellum and Crus I in AD.54 Although the
cerebellum is considered essential for sensorimotor
and posture control,55 recent studies have suggested
its role in non-motor function, including cognition,
emotion, behavior, and autonomic function.53,54,56,57

Here, we found that reduced cerebellar GMV was
mainly located in lobules 8 and 9 (see Supplemen-
tary Table 1) suggesting that the atrophy in aMCI
was mostly located in the posterior area. Posterior
cerebellar atrophy has been associated with poorer
cognitive functioning in AD patients compared to
healthy controls58 and with executive functioning
in community-dwelling older persons.59 However,
cerebellar volume has also been negatively associated
with cognition in MCI.53 The role of the cerebellum
in cognitive functioning might be explained by the
reciprocal connections of the cerebellum with dif-
ferent brain regions that are involved in cognition
and behavior, such as prefrontal, temporal, posterior
parietal, and limbic cortices.53,56,57

Interestingly, we also found the co-occurrence of
increased GMV in the left superior parietal lobe and
decreased GMV in the temporo-cerebellar network.
Increased cortical volume/thickness has been related
to AD pathology that appears long before the onset
of clinical AD symptoms.19–21,60 A previous study
reported that cognitively normal controls with high
A� deposition had a larger temporal lobe (includ-
ing hippocampal/parahippocampal gyrus area) than
healthy controls with low A� deposition.20 A study in
people at high risk for AD also showed increased GM
in bilateral lateral parietal lobe in the group with pos-
itive A� (A�+) compared to the A�– group, although
these differences did not survive multiple comparison
corrections.19 Increased cortical thickness in the mid-
dle temporal,21 temporoparietal, and precuneus60 has
been reported in A�+ cognitively healthy subjects.
This anomalous increase in GM could result from a
reactive neuronal hypertrophy and/or amyloid-driven
inflammation in the early stage of the disease;60

however, it could also signal brain reserve or a com-
pensatory process in response to toxic effects of A�
or diffuse plaques.20

As expected, decreased GMV was also detected in
the prefrontal cortex (IC 12) and medial temporal net-
work (IC 2). The prefrontal cortex supports executive
functioning, including cognitive control processes for
memory function (e.g., selection, engagement, mon-
itoring, and inhibition), while the medial temporal
lobe is vital for encoding, storage, and retrieval of
long-term memories.61 Patterns of GM atrophy found
in the medial temporal network are consistent with
the notion that medial temporal regions are the first
region to be affected before AD pathology spreads to
posterior cingulate cortex, temporo-parietal associa-
tion cortex, prefrontal and the orbital frontal cortex
in MCI and AD patients.62–64 The medial tempo-
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ral lobe, including the hippocampus, amygdala, and
parahippocampal regions, plays an important role
for episodic and spatial memory as it involves dis-
tinct processes as encoding (i.e., transforming the
perceived information into a memory trace), consol-
idation (i.e., stabilizing memory traces process), and
memory retrieval/recall (i.e., the process by which
memory traces are reactivated to access informa-
tion previously encoded and stored in the brain).65

Decreased cortical thickness in the fusiform gyrus of
both hemispheres has been reported from cognitively
normal elderly to single- and multiple-domain aMCI
to AD patients finally.66 We did not find a significant
association between the executive functioning tests
(TMT-A or B) and spatial patterns of GMV. However,
a significant interaction effect was found between
diagnosis and the occipital network with MMSE in
the aMCI group (see Supplementary Table 3). Occip-
ital region is crucial for processing visual information
for spatial orientation,67 which is highly affected in
AD.68 Visuospatial function impairment has been
reported to occur in early AD.69 Another study found
a significant positive correlation between atrophy in
left superior and middle temporal gyrus and poorer
global cognition in aMCI.16 However, this finding
needs to be confirmed in independent studies.

Our results showing GMV alterations in aMCI are
more widespread than in the previous SBM study.15

A previous longitudinal study in aMCI patients found
widespread patterns of cortical thinning mainly in the
temporal, superior lateral parietal and some regions
of the frontal cortices in aMCI.16 Another study
showed cortical thinning in temporal and insular
regions in early aMCI, and in more widespread
regions in late-stage aMCI, including the bilateral
dorsolateral prefrontal, anterior and medial tempo-
ral cortex, temporo-parietal association cortices, and
the precuneus.17

Although our findings indicate that both hippocam-
pal and IC networks contribute to distinguishing
aMCI and controls, IC 5 appears to play a more
prominent role in predictive modeling. The higher
accuracy attained by the model incorporating IC 5
and IC 8 highlights the potential of the ICs net-
works derived by SBM approach as complementary
predictors alongside hippocampal volume in aMCI
diagnosis.

Strengths and limitations

The use of SBM to determine GMV loss is a
strength of our study as it reveals similar covari-

ance patterns and reduces the problem of multiple
comparisons. This study also included a large sam-
ple size from two independent cohorts. However,
some limitations that could affect the results and
their interpretation should also be considered. This
is a cross-sectional study where changes in GMV
over time cannot be determined. Moreover, the aMCI
group may be heterogeneous due to their recruitment
in different memory clinics and the lack of biomarker
data (i.e., PET imaging, cerebrospinal fluid, or blood)
confirming the presence of AD pathology. As such,
several different etiologies, presentations and out-
comes (i.e., single- versus multiple-domain; early-
versus late-stage; stable- versus progressive-aMCI)
are possible, and they may be responsible for the
widespread atrophy patterns found in the present
study. The participants did not undergo a comprehen-
sive neuropsychological test-battery, which would
enable us to further assess whether the increase in
GMV is reflecting a reactive response or a com-
pensatory process. Further longitudinal studies are
needed to better explain the observed changes. Lastly,
this study is also limited by the absence of a validation
cohort to confirm the generalizability of the findings.
Future research with a validation cohort is necessary
to determine the diagnostic value in a broader clinical
setting.

Conclusions

In conclusion, our results showed GMV alter-
ations in temporo-fronto-parieto-cerebellar networks
in aMCI confirming previous findings in aMCI and
AD, but these changes are more extensive than
reported previously. These results suggest that SBM
may be a more sensitive approach to monitor brain
changes in prodromal AD, which may be employed as
a target for early interventions before AD diagnosis.
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