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Abstract.
Background: Working memory deficits in Alzheimer’s disease (AD) are linked to impairments in the retrieval of stored
memory information. However, research on the mechanism of impaired working memory retrieval in Alzheimer’s disease is
still lacking.
Objective: The medial prefrontal cortex (mPFC) and mediodorsal thalamus (MD) are involved in memory retrieval. The
purpose of this study is to investigate the functional interactions and information transmission between mPFC and MD in the
AD model.
Methods: We recorded local field potentials from mPFC and MD while the mice (APP/PS1 transgenic model and control)
performed a T-maze spatial working memory task. The temporal dynamics of oscillatory activity and bidirectional information
flow between mPFC and MD were assessed during the task phases.
Results: We mainly found a significant decrease in theta flow from mPFC to MD in APP/PS1 mice during retrieval.
Conclusions: Our results indicate an important role of the mPFC-MD input for retrieval and the disrupted information transfer
from mPFC to MD may be the underlying mechanism of working memory deficits in APP/PS1 mice.

Keywords: Alzheimer’s disease, information flow, local field potentials, medial prefrontal cortex, mediodorsal thalamus,
spatial working memory

INTRODUCTION

Alzheimer’s disease (AD) is a common neu-
rodegenerative disease characterized by progressive
memory loss and subsequent loss of broader cognitive
functions [1, 2]. Working memory refers to a system
for the temporary holding and manipulation of infor-
mation that is vital for a range of cognitive tasks,
such as learning, comprehension, and reasoning [3–
5]. Deficits in working memory have been frequently
discussed in AD-related studies [6, 7].
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In particular, studies in rodents have focused on
spatial working memory, typically tested using maze-
based tasks [4, 6, 7]. The spatial working memory
tasks generally involve three distinct phases: encod-
ing, maintenance, and retrieval [3–5]. For instance,
in the ‘delayed non-match-to-sample’ task, animals
are first required to visit a specific spatial loca-
tion in a T-maze during the sample phase, which
involves information encoding. Subsequently, the
animals must maintain a memory trace of the previ-
ously visited position during the delay phase. Finally,
the animals have to visit the locations that were not
visited to get a reward during the retrieval phase.
Substantial evidence suggests impairments in the
retrieval of stored memory information in patients
with AD or animal models [1, 8–10].
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Accumulating evidence has indicated that the pre-
frontal cortex (PFC) plays a major role in working
memory [4, 11, 12]. Dysfunction of the PFC is
associated with working memory deficits [13, 14].
Optogenetic inhibition of prefrontal pyramidal neu-
rons impaired the mice’s performance during a spatial
working memory task [4]. In the mouse models of
AD, medial PFC (mPFC) is one of the earliest brain
areas to generate pathognomonic features such as
amyloid-� (A�) plaques [15]. In addition, the neu-
ronal activity in mPFC exhibited deficits in a mice
model of AD [16]. Therefore, PFC is regarded as a
key substrate for cognitive decline in AD [15, 17, 18].

Besides, the PFC function cannot be separated
from its closely linked thalamic partners. As a higher-
order thalamic relay of the PFC, the mediodorsal
thalamus (MD) is considered to support the transfer
of information across the PFC [4, 19, 20]. Further-
more, MD lesions affect PFC-dependent aspects of
spatial working memory [21]. In AD patients, func-
tional magnetic resonance imaging findings revealed
significant atrophy of thalamic structures [22].

Moreover, the functional connections between
mPFC and MD were found to be related to working
memory [23]. A study on healthy mice revealed the
directional interaction from mPFC to MD in retrieval
using both pathway-specific optogenetic inhibition
experiments and directionality analyses of multisite
recordings [5]. Our previous study also reported an
increased mPFC-MD flow accompanying success-
ful memory retrieval [24]. So far, it is still unclear
whether the impaired working memory in AD is
related to the disrupted functional connectivity and
information transmission in the mPFC-MD circuit.

Recently, brain networks have gained popularity
due to their ability to reflect cognitive processes in
the brain [25–28]. The network analysis approaches
(such as Granger causality and directed transfer func-
tion) can be used to estimate directed connectivity
across different brain regions and to investigate fun-
damental mechanisms of neurological and mental
conditions, and may even be predictive of further
explanations of the pathogenesis of neurodegener-
ative diseases [29–31]. Therefore, in this study, we
recorded local field potentials (LFPs) from mPFC
and MD while the mice (APP/PS1 transgenic model
and control) performed a T-maze spatial working
memory task. The bidirectional information flow
between mPFC and MD was assessed by using the
directed transfer function (DTF) method during the
distinct phases. It is expected to yield new insights
into the abnormal information transmission in the

prefrontal-thalamic circuit which may induce the
working memory deficits in the APP/PS1 model of
AD.

MATERIAL AND METHODS

Subjects

Male APP/PS1 mice (aged 6–9 months) and adult
C57BL/6 wild-type mice (Experimental Animal Cen-
ter of Tianjin Medical University, Tianjin, China)
were used in this study. The APP/PS1 mice over-
express the Swedish mutation of amyloid precursor
protein (APP), in combination with the delta exon 9
variant of presenilin 1 (PS1; also known as PSEN1).
The mutations in both genes are associated with
familial AD [32]. Therefore, the APP/PS1 mouse
model is commonly used to study the mechanisms
of neuropathology of AD and evaluate potential ther-
apeutic interventions. All mice were group housed
(4–5/cage) in 12 : 12 h light-dark cycles and allowed
access to food and water ad libitum until the exper-
iment began. The experimental procedures were
approved by the Animal Care and Use Commit-
tee of Tianjin Medical University (License number:
TMUaMEC 2021060).

Delayed non-match-to-place task

Animals were trained on a T-maze delayed
non-match-to-place (DNMTP) task, as described pre-
viously [5, 33]. During the task period, all mice
were kept on food restriction to limit their weights to
85% of free-feeding weight [33, 34]. Mice were then
given a 2-day habituation to the T-maze (including
free exploration and foraging for food rewards). In
the following two days, mice experienced behavioral
shaping that involved running in alternate directions
to baited goal arms for 10 minutes. Afterward, mice
were subjected to the T-maze training until they met
the performance criteria (70% of their trials correctly
on two out of three consecutive days) [4, 31]. Fig-
ure 1A shows the schematic diagram of a single trial
of the DNMTP task. The maze consisted of three
arms (one center arm and two goal arms), each 30 cm
long, 8 cm broad, and 20 cm high. Each trial of the
task consisted of a sample, delay, and choice phase.
In the sample phase, one side of the arms was blocked
so that mice could only enter the open arm to get a
food reward. Then the mice would be delayed in the
start box for 10 s after turning back. In the choice
phase, the mouse was required to enter the arm oppo-
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site to that visited during the sample phase to receive
a reward. The inter-trial latency period in this exper-
iment was 20 s [33]. Response accuracy served as
a gauge of the mice’s performance during training
sessions (Fig. 1B).

Electrodes implantation and neurophysiological
recording

We used 32-channel electrodes made from 13-�m
tungsten fine wire and less than 0.5 M� impedance
for extracellular recording. The skull screws served
as ground and reference [8]. After inducing profound
anesthesia, the dura over the implanted brain regions
of mice were removed gingerly. Electrodes were
implanted independently in mPFC (AP: 2.4 mm; ML:
0.4 mm; DV: -1.5 mm) and MD (AP: -1.06 mm; ML:
0.35 mm; DV: -3.2 mm) and were secured to the
skull with two jewelry screws, medical glue and den-
tal cement [8]. After implantation, all mice were
caged individually to prevent electrodes from being
destroyed by cagemates.

After a week of recovery, neurophysiological
recordings were made from mPFC and MD while
the mice underwent the spatial working memory
task (Fig. 1D). Extracellular signals were recorded
with the Cerebus Acquisition System (Blackrock
Microsystems Inc., UT, USA). For LFPs, the signals
were amplified, bandpass-filtered (0.5-120 Hz), and
digitized at 1 kHz. The behavioral data were simulta-
neously recorded by using a settled camera. Figure 1E
shows the example of LFP tracings from mPFC and
MD.

Histology

At the end of the experimentation, PBS and 4%
PFA were transcardially infused into mice. Next,
fixed tissues were sliced into 30 �m sections with
microtome cryostat and then placed on slides for
viewing and photographing electrode insertion sites
[35]. The brain images were then superimposed on
a typical drawing extracted from the Rat Brain in
Stereotaxic Coordinates. The locations of the mPFC
and MD recordings were verified (Fig. 1F). We chose
the data from the mice with successful electrode sites
for subsequent analysis.

LFP power spectrogram

Time-frequency spectral analysis was applied to
determine the dominant frequencies during the task.

Spectral analysis of oscillatory activity was cal-
culated using the short-Fourier transform (500-ms
Hamming window, 125-ms steps). Then the differ-
ent frequency bands of LFPs were obtained by the
Chebyshev band-pass filters. In this study, we con-
verted the band power to z-scores by subtracting the
mean and dividing by the standard deviation for each
animal.

Quantification of information transfer between
mPFC and MD

We measured the bidirectional information flow
between mPFC and MD based on the DTF, as
described previously [24]. The DTF method was
proposed based on the Granger frequency domain
causal analysis and was known as a statistical method
for inferring causality in time series [26, 36]. We
transformed LFPs into multivariate autoregressive
(MVAR) as follows [37]:

X (t) =
p∑

n=1

CnX (t − n) + W (t) (1)

X(t) stands for N channels of LFPs, p is the model
order that the Bayesian information criterion counts.
Cn is the N ∗ N coefficient matrix. The vector of mul-
tivariate zero mean uncorrelated white noise at time
t is denoted as W(t).

X (f ) = C−1 (f ) W (f ) = H (f ) W (f ) (2)

H (f ) = C−1 (f ) =
p∑

i=0

C (i) e−j2πfi�t (3)

H(f ) is the matrix of the transfer function fol-
lowing the Fourier transform, and C(0) = −I, I is
an identity matrix. H(f ), as an asymmetric matrix,
can distinguish the direction of information transfer
between the two channels.

γij
2 (f ) = |H (f )|2

∑k
z=1 |Hiz (f )|2

(4)

where γij(f ) denotes the ratio of the effect of chan-
nel j on channel i to the combined effect of all other
nodes on node j. k is the number of nodes. The higher
γij(f ) indicates the stronger connectivity of channel
j to channel i. The significance of γij(f ) needs to be
tested to remove pseudo-connections to get the actual
connectivity strength DTFij [38]. Then the bidirec-
tional information flow (IF) between mPFC and MD
was calculated to measure the information transfer in
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Fig. 1. Experiment setup. A) Experimental paradigm for conducting a single trial of the DNMTP task in T-maze. Each trial comprised a
sample phase and a choice phase separated by a 10-s delay. B) Accuracy was indicated by the percentage of correct trials (n = 8 mice in each
group). C) Trial durations varied with training days (n = 8 mice in each group). D) Schematic of simultaneous multi-channel microelectrodes
in vivo recordings. E) Typical LFP tracings from mPFC (orange) and MD (green). F) Histological verification of the recording sites in
mPFC (PrL region, left) and MD (right). Locations of recording sites are indicated by rectangles. Scale bar, 500 �m. Data are represented
as mean ± SEM.
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the network:

IFP→M = 1
NP ∗ NM

∑

i∈NM

∑

j∈NP

DTFij (5)

IFM→P = 1
NM ∗ NP

∑

i∈NM

∑

j∈NP

DTFji (6)

where IFP→M indicates the information flow from
mPFC to MD, and IFM→P indicates the information
flow from MD to mPFC. NP and NM refer, respec-
tively, to the number of channels of mPFC and MD.

Statistical tests

All data were analyzed using built-in functions
or custom code in Matlab. The statistical analyses
were performed using GraphPad Prism 9. Two-way
repeated measures ANOVA followed by Bonferroni
test for multiple comparisons was used to compare
the behavioral results in the inter-group. One-way
ANOVA followed by Bonferroni test for multiple
comparisons was applied to compare the power and
information flow among the different frequencies in
the intra-group. Mann-Whitney test followed by a
post hoc two-tailed t-test was used to test the sta-
tistical differences between APP/PS1 and control
mice. All data are expressed as means ± SEM. Differ-
ences were considered statistically significant when
p < 0.05.

RESULTS

Working memory deficits in APP/PS1 mice

In this study, we used a T-maze DNMTP task to
test spatial working memory. The behavioral results
showed that the correct rate of control mice gradually
rose with the training days while the APP/PS1 mice
maintained a relatively stable accuracy rate (Fig. 1B;
control: from 62.22%±5.21% to 90.56%±4.12%,
APP/PS1: from 50.56%±3.68% to 59.44%±2.27%;
two-way repeated measures ANOVA fol-
lowed by Bonferroni’s test, F (1,96) = 60.21,
p < 0.0001: p < 0.05 for APP/PS1 versus control
group).

From the third day of training, the APP/PS1
mice showed obviously lower correct rates than
the control mice. Besides, we also found that both
groups of mice took less time to obtain rewards.
Compared to the APP/PS1 mice, the control mice
shortened the time more rapidly during the choice

phase as the training days increased (Fig. 1C; con-
trol: from 6.59 ± 0.22 s to 3.30 ± 0.23 s, APP/PS1:
from 7.20 ± 0.18 s to 6.20 ± 0.17 s; two-way repeated
measures ANOVA followed by Bonferroni’s test,
F (1,84) = 158.6, p < 0.0001: p < 0.05 for control
group versus APP/PS1 group). These results indicate
the impaired spatial working memory in APP/PS1
mice.

Decreased theta oscillatory activity in mPFC
and MD during retrieval in APP/PS1 mice

We observed the LFP activities from mPFC and
MD for the APP/PS1 and control mice (n = 8 mice
in each group) as the mice performed the DNMTP
task. In total, we analyzed 415 trials (207 trials from
APP/PS1 mice and 208 trials from control mice) in
the present paper.

To examine the dominant frequencies during
retrieval, we first calculated a time-frequency map of
the LFP power spectra for each site (Fig. 2A, B, and
Supplementary Figure 1). We further compared the
power spectral density in different frequency bands
(Fig. 2C, D, and Supplementary Figure 2). The sta-
tistical results revealed that the theta range is the
dominant frequency among all the frequency bands
in both APP/PS1 and control mice.

We further normalized the power (z-score) to
exclude the effects of electrode impedance and mouse
individual differences. For mPFC, the theta power
in control mice showed a noticeable increase prior
to the choice point (point ‘e’), which was signifi-
cantly higher than that in APP/PS1 mice (Fig. 2E;
right: control: 0.92 ± 0.044, APP/PS1 : 1.29 ± 0.068;
Mann-Whitney test, p = 0.0030). For MD, the
theta power showed no statistical difference
between the two groups (Fig. 2F; right: con-
trol: 1.08 ± 0.036, APP/PS1 : 1.17 ± 0.070; Mann-
Whitney test, p = 0.5054).

Notably, the theta power peaked in mPFC
before that in MD in both groups (Fig. 2G
and Supplementary Figure 3). The intervals in
APP/PS1 mice were statistically longer than those
in control mice (Fig. 2H; control: 0.46 ± 0.043,
APP/PS1 : 0.73 ± 0.030; Mann-Whitney test,
p = 0.0003). These results may suggest the pre-
frontal priming signature during retrieval and
potential information transmission from mPFC
to MD.
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Fig. 2. Oscillatory dynamics in mPFC and MD during the choice phase. A) Time-frequency power spectrum of mPFC and MD during
the choice phase for a control mouse. B) Same as A, but for an APP/PS1 mouse. C) Comparison of power among different frequencies
in mPFC and MD for the control mice (n = 8 mice; mPFC: one-way ANOVA followed by Bonferroni’s test, F (3,56) = 7.345, p = 0.0003;
MD: one-way ANOVA followed by Bonferroni’s test, F (3,52) = 7.07, p = 0.0004). D) same as (C), but for the APP/PS1 mice (n = 8 mice;
mPFC: one-way ANOVA followed by Bonferroni’s test, F (3,64) = 5.731, p = 0.0015; MD: one-way ANOVA followed by Bonferroni’s test,
F (3,60) = 15.71, p < 0.0001). E) Left: Average power spectral density (z-score) in mPFC during retrieval; Right: Comparison of peak theta
power in mPFC (n = 8 mice per group, left: control: one-way ANOVA followed by Bonferroni’s test, F (59,7867) = 170.1, p < 0.0001, APP/PS1:
one-way ANOVA followed by Bonferroni’s test, F (59,8680) = 117.9, p < 0.0001. Right: **p < 0.01 by Mann-Whitney test). F) Same as E,
but for MD (n = 8 mice per group; Left: Control: one-way ANOVA followed by Bonferroni’s test, F (59,7333) = 57.86, p < 0.0001, APP/PS1:
one-way ANOVA followed by Bonferroni’s test, F (59,8598) = 37.42, p < 0.0001. Right: Mann-Whitney test, ns, not significant). G) Schematics
illustrate the time when the theta power peaked and ‘�t’ is defined as the interval between the peak time in mPFC and MD. Left: control,
right: APP/PS1. H) Comparison of normalized �t from (G) (n = 8 mice per group; Mann-Whitney test, ***p < 0.001). Data are represented
as mean ± SEM.

Reduced theta flow from mPFC to MD during
retrieval in APP/PS1 mice

To gain more insight into directional functional
interaction during retrieval, we quantified the infor-
mation flow from mPFC to MD using the DTF

method. We plotted the curve of information flow as a
function of frequency to determine the dominant fre-
quency during the choice phase. The results showed
that the theta flow from mPFC to MD in APP/PS1
mice was significantly lower than that in control mice
(Fig. 3A and Supplementary Figure 4). Moreover, the
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Fig. 3. Reduced theta flow from mPFC to MD during retrieval in APP/PS1 mice. A) Average information flow from mPFC to MD as a function
of frequency during the choice phase (n = 8 mice per group; control: one-way ANOVA followed by Bonferroni’s test, F (119,13756) = 6.735,
p < 0.0001; APP/PS1: one-way ANOVA followed by Bonferroni’s test, F (119,12822) = 6.927, p < 0.0001). B) Information flow from mPFC
to MD across the different frequency bands in control mice (n = 8 mice; one-way ANOVA followed by Bonferroni’s test, F (4,504) = 82.71,
p < 0.0001). C) Same as B, but for APP/PS1 mice (n = 8 mice; one-way ANOVA followed by Bonferroni’s test, F (4,472) = 82.94, p < 0.0001).
D) Theta flow from mPFC to MD as a function of spatial positions in the T-maze (n = 8 mice per group, gray: one-way ANOVA followed
by Bonferroni’s test, F (21,4554) = 3.189, p < 0.0001; red: one-way ANOVA followed by Bonferroni’s test, F (21,4576) = 5.551, p < 0.0001).
E) Comparison of the average theta flow between APP/PS1 and control mice during the choice phase (n = 8 mice per group; ***p < 0.001
by Mann-Whitney test). F) Theta flow showed a relatively smaller increase in APP/PS1 mice (�IFmPFC−→MD is defined as the peak value
of theta flow (the maximum of theta flow during the choice period: d −→e) minus the initial value of theta flow (at location ‘d’)) (n = 8
mice; *p < 0.05 by Mann-Whitney test). G) Shuffled theta flow from mPFC to MD during the choice phase (n = 8 mice per group; control:
one-way ANOVA followed by Bonferroni’s test, F (21,3183) = 0.4554, p = 0.9839; APP/PS1: one-way ANOVA followed by Bonferroni’s test,
F (21,1915) = 0.7947, p = 0.7292). H) The shuffled data showed no statistically significant difference between the two groups (n = 8 mice per
group; ns, not significant by Mann-Whitney test). I) The changes in the theta flow are independent of animals’ running speed (n = 8 mice;
ns, not significant by Mann-Whitney test). Data are represented as mean ± SEM.

theta flow from mPFC to MD was significantly higher
than those in other frequency bands in both control
(Fig. 3B and Supplementary Figure 4) and APP/PS1
mice (Fig. 3C and Supplementary Figure 4).

Given the prominent theta flow, we quantified
the theta flow as a function of position in the
T-maze to examine the patterns of theta flow dur-

ing the choice phase. The results showed that the
theta flow from mPFC to MD rose and peaked
before the turning in both groups (Fig. 3D). We fur-
ther compared the theta flow from mPFC to MD
between the two groups. Prior to point ‘e’, which
showed that the flow in APP/PS1 mice was signif-
icantly lower than that in control mice (Fig. 3E;
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Fig. 4. Directionality of the theta flow in APP/PS1 and control mice during retrieval. A) Bidirectional theta flow between mPFC and MD
across the control mice during the choice phase on the correctly performed trials. Left: the gray and green curves represent the theta flow from
mPFC to MD and from MD to mPFC, respectively (n = 8 mice; left: gray: one-way ANOVA followed by Bonferroni’s test, F (21,4554) = 3.189,
p < 0.0001, green: one-way ANOVA followed by Bonferroni’s test, F (21,3014) = 1.035, p = 0.4154). Right: the theta flow from mPFC to MD
was significantly higher than the reverse (n = 8 mice; ***p < 0.001 by Mann-Whitney test). B) Same as (A), but for the APP/PS1 mice
(n = 8 mice; left: red: one-way ANOVA followed by Bonferroni’s test, F (21,4576) = 5.551, p < 0.0001; blue: one-way ANOVA followed by
Bonferroni’s test, F (21,4400) = 1.137, p = 0.2993, right: ***p < 0.001 by Mann-Whitney test).

control: 0.017 ± 0.0004, APP/PS1 : 0.011 ± 0.0002;
Mann-Whitney test, p < 0.0001). Moreover, the theta
flow in APP/PS1 mice showed a relatively lower
increment across the choice phase (Fig. 3F; con-
trol: 0.0046 ± 0.0008, APP/PS1 : 0.0025 ± 0.0006;
Mann-Whitney test, p = 0.0407). We also examined
the temporal patterns of the theta flow with those
obtained from shuffled data, demonstrating that theta
flow during the choice phase does not simply reflect
random fluctuations in activity (Fig. 3G and 3 H; con-
trol: 0.0057 ± 0.0002, APP/PS1 : 0.0055 ± 0.0002;
Mann-Whitney test, p = 0.7245). To exclude the
differences in locomotor ability, we tested the run-

ning speed of the APP/PS1 and control mice.
The results showed that the elevated theta flow
was not caused by the motor function, as no
difference in the animals’ running speed was
found between the two groups (Fig. 3I; con-
trol: 17.16 ± 0.50; APP/PS1 : 17.18 ± 0.49, Mann-
Whitney test, p = 0.9060).

To further determine the directionality of theta flow
during retrieval, we also calculated the information
flow from MD to mPFC during the choice phase. For
control mice, the theta flow from mPFC to MD dis-
played a noticeable increase before the choice points.
By contrast, no changes in theta flow were observed
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during the choice phase (Fig. 4A left and Supplemen-
tary Figure 5).

The statistical results revealed that the theta flow
from mPFC to MD was noticeably higher than that
from MD to mPFC (Fig. 4A right: mPFC to MD:
0.017 ± 0.0004, MD to mPFC: 0.0099 ± 0.0005;
Mann-Whitney test, p < 0.0001). Compared to the
controls, the APP/PS1 mice showed a relatively
smaller increase in the theta flow from mPFC to MD
(Fig. 4B left and Supplementary Figure 5) and it is
still stronger than that from MD to mPFC (Fig. 4B
right: mPFC to MD: 0.011 ± 0.0002, MD to mPFC:
0.0055 ± 0.0002; Mann-Whitney test, p < 0.0001).
These results suggest an important role of the elevated
theta flow from mPFC to MD for retrieval and the
working memory deficits in APP/PS1 mice are linked
with the disrupted information flow in the mPFC-MD
circuit.

DISCUSSION

We mainly report a decreased theta flow from
mPFC to MD during working memory retrieval in the
APP/PS1 mouse model of AD. Our results provide
evidence that directional frequency-specific commu-
nication in the prefrontal-thalamic pathway plays an
important role in spatial working memory. The dis-
rupted information transfer from mPFC to MD may
be the underlying mechanism of working memory
deficits in the APP/PS1 model of AD.

The pathogenesis of AD is highly complex and
has attracted the interest of many scholars. Previous
studies have suggested the pathology of AD includes
primarily amyloid plaques, tau tangles, neuronal and
synaptic loss, and so on [39]. In particular, A� pep-
tide precipitation is an early event in the onset of AD
[40] and has been regarded as the disease’s leading
contributing factor according to the amyloid cascade
hypothesis [41]. Nevertheless, amyloid deposition is
associated with functional disruption of the default
network after excluding late-stage effects such as
cognitive impairments but ignoring early effects [42,
43].

Furthermore, the functional deficits in various APP
overexpressing mouse lines were detected before
the early plaque formation stage, although there
is only a slight decrease [40, 44]. Studies using
functional magnetic resonance imaging and positron
emission tomography suggested that the functional
connectivity in the resting state declined in AD
patients, which had no direct relationship to amy-

loid plaques [45, 46]. This fact raised a possibility
that fibrillar A� in plaques does not directly con-
tribute to the functional deficits in AD. Instead,
soluble A� species (i.e., monomeric, oligomeric, and
protofibrillary A� species that linger in aqueous solu-
tion after high-speed centrifugation), which appear
before plaque and ultimately gather to form plaques,
seem to be the primary culprit of the functional
connectivity impairment in AD [47]. In particular,
comparisons of transgenic lines of mice with various
APP expressions showed that the reduction in presy-
naptic terminals was strongly reliant on soluble A�
levels in the cortex and occurred earlier than plaque
deposition [48, 49]. Coinciding with this fact, there
is a point that soluble forms of starch can exert toxic
effects at the synaptic level, altering synaptic trans-
mission and ultimately leading to impaired function
[44, 47].

Several electrophysiological studies have also
released smaller excitatory postsynaptic potentials
and concurrent decay of long-term potentiation (an
electrophysiological correlate of synaptic plasticity)
for the AD transgenic model than nontransgenic mice
and the functional synaptic rather than structural
changes are responsible for the impaired performance
on spatial working memory tasks in aged transgenic
mice [45, 50–52]. Severe disruption in long-range
axonal connectivity was found using intravital cal-
cium and voltage imaging in the AD model mice.
The damage was related to the action potential trans-
mission block. The block in neurons may lead to
behavioral state-associated LFP oscillations deliv-
ery block among the brain regions [53]. Therefore,
the abnormal synaptic transmission with the action
potential transmission block may be the possible rea-
son for the disrupted functional connectivity from
mPFC to MD in the APP/PS1 model.

The brain generates rhythmic oscillations to sup-
port information processing in cognitive functions.
The fluctuations in theta frequency have long been
linked to memory. Increased theta oscillations are
associated with successful memory [54]. Aberrant
theta rhythms underlie working memory deficits in
AD patients [55]. Our results are consistent with
those reported in the literature. In addition, recent
studies have proposed that gamma oscillations play
an irreplaceable role in information processing [56,
57]. Dampened gamma activities were also found
in AD patients [58]. Electrophysiological studies of
AD-related alteration in mouse models also yielded
encouraging findings of improved AD pathogenesis
through invasive and non-invasive brain stimulation
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in the gamma range [59–61]. Moreover, theta-gamma
cross-frequency coupling may serve as a key par-
ticipant in memory processing [62, 63]. Reduced
theta-gamma coupling may serve as a biomarker for
early AD-related changes in brain dynamics [62].

Clinically, AD is classified into two subtypes:
early onset (EOAD) and late onset (LOAD).
EOAD is predominantly familial, with mutations in
genes encoding amyloid protein precursor (APP),
presenilin-1 (PSEN1), and presenilin-2 (PSEN2)
[64]. However, the intricate interaction between
genetic and environmental variables that affect the
development, course, and severity of the illness
makes the genetic factors driving LOAD difficult to
understand. To date, the apolipoprotein E (APOE)
gene is the strongest genetic risk factor for developing
LOAD [65, 66].

In this context, as essential tools for AD research,
many lines of genetically altered mice were used to
study the pathogenesis of AD and evaluate poten-
tial therapeutic interventions [67, 68]. In general,
most transgenic animal models are based on rare,
early-onset AD genes. For instance, the amyloid pre-
cursor protein/presenilin 1 (APP/PS1) model was
commonly used and mainly characterized as the
accumulation of A� peptide. Genetic mutations in
this model of mice are associated with familial AD.
Therefore, the APP/PS1 model has exhibited strong
neuropathological markers of familial AD-like pat-
terns at early ages [32, 69, 70].

It should be clarified that the APP/PS1 mice are
limited to the expression of AD-related pathology
linked to particular mutations present in EOAD. This
model provides critical insights into amyloid accu-
mulation, pathology, and clearance, but it is unable
to capture all transcriptome characteristics and the
entire neuropathology of LOAD [71]. Indeed, A�
and tau pathology in sporadic and familial cases
are morphologically similar, rationalizing the utiliza-
tion of animal models with genetically engineered
familial AD mutations for studying LOAD [71]. It
is well known that A� deposition is generated by
an imbalance between A� production and clearance.
Evidence has suggested that the defective clearance
of A� could be the driving force behind LOAD using
the method of metabolic labeling in AD patients.
According to the findings, reduced A� catabolism is
a possible mechanism in LOAD, whereas enhanced
anabolism of pathogenic A� results in pathological
accumulation in familial AD [72]. Notably, reduced
A� phagocytosis was found in the APP/PS1 mouse
models. To be more specific, prolonged exposure to

A� leads to persistent activation of microglial cells
which attempt to clear the pathological deposits of
A� through phagocytosis and degradation [73]. How-
ever, it is still a big challenge to understand the extent
to which transgenic model mice recapitulate LOAD.
More accurate animal models are expected to bring
preclinical research closer to clinical trials in humans,
especially for LOAD.

The interpretation of the conclusive description
of the comparison between our mouse model and
human AD remains challenging. A key point is the
lack of concordance between animal models and
human studies. Most of the models are missing the
entire pathology, but rather specific features. Addi-
tionally, the host’s genetic background might alter
gene expression, and pharmacokinetics may vary
throughout species [74–76].

In summary, our results revealed the disrupted
prefrontal-thalamic information transmission during
retrieval in APP/PS1 mice with working memory
deficits. Further research is needed to clarify the rela-
tionship between abnormal information transmission
and declined cognitive function in mice and humans,
as well as the potential value as a biomarker of pre-
symptomatic AD.
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