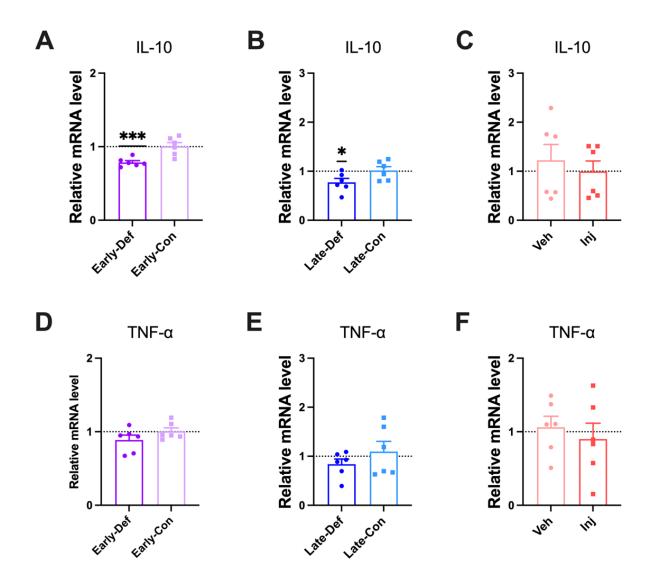
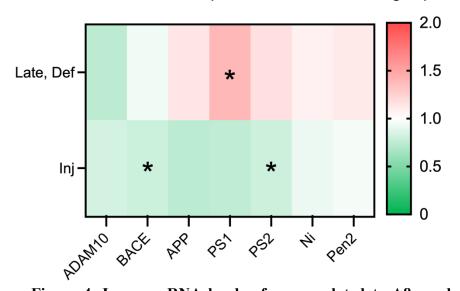

## **Supplementary Material**

Vitamin D Reduces GABA-Positive Astrocytes in the 5xFAD Mouse Model of Alzheimer's Disease

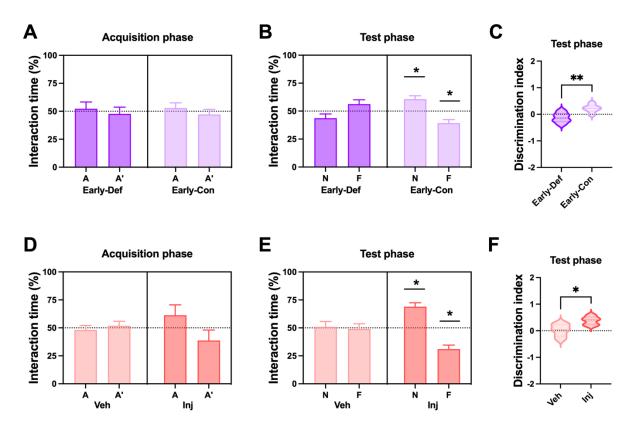



**Supplementary Figure 1.** Representative histologic findings of the hemisphere images staining A $\beta$  plaques (Thioflavin S; Green) and microglia (Iba1; Red). Dashed lines indicate the regions of interest used for the quantification of A $\beta$  plaques and microglia based on Paxinos and Franklin's the Mouse Brain. A $\beta$ , amyloid- $\beta$ ; Iba1, ionized calcium-binding adaptor molecule 1




**Supplementary Figure 2.** Representative histologic findings of the hemisphere images staining A $\beta$  plaques (Thioflavin S; Green), astrocytes (GFAP; Red), and GABA (Blue). Dashed lines indicate the regions of interest used for the quantification of A $\beta$  plaques and astrocytes. A $\beta$ , amyloid- $\beta$ ; GFAP, glial fibrillary acidic protein; GABA, gamma-aminobutyric acid

The Supplementary Figures 3-5 presented in this supplementary section have been reprocessed from our previous study (Kang et al., 2022) [1]. This reprocessing was conducted to provide additional insights and to complement the findings discussed in the main text on the reviewer's request. All reprocessing procedures adhere to ethical guidelines and maintain the integrity of the original data.




Supplementary Figure 3. Vitamin D deficiency decreased mRNA levels of IL-10 in the brain. A) The results from the qRT-PCR analysis of the transcriptional levels of IL-10 between Early-Def (n=6) and Early-Con (n=6) groups are shown. B) The mRNA levels of IL-10 between Late-Def (n=6) and Late-Con (n=6) groups are illustrated. C) The mRNA levels of IL-10 between Veh (n=6) and Inj (n=6) groups are illustrated. D) The mRNA levels of TNF- $\alpha$  between Early-Def and Early-Con are shown. E) The mRNA levels of TNF- $\alpha$  between Late-Def and Late-Con are shown. (F) The mRNA levels of TNF- $\alpha$  between Veh and Inj are shown. Data are presented as mean  $\pm$  SEM. \*p < 0.05 by Student's t-test. Supplementary Figure 3 showcases a re-representation of the data originally published by Kang et al., 2022 [1]. This re-representation aims to enhance understanding and provide a different perspective in the context of the current study on the reviewer's request. IL-10, interleukin-10; qRT-PCR, real-time quantitative reverse transcription polymerase chain reaction; TNF- $\alpha$ , tumor necrosis factor  $\alpha$ 



Relative mRNA levels compared to control or vehicle group

Supplementary Figure 4. Lower mRNA levels of genes related to A $\beta$  production in the vitamin D supplementation group. A heatmap of the qRT-PCR results of A $\beta$  pathology-related gene expression is shown. mRNA levels of Late-Def (n=6) and Inj (n=5) groups were compared to Late-Con (n=6) and Veh (n=6) groups, respectively. The data are presented by the mean  $\pm$  SEM of each group. \*p < 0.05 by the Student's t-test. Supplementary Figure 4 showcases a re-representation of the data originally published by Kang et al., 2022 [1]. This re-representation aims to enhance understanding and provide a different perspective in the context of the current study on the reviewer's request. ADAM-10, A Disintegrin and Metalloproteinase (ADAM) family; APP, amyloid precursor protein; BACE,  $\beta$ -secretase; Ni, nicastrin; Pen2, presenilin-enhancer 2; PS1, presenilin 1; PS2, presenilin 2



Supplementary Figure 5. The effects of vitamin D on memory impairment in AD mouse model. A, B) The interaction time spent in each location of the Early-Def (n = 6) and Early-Con (n = 6) groups in (A) the acquisition trial and (B) the test trial are shown. C) The discrimination indexes of the Early-Def and Early-Con groups are illustrated. D, E) The interaction time spent in each location of the Veh (n = 6) and Inj (n = 5) groups in (D) the acquisition trial and (E) the test trial are shown. F) The discrimination indexes of the Veh and Inj groups are illustrated. The data are presented by the mean  $\pm$  SEM of each group. \*p < 0.05 by the Student's t-test (one-sample t-test compared to theoretical mean). Supplementary Figure 5 showcases a re-representation of the data originally published by Kang et al., 2022 [1]. This re-representation aims to enhance understanding and provide a different perspective in the context of the current study on the reviewer's request.

| Author, year  |       | Samples     | Subject       | Results                                | References                                                         |  |  |
|---------------|-------|-------------|---------------|----------------------------------------|--------------------------------------------------------------------|--|--|
| Sadeghzadeh   | Iran  | 32 male     | BALB/C mice   | While vitamin D supplements            | Sadeghzadeh J, Jafarzadeh J, Hadinezhad P, Nazari A, Sohrabi S,    |  |  |
| et al., 2023  |       | mice model  | with surgical | decreased inflammation and             | Musazadeh V, Barzegar A, Shahabi P. Profiling inflammatory         |  |  |
|               |       | with        | procedure to  | prevented apoptosis, there are         | mechanisms, hyperphosphorylated tau of hippocampal tissue and      |  |  |
|               |       | surgical    | induce brain  | no significant effects on p-tau.       | spatial memory following vitamin D3 treatment in the mice          |  |  |
|               |       | procedure   | ischemia for  |                                        | model of vascular dementia. Int Immunopharmacol. 2023              |  |  |
|               |       | to induce   | vascular      |                                        | Jul;120:110314. doi: 10.1016/j.intimp.2023.110314. Epub 2023       |  |  |
|               |       | brain       | dementia      |                                        | May 21. PMID: 37220695.                                            |  |  |
|               |       | ischemia    | model         |                                        |                                                                    |  |  |
| Patel et al., | India |             |               | Vitamin D significantly                | Patel P, Shah J. Vitamin D3 supplementation ameliorates            |  |  |
| 2022          |       |             |               | improve the cognitive function         | cognitive impairment and alters neurodegenerative and              |  |  |
|               |       |             |               | and lower hyperphosphorylated          | inflammatory markers in scopolamine induced rat model. Metab       |  |  |
|               |       |             |               | tau proteins in the scopolamine-       | Brain Dis. 2022 Dec;37(8):2653-2667. doi: 10.1007/s11011-022-      |  |  |
|               |       |             |               | induced rats.                          | 01086-2. Epub 2022 Sep 26. PMID: 36156759.                         |  |  |
| Lin et al.,   | China | 50          | Male          | Vitamin D significantly reduced        | Lin J, Niu Z, Xue Y, Gao J, Zhang M, Li M, Peng Y, Zhang S, Li     |  |  |
| 2022          |       | APP/PS1     | APP/PS1       | the levels of $A\beta$ , cortical APP, | W, Zhang Q, Li X. Chronic vitamin D3 supplementation               |  |  |
|               |       | transgenic  | transgenic    | tau, and p-tau in APP/PS1 mice.        | alleviates cognition impairment via inhibition of oxidative stress |  |  |
|               |       | mice and 10 | mice for AD   |                                        | regulated by PI3K/AKT/Nrf2 in APP/PS1 transgenic mice.             |  |  |
|               |       | WT mice     | model         |                                        | Neurosci Lett. 2022 Jul 13;783:136725. doi:                        |  |  |
|               |       |             |               |                                        | 10.1016/j.neulet.2022.136725. Epub 2022 Jun 10. PMID:              |  |  |
|               |       |             |               |                                        | 35697158.                                                          |  |  |
| Wu et al.,    | China | APP/PS1     | Female        | Activation of the vitamin D            | Wu TY, Zhao LX, Zhang YH, Fan YG. Activation of vitamin D          |  |  |
| 2022          |       | transgenic  | APP/PS1       | receptor reduced the                   | receptor inhibits Tau phosphorylation is associated with reduction |  |  |
|               |       | mice        | transgenic    | phosphorylation of Tau via             | of iron accumulation in APP/PS1 transgenic mice. Neurochem         |  |  |
|               |       | (n=10)      | mice for AD   | inhibiting Tyr216 in the               | Int. 2022 Feb;153:105260. doi: 10.1016/j.neuint.2021.105260.       |  |  |
|               |       |             | model         | APP/PS1 AD model mice.                 | Epub 2021 Dec 22. PMID: 34953963.                                  |  |  |

**Supplementary Table 1.** Results of a systematic rapid review of previous studies investigating the association between vitamin D and tau pathology in Alzheimer's disease (published, 2022-2023)

Aβ, amyloid-β; AD, Alzheimer's disease; APP, amyloid-β protein precursor; WT, wild-type

**Supplementary Table 2.** Results of a systematic rapid review of previous studies investigating the association between vitamin D and Alzheimer's disease (published, 2022-2023)

| Author, year                     | Country     | Samples                                                                                         | Subject                                              | Results                                                                                                                                                          | References                                                                                                                                                                                                                                                                                                                                                                                                                                        | Associations |
|----------------------------------|-------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Richter et al.,<br>2023          | Netherlands | Serum samples<br>from patients<br>(n=25)                                                        | Patients<br>with AD                                  | Low vitamin D<br>status was<br>associated with<br>CSF Aβ levels.                                                                                                 | Richter AL, Diepeveen-de Bruin M, Balvers MGJ, De<br>Groot LCPGM, De Deyn PP, Engelborghs S, Witkamp<br>RF, Vermeiren Y. Association between low vitamin D<br>status, serotonin and clinico-bio-behavioral parameters in<br>Alzheimer's disease. Dement Geriatr Cogn Disord. 2023<br>Oct 6. doi: 10.1159/000534492. Epub ahead of print.<br>PMID: 37806302.                                                                                       |              |
| Mohanad et<br>al., 2023          | Egypt       | Aluminum-<br>chloride-D-<br>galactose<br>(AlCl3-D-gal)-<br>induced AD rat<br>model              | AD rat<br>model (non-<br>genetic<br>animal<br>model) | Vitamin D may<br>attenuate cognitive<br>impairments by<br>restoring normal<br>mitochondrial<br>function and<br>reducing<br>inflammatory and<br>oxidative stress. | Mohanad M, Mohamed SK, Aboulhoda BE, Ahmed<br>MAE. Neuroprotective effects of vitamin D in an<br>Alzheimer's disease rat model: Improvement of<br>mitochondrial dysfunction via calcium/calmodulin-<br>dependent protein kinase kinase 2 activation of Sirtuin1<br>phosphorylation. Biofactors. 2023 Oct 6. doi:<br>10.1002/biof.2013. Epub ahead of print. PMID:<br>37801071.                                                                    |              |
| Evlice et al.,<br>2023           | Turkey      | 132 patients<br>with AD and 38<br>controls                                                      | Patients<br>with AD                                  | Vitamin D<br>deficiency can<br>aggregate and<br>trigger ischemia in<br>AD.                                                                                       | Evlice A, Sanli ZS, Boz PB. The importance of Vitamin-<br>D and Neutrophil-Lymphocyte Ratio for Alzheimer's<br>Disease. Pak J Med Sci. 2023 May-Jun;39(3):799-803.<br>doi: 10.12669/pjms.39.3.7024. PMID: 37250565;<br>PMCID: PMC10214823.                                                                                                                                                                                                        | •            |
| Melo van<br>Lent et al.,<br>2022 | Germany     | 250 patients<br>with all-cause<br>dementia and<br>209 patients<br>with AD                       | Patients<br>with all-<br>cause<br>dementia<br>and AD | While vitamin A<br>and E were not<br>associated to AD<br>and dementia,<br>vitamin D<br>deficiency<br>increased risk to<br>for AD and<br>dementia.                | Melo van Lent D, Egert S, Wolfsgruber S, Kleineidam L,<br>Weinhold L, Wagner-Thelen H, Stoffel-Wagner B, Bickel<br>H, Wiese B, Weyerer S, Pentzek M, Jessen F, Schmid M,<br>Maier W, Scherer M, Riedel-Heller SG, Ramirez A,<br>Wagner M. Low Serum Vitamin D Status Is Associated<br>with Incident Alzheimer's Dementia in the Oldest Old.<br>Nutrients. 2022 Dec 23;15(1):61. doi:<br>10.3390/nu15010061. PMID: 36615719; PMCID:<br>PMC9824107. |              |
| Soares et al.,<br>2022           | Norway      | 100 outpatients<br>aged above 65<br>years with<br>cognitive<br>impairment and<br>76 cognitively | Participants<br>with<br>cognitive<br>impairment      | Participants with<br>higher CSF<br>vitamin D levels<br>showed lower CSF<br>levels of tau<br>protein and                                                          | Soares JZ, Valeur J, Šaltytė Benth J, Knapskog AB,<br>Selbæk G, Bogdanovic N, Pettersen R. Associations<br>Between Intrathecal Levels of Vitamin D, Cytokines, and<br>Core Biomarkers of Alzheimer's Disease: A Cross-<br>Sectional Study. J Alzheimers Dis. 2022;89(3):825-834.<br>doi: 10.3233/JAD-220407. PMID: 35938253.                                                                                                                      |              |

|                            |        | healthy controls                                                                                                                       |                                                                          | phosphorylated tau protein.                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|----------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Lai et al.,<br>2022        | Taiwan | APP/PS1 mice<br>(n=4-7) and<br>older adults<br>(n=14,648)                                                                              | AD mouse<br>model<br>(genetic<br>animal<br>model) and<br>human<br>cohort | Faster disease<br>progression after<br>vitamin D<br>supplementation<br>were shown.                                                                      | Lai RH, Hsu CC, Yu BH, Lo YR, Hsu YY, Chen MH,<br>Juang JL. Vitamin D supplementation worsens<br>Alzheimer's progression: Animal model and human<br>cohort studies. Aging Cell. 2022 Aug;21(8):e13670. doi:<br>10.1111/acel.13670. Epub 2022 Jul 12. PMID:<br>35822270; PMCID: PMC9381901.                                                                                                                                                        | • |
| Dimitrakis et<br>al., 2022 | Greece | 90 patients with<br>AD and 103<br>healthy controls                                                                                     | Southeastern<br>European<br>Caucasian<br>population                      | Vitamin D receptor<br>gene TaqI TT<br>allele was found to<br>increase risk of<br>AD.                                                                    | Dimitrakis E, Katsarou MS, Lagiou M,<br>Papastefanopoulou V, Stanitsa E, Spandidos DA,<br>Tsatsakis A, Papageorgiou S, Moutsatsou P, Antoniou K,<br>Kroupis C, Drakoulis N. Association of vitamin D<br>receptor gene TaqI polymorphism with Alzheimer's<br>disease in a Southeastern European Caucasian<br>population. Exp Ther Med. 2022 May;23(5):341. doi:<br>10.3892/etm.2022.11271. Epub 2022 Mar 22. PMID:<br>35401802; PMCID: PMC8988159. |   |
| Broberg et<br>al., 2022    | Canada | 56 APP/PS1<br>mice                                                                                                                     | AD mouse<br>model<br>(genetic<br>animal<br>model)                        | Vitamin D<br>deficiency group<br>showed impaired<br>gait performance<br>in AD mice.                                                                     | Broberg DN, Wong D, Bellyou M, Montero-Odasso M,<br>Beauchet O, Annweiler C, Bartha R. Effects of<br>Memantine and High Dose Vitamin D on Gait in Male<br>APP/PS1 Alzheimer's Disease Mice Following Vitamin<br>D Deprivation. J Alzheimers Dis. 2022;85(4):1755-1766.<br>doi: 10.3233/JAD-215188. PMID: 34958027.                                                                                                                                | • |
| Bao et al.,<br>2020        | China  | 40 APP/PS1 rats                                                                                                                        | AD rat<br>model<br>(genetic<br>animal<br>model)                          | Vitamin D<br>improved memory<br>function and<br>morphological<br>defects in<br>hippocampal<br>neurons.                                                  | Bao Z, Wang X, Li Y, Feng F. Vitamin D Alleviates<br>Cognitive Dysfunction by Activating the VDR/ERK1/2<br>Signaling Pathway in an Alzheimer's Disease Mouse<br>Model. Neuroimmunomodulation. 2020;27(4):178-185.<br>doi: 10.1159/000510400. Epub 2021 Feb 18. PMID:<br>33601398.                                                                                                                                                                 |   |
| Mehrabadi et<br>al., 2020  | Iran   | 60 rats with<br>control group,<br>sham group, AD<br>group with<br>intra-<br>hippocampal<br>A $\beta_{1.40}$ injection<br>(Total, n=60) | AD rat<br>model<br>(nongenetic<br>animal<br>model)                       | Vitamin D and E<br>and their<br>combination<br>improved memory<br>and learning<br>impairment and<br>decreased neuronal<br>loss and oxidative<br>stress. | Mehrabadi S, Sadr SS. Administration of Vitamin D3 and<br>E supplements reduces neuronal loss and oxidative<br>stress in a model of rats with Alzheimer's disease. Neurol<br>Res. 2020 Oct;42(10):862-868. doi:<br>10.1080/01616412.2020.1787624. Epub 2020 Jul 4.<br>PMID: 32627720.                                                                                                                                                             |   |

Aβ, amyloid-β; AD, Alzheimer's disease; APP, amyloid-β protein precursor; CSF, cerebrospinal fluid; WT, wild-type ▲ The positive effects of vitamin D on AD were shown. (The negative effects of vitamin D deficiency on AD were shown.) ▼ The negative effects of vitamin D on AD were shown. (The positive effects of vitamin D deficiency on AD were shown.)

## REFERENCES

[1] Kang J, Park M, Lee E, Jung J, Kim T (2022) The role of vitamin D in Alzheimer's disease: a transcriptional regulator of amyloidopathy and gliopathy. *Biomedicines* **10**, 1824.