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Abstract.

Background: The term Behavioral and Psychological Symptoms of Dementia (BPSD) covers a group of phenomenologically
and medically distinct symptoms that rarely occur in isolation. Their therapy represents a major unmet medical need across
dementias of different types, including Alzheimer’s disease. Understanding of the symptom occurrence and their clusterization
can inform clinical drug development and use of existing and future BPSD treatments.

Objective: The primary aim of the present study was to investigate the ability of a commonly used principal component
analysis to identify BPSD patterns as assessed by Neuropsychiatric Inventory (NPI).

Methods: NPI scores from the Aging, Demographics, and Memory Study (ADAMS) were used to characterize reported
occurrence of individual symptoms and their combinations. Based on this information, we have designed and conducted a
simulation experiment to compare Principal Component analysis (PCA) and zero-inflated PCA (ZI PCA) by their ability to
reveal true symptom associations.

Results: Exploratory analysis of the ADAMS database revealed overlapping multivariate distributions of NPI symptom
scores. Simulation experiments have indicated that PCA and ZI PCA cannot handle data with multiple overlapping patterns.
Although the principal component analysis approach is commonly applied to NPI scores, it is at risk to reveal BPSD clusters
that are a statistical phenomenon rather than symptom associations occurring in clinical practice.

Conclusions: We recommend the thorough characterization of multivariate distributions before subjecting any dataset to
Principal Component Analysis.

Keywords: Alzheimer’s disease, dementia, neurobehavioral signs and symptoms, Neuropsychiatric inventory, principal
component analysis
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ing Alzheimer’s disease [1-4]. Current symptomatic
therapies of Alzheimer’s disease (cholinesterase
inhibitors and memantine) have limited impact on
BPSD [1-3]. Mostly off-label use of other drugs
(antipsychotics, antidepressants, benzodiazepines)
can produce adverse effects that are particularly unde-
sirable in this frail patient population [1-3] resulting
in initiatives to reduce their prescription [5]. Thus,
it is imperative to develop and introduce novel safe
and effective therapies to better address the needs of
both, people living with dementia with BPSD and
their caregivers.

However, therapeutic progress is predicated on
understanding the clinical phenomenology of BPSD.
Based on their clinical presentation, BPSD cover
a broad and fairly heterogeneous group of symp-
toms. One of the most commonly used clinical
instruments to study BPSD, the Neuropsychiatric
Inventory, recognizes 10 (10-item NPI) or 12 (12-
item NPI) symptoms [6, 7]. Patients rarely display
all of the symptoms at once or even during the dis-
ease course. It is believed that people with dementia
mostly present small individual clusters of symptoms
[8]. High dimensionality of NPI items makes visu-
alization difficult, limits simple exploration of the
data, and requires application of statistical methods
to reveal clusters of symptoms.

Principal component analysis (PCA) is the most
widely used instrument to study the associations of
different NPI items [8—15]. In simple terms, PCA is
a dimensionality-reduction method capable of trans-
forming a large set of variables into a smaller set that
still contains most of the information in the large set.
For example, PCA was used to reduce 12 items of NPI
to five factors: 1 - delusions, hallucinations, and sleep
abnormalities; 2 - agitation, irritability, and aberrant
motor behavior; 3 - depression, anxiety, and apathy;
4 - euphoria and disinhibition; 5 - appetite and eating
disorders [15].

In most, if not all, research publications describ-
ing associations of NPI items, choice of the PCA is
not explained and utility of this tool for analysis of
multivariate distributions of NPI scores is not dis-
cussed (see Supplementary Material 3 for a full list
of such publications). The primary aim of our study
was to investigate the ability of PCA to reveal such
associations. Our study is the first attempt to eval-
uate suitability of PCA to characterize occurrence
of BPSD when studied using NPI. To that end, we
designed a simulation experiment to compare the
ability of PCA (or zero-inflated PCA) to reveal symp-

tom associations of different complexity that were
found in a publicly available set of epidemiological
data (ADAMS).

MATERIALS AND METHODS
ADAMS data analysis

We were granted access to the database of
the Aging, Demographics, and Memory Study
(ADAMS). The ADAMS is a supplement to the
Health and Retirement Study (HRS) that is sponsored
by the National Institute on Aging (U01-AG009740)
and performed by the University of Michigan with
the specific aim of conducting a population-based
study of dementia (http://hrsonline.isr.umich.edu).
The HRS is an ongoing biennial longitudinal sur-
vey of a nationally representative cohort of more than
20,000 U.S. adults aged 51 and older who reside in the
community and in nursing homes throughout the 48
contiguous United States [16]. The ADAMS sample
was a stratified random subsample of 1,770 individu-
als aged 71 years and older from five cognitive strata
based on scores for the 35-point HRS cognitive scale
[17] or proxy assessments of cognition from the 2000
or 2002 waves of the HRS [18]. The ADAMS further
stratified the three highest cognitive strata accord-
ing to age and gender to ensure adequate numbers
in each subgroup [18]. Full details of the ADAMS
sample design and selection procedures are described
elsewhere [18-20].

The initial assessments of the ADAMS subjects
(Wave A) took place between July 2001 and Decem-
ber 2003 on average 13.3 (standard deviation 6.9)
months after the most recent HRS interview. Wave
A assessments were completed for 856 subjects, rep-
resenting a 56% response rate among non-deceased
sample members [18]. Three follow-up waves (B,
C, D) were conducted in the next decade. A popu-
lation of subjects with no missing NPI values and
at least one BPSD was used for PCA as described
by Hellton et al. (2021) and other authors [9, 21,
22]. Wave A contained 317 subjects with at least
one BPSD assessed by the NPI (after removal of the
subjects with missing values), this number was con-
sidered sufficient to conduct multivariate analysis.
The follow-up waves B, C, and D were not analyzed
because they contained only 61, 73, and 36 subjects,
respectively, with at least one BPSD assessed by the
NPI.
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Neuropsychiatric Inventory (NPI)

The NPI is a widely used measure of neuropsy-
chiatric symptoms in dementia [6]. In its initial form
(as used for the ADAMS data collection), the NPI
covered information on BPSD during the past month
across 10 items—delusions, hallucinations, agitation,
depression, anxiety, elation, apathy, disinhibition,
irritability, and aberrant motor behaviors—using a
structured interview with a knowledgeable infor-
mant. For each symptom reported by the informant,
additional information is obtained on the frequency
(4-point scale), severity (3-point scale), and care-
giver distress (6-point scale) associated with the rated
behavior or symptom. Psychometric properties of the
NPI have been previously reported [6, 23]. The NPI
has been validated and shown to have good reliabil-
ity; Cronbach alpha was 0.88 for internal consistency
reliability [6].

In the majority of publications presenting NPI
scores, product NPI scores are calculated as BPSD
frequency for the last month (rated from O to 4) mul-
tiplied by BPSD severity (rated from 1 to 3). The
possible values of product scores are therefore 0-1-2-
3-4-6-8-9-12. Hellton et al. (2021) pointed out some
weaknesses of ordinary PCA of NPI scores since their
marginal univariate distributions are zero inflated and
proposed to conduct PCA on correlation matrix based
on zero-inflated bivariate Poisson distribution [8].

To mimic the Poisson distribution more closely,
Hellton et al. replaced product scores with sum scores
calculated as sums of BPSD frequency and severity.
Adding frequency and severity yields a scale of 0-2-
3-4-5-6-7, as frequency and severity are only scored
if screening questions indicate that the NPI item is
present, generating a minimum sum of 2 [8]. In order
to avoid gaps in the possible values, Hellton et al.
proposed to subtract 1 from the sum that is above
zero arriving at an integer scale of 0-1-2-3-4-5-6.

For presentation purposes, BPSD were abbrevi-
ated as: DELU - delusions, HALL - hallucinations,
AGIT - agitation/aggression, DEPR — depres-
sion/dysphoria, APAT — apathy/indifference, ELAT
— elation/euphoria, ANXI - anxiety, DISI - disinhi-
bition, IRRI — irritability/lability, ABER — aberrant
motor behavior.

Statistical analysis methods

NPI product and sum scores (empirical or simu-
lated) for the 10 NPI items were analyzed using PCA
and zero-inflated (ZI) PCA.

As in the majority of the previous publications,
we used PCA on correlation matrix of product NPI
scores with varimax rotation of loadings and a thresh-
old for loadings > 0.30 (see Supplementary Material
3). BPSD with loadings equal or greater than the
threshold in a component were considered associ-
ated. Also, according to Hellton et al. (2021), we
used ZI PCA on correlation matrix of sum NPI scores
with promax rotation of loadings and a threshold for
loadings > 0.40 [8]. For both analyzes, the Guttman-
Kaiser criterion (the number of eigenvalues greater
than one) served as a measure of optimal number of
principal components [24].

We refer the readers to Hellton et al. (2021) and
Supplementary Material 1 for detailed explanation
of the PCA and ZI PCA.

PCA, varimax and promax rotations were per-
formed using the “prcomp”, “varimax” and “promax”’
functions in the R base “Stats” package (version
3.6.3) [25]. ZI PCA was done according to the pro-
cedure described by Hellton et al. (2021) [8].

Overall study design

Analysis was done in two steps: i) visual exami-
nation of distribution of ADAMS NPI scores using
bivariate plots, followed by ii) simulations with pre-
defined associations of BPSD to assess the efficacy
of PCA in retrieving these patterns.

Simulation experiment

The R package “GenOrd” for the stochastic sim-
ulation of discrete variables with assigned marginal
distributions and correlation matrix was used [26].

Ten “symptoms” in the simulation (called “Symp-
tom A” to “Symptom J”) corresponded to ten BPSD
items in the NPI. We introduced “signal” and “noise”
symptoms. Signals were simulated with support
points 0-1-2-3-4-6-8-9-12 for product scores or 0-
1-2-3-4-5-6 for sum scores. Noise had two support
points 0—1. Marginal probability for zero support
point was set to 0.5 for signals and 0.9 for noise.
The remaining probability was distributed equally
between non-zero support points. A combination of
signal and noise symptoms within a subject consti-
tuted a “pattern”. Pearson’s correlation between all
signals in a pattern was set to 0.90. Noise symptoms
were uncorrelated.

We used four predefined patterns in our simulation.
Each pattern was simulated with 30 subjects, then
the subjects were combined into a dataset (120 sub-
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jects); a total of 1000 such datasets were simulated
for product scores and another 1000 datasets were
simulated for sum scores. Thus, each dataset repre-
sented a finite mixture distribution that consisted of
four sub-populations (or clusters of subjects), each
defined by its pattern of symptoms. PCA and ZI PCA
were then applied to retrieve the original patterns.

We further describe the notation used to discuss
the results of the simulation. Patterns that consisted
of one signal and nine noise symptoms were called
“mono-symptoms”’, patterns that contained two or
more signals were called “symptom associations”.
We also used a symbolic notation {“A”,... ,“J”} to
describe a set of signals in a pattern: e.g., pattern
{“A”} is a mono-symptom “A”, pattern {“B”, “C”} is
an association of symptoms “B” and “C”, and so on.

The simulation contained a set of four pre-defined
patterns:

pattern 1: symptom association {“A”, “B”};
pattern 2: symptom association {“C”, “D”};
pattern 3: symptom association {“C”, “E”};
pattern 4: symptom association {“D”, “F”}.

RESULTS

Examination of multivariate distribution of
ADAMS NPI composite scores

The ADAMS Wave A NPI dataset consisted of 856
subjects; 826 subjects did not have missing NPI val-
ues, 317 (38.4%) of them had at least 1 BPSD and
were included in the analysis. Among these 317 sub-
jects, 124 (39%) were males, 193 (61%) females; 251
(79%) were white, 53 (17%) black and 13 (4%) of
other ethnicity; 106 (33%) were in the 70-79 years
age category; 152 (48%) in the 8089 years age cat-
egory and 59 (19%) were older than 90 years. Mean
Mini-Mental State Examination total score was 25.6
(standard deviation 23.5).

Figure 1 illustrates a bivariate distribution of
the NPI composite scores using the Hallucinations-
Delusions pair as an example (please see Supple-
mentary Figure 2 for pairwise distributions of other
symptoms). There is a mixture of at least three zero-
inflated distributions encircled by ellipses in Fig. 1:
subjects that have either both hallucinations and delu-
sions, those who have hallucinations but no delusions,
and those who have delusions but no hallucinations.
In other words, we have at least three overlapping
patterns or three clusters of subjects with delusions
and/or hallucinations. The same or more complex
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Fig. 1. Bivariate distribution of NPI product scores in ADAMS.
Twenty five out of 317 subjects had both DELU and HALL. Twenty
eight out of 317 subjects had HALL only. Thirty nine out of 317
subjects had DELU only. The circle sizes are proportional to the
number of subjects with the corresponding combination of prod-
uct scores for HALL and DELU. Black circles are joint symptoms
(both symptoms have a product score greater than zero), grey cir-
cles along the axes are disjoint symptoms (one of the symptoms
has a product score of zero), empty circle at the (0,0) coordinate —
both symptoms are zero. Semi-transparent ellipses contour three
zero-inflated components of the mixed distribution. Please see text
for more explanation. DELU — delusions, HALL — hallucinations.

visual patterns are present for any other pair of BPSD
in the analyzed ADAMS dataset (Supplementary Fig-
ure 2). Thus, visual inspection of the ADAMS dataset
provides examples of clinically plausible overlapping
NPI symptom patterns.

To correctly describe the distribution of NPI prod-
uct scores in Fig. 1 with PCA, one would need three
non-orthogonal principal components correspond-
ing to the three highlighted ellipses—a diagonal, a
vertical, and a horizontal—that would maximize vari-
ance within each sub-distribution. This is impossible:
principal components must be orthogonal, and their
number cannot exceed the number of variables (two
in this case). Note that NPI sum scores form very
similar distribution mixtures (not shown).

In the following section, we explain in more details
why PCA (and ZI PCA) is not applicable to such
distribution mixtures if the objective is to use PCA
as a descriptive technique and not just to conserve
information.

Simulation experiment
Figure 2 presents the four simulated clusters of sub-

jects (each cluster is defined by its pattern of signals)
that form a finite mixture of four multivariate zero-
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Fig. 2. Visualization of four pre-defined patterns in the simulation experiment. Simulation consisted of 1000 datasets for product scores
(used for ordinary PCA) and 1000 datasets for sum scores (used for ZI PCA). Each dataset contained 4 pre-defined patterns with 30 random
subjects per pattern (total n=120). Symptoms “A”-“J” corresponded to ten NPI items. One dataset for product scores and one dataset for
sum scores are visualized in this figure. Each pattern is plotted separately: one box per symptom. Left pane: product NPI scores. Right pane:
sum NPI scores. Symptoms were simulated either as signals (boxes with high NPI scores) or as noise (boxes with low NPI scores). Pattern
1 — symptom association {“A”, “B”}. Pattern 2 — symptom association {“C”, “D”’}. Pattern 3 — symptom association {“C”, “E”}. Pattern 4
— symptom association {“D”,“F"}. Patterns 2-4 overlap with each other. See text for other details.
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Fig. 3. Bivariate distribution of product scores of symptoms in the simulation experiment. A total of 120 subjects were simulated with
symptom associations {“A”,“B”}, {“C”,“D”}, {“C”,“E”}, and {“D”,“F"} (30 subjects per pattern, see Fig. 2 and text for explanation). When
all four patterns are included into one dataset, the following bivariate distributions are observed. The symptom association {“C”, “D”}
overlaps with the symptom associations {“C”, “E”} and {“D”, “F”}, while symptom association { “A”,“B”} stays non-masked. Black circles
are joint symptoms, grey circles are disjoint symptoms (one of the symptoms has a product score of zero), empty circle — both symptoms
are zero. The size of the circles is proportional to the number of subjects.

inflated distributions of NPI scores. Two patterns ping. Overlapping patterns may not be visible to PCA.

are of particular interest - association of symptoms
{“A”, “B”} and {“C”, “D”}. Association of symp-
toms {“C”, “D”} is masked in the simulation dataset
by the presence of other associations: {“C”, “E”} and
{“D”, “F’}. In other words, such patterns are overlap-

In contrast, association of symptoms {“A”, “B”} is
not masked because its signals do not overlap with
signals from any other pattern.

Figure 3 shows bivariate distribution for the four
simulated patterns visualized in Fig. 2. In the left
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panel of Fig. 3, there is a one-cluster zero-inflated
distribution formed by the signal pattern {“A”,“B”}
that is hardly ever seen in the ADAMS dataset (see
also Supplementary Figure 1). In the right panel of
Fig. 3, there are three distinct clusters that look similar
to the ADAMS pairwise distribution (Fig. 1). These
three clusters are the mixture of signal patterns {“C”,
“D”}, {“C”, “E”}, and {“D”,“F”}.

The detection rates of the simulated patterns for
PCA and ZI PCA are shown in Table 1. The main
result of the simulation experiment is that PCA and
ZI PCA were unable to detect fully masked symp-
tom association {“C”,“D”} (0.8% of correct findings
for PCA, 1.1% for ZI PCA). Besides, PCA and ZI
PCA were prone to false detections. For each iteration
PCA “detected” on average 0.473 mono-symptoms
and 1.791 symptom associations that did not exist. ZI
PCA “detected” for each iteration 0.380 false mono-
symptoms and 1.463 false symptom associations.

DISCUSSION

Behavioral and psychological symptoms drive
institutionalization of people with dementia but, until
recent times, in comparison to cognition and disease-
modification, have not been much in focus of drug
development [1-3, 27, 28]. One potential reason is
that a better understanding of BPSD presence and
time course is needed to inform targeted treatment
development. Of particular interest is the question
which BPSD appear in isolation and which combina-
tions of BPSD are possible and are prevalent.

To address BPSD presence and co-occurrence,
previous research has mostly used principal com-
ponent analysis (PCA) applied to NPI scores. PCA
(or exploratory factor analysis) is useful to explore
redundancy of variables. For example, there may be
a total of 10 variables (symptoms) and, by identi-
fying closely related variables and grouping them
into components (“latent factors™), a larger number of
variables (symptoms) is reduced to a lower (i.e., less
than 10) number of factors or components. PCA can
be used to describe/interpret the existing associations
only under assumption that we work with a single
multivariate distribution, or at least with a mixture
of non-overlapping multivariate distributions. Other-
wise PCA is a variable reduction technique only.

Bivariate plots of ADAMS NPI scores have clearly
illustrated existence of overlapping distribution mix-
tures (Supplementary Figure 2). We observed the
same type of bivariate distributions for NPI scores

in the Alzheimer’s Disease Neuroimaging Initiative
dataset (results not shown). Such overlapping mix-
tures were modelled in the simulation experiment
(Fig. 3, right panel) where three overlapping patterns
shared the same symptoms (symptom association
{“C”, “D”}, {“C”, “E”} and {“D”,“F”}). The over-
lapping patterns were visually distinct (Fig. 3, right
panel) and could not be retrieved by PCA. On other
hand, the non-overlapping pattern (symptom associ-
ation {“A”,“B”}; Fig. 3, left panel) could be easily
retrieved by PCA.

In the simulation experiment (Table 1), PCA and
ZI PCA detected symptom association {“A”,“B”} in
80.9% and 100.0% of iterations, while symptom asso-
ciation {“C”,“D”} was detected in 0.8% and 1.1% of
iterations respectively. Such results are explained by
the fact that a principal component cannot adequately
maximize total variance of finite mixture distributions
(i.e., principal components lay outside of overlapping
data subspaces, see Supplementary Material 4 for an
illustrative example). The high level of false findings
makes both methods particularly unreliable.

We also ran more complex simulations (sum-
marized in Supplementary Material 5) where we
modeled random instead of pre-defined patterns. We
compared efficiency of detection of random overlap-
ping versus random non-overlapping patterns, and
gradually increased the number of patterns in one
dataset up to 8. Efficiency of PCA and ZI PCA
dropped dramatically when random patterns were
allowed to overlap. The drop became even more dra-
matic when the number of patterns was increased.

Thus, the main outcome of the present study is
the demonstration that NPI scores present mixtures
of overlapping multivariate distributions which the
principal components can not fit. Consequently, PCA
should not be applied to this kind of data. Such con-
clusion may sound rather unexpected given the large
number of publications based on the use of PCA in
research on BPSD. We noticed that bivariate distri-
butions of NPI scores were not investigated in any
of the identified publications (Supplementary Mate-
rial 3). Instead, authors looked at marginal univariate
distributions only.

It is also of interest to note that among 48
publications on PCA of NPI scores listed in the Sup-
plementary Material 3, none explicitly confirmed that
the revealed associations of BPSD truly existed in
the dataset. The authors did not check how their PCA
model fitted the data. Instead, some authors used PCA
scores to allocate subjects to the discovered princi-
pal components. For example, Aalten et al. (2003)
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Simulation experiment: detection of four pre-defined patterns by PCA and ZI PCA

Type of pattern ~ True/ False  Pattern Overlapping status Number of detected patterns in
1000 repetitions (%, if applicable)
PCA ZIPCA
Mono-symptoms True none — —
symp False TRT{T} @73 380
True {“A”,“B”} Non-masked 809 (80.9%) 1000 (100.0%)
(s Ty Fully masked by
Symptom True (e} (“C"“E"} and {-D"F7} S ©O8%) 11(1.1%)
associations True {“C"“E"} Partially masked by 766 (76.6%) 979 (97.9%)
True D" F’} {“c D7} 745 (74.5%) 982 (99.0%)
False "G, D7 T, 1791 1463

{“C”,“D”,“F”, “J”}’ etc.

Simulation was run with 1000 random datasets. Each dataset was a mixture of 4 pre-defined patterns, 30 random subjects per pattern.
Symptom association {“C”,“D”} was masked by symptom associations {“C”, “E”} and {“C”, “F”}. PCA - principal component analysis of
correlation matrix of product scores with varimax rotation and loading threshold 0.30; ZI PCA — zero inflated PCA of correlation matrix of
sum scores with promax rotation and loading threshold 0.40. Optimal number of principal components was determined using Guttman-Kaiser

criterion. See text for other details.

allocated 59.8% subjects to a component that was
characterized among other BPSD by Euphoria (or
Elation) [9]. The loading for Euphoria was 0.716
in this component implying a considerable number
of subjects with pronounced Euphoria. However, the
same publication provides descriptive data indicating
that Euphoria was the rarest and the weakest symp-
tom observed in only 7% of subjects with mean NPI
product score of 0.34. Such examples question the
goodness of fit of PCA components to the actual data.

One reason for such a poor fit is that, in most
previous publications including Aalten et al. (2003),
PCA was applied to scaled variables (i.e., correla-
tion matrix instead of covariance matrix). This can
be critical for analysis of NPI items since the scores
are unified and their magnitude corresponds to clini-
cal severity of the symptoms. Scaling equalizes items
with low and high scores and distorts the results.
For example, when we performed PCA using scaled
ADAMS NPI data (results not shown), there was a
persistent cluster that was predominantly character-
ized by Euphoria as well. Euphoria was clinically
non-significant in the majority of subjects, meaning
that scaling inflated the scores of this item. By con-
trast, no euphoria cluster was present when PCA was
conducted using non-scaled data.

Another major restriction of the PCA is that the
number of components is limited by the number of
variables. PCA can utilize up to n components, where
n is the number of variables. Thus, in case of 10 NPI
symptoms, PCA can provide up to 9 meaningful com-
ponents. There is no guarantee that, in real life, the
number of clinically meaningful symptom clusters is
limited to nine.

To conclude, although principal component anal-
ysis is commonly applied, such analysis is at risk to
reveal BPSD clusters of NPI scores that are a statis-
tical phenomenon rather than symptom associations
that occur in real life (at least when studied using
tools such as NPI). We recommend the thorough
characterization of multivariate distributions before
subjecting any dataset to Principal Component Anal-
ysis. Finally, we recommend to evaluate suitability
of other common methods (e.g., k-means clusteriza-
tion) that would be able to handle the presence of
overlapping distribution mixtures of the NPI scores.

Limitations

One limitation of this study is that the analyses
were performed using BPSD data collected using
one specific tool (NPI). Without performing a sim-
ilar analysis, conclusions of our study should not
be generalized to BPSD data collected using other
tools. Another limitation could be that the mixtures of
overlapping multivariate distributions of BPSDs were
simulated based on the examples initially derived
from the ADAMS database only. Although we did
access other databases (such as ADNI) to confirm
presence of similar BPSD distributions (as assessed
by NPI), it is still possible that the real-world distribu-
tions of NPI scores are not adequately captured in the
datasets to which we had access. One further limita-
tion is that the distributions of NPI scores may change
as the disease develops. One would need to have an
access to a dataset significantly larger than ADAMS
to characterize the distributions of NPI scores in pop-
ulations with varying degrees of dementia severity.
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Related to the latter limitation, the ADAMS database
participants have no confirmed Alzheimer’s disease
diagnoses by the experimental NIA-AA criteria [29].
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