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A Continuous Extension of Gene Set
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Pathway for Alzheimer’s Disease via ITGA5

Ali Mahzarniaa,∗, Michael W. Lutzb and Alexandra Badeaa,b,c,d,∗
aDepartment of Radiology, Duke University School of Medicine, Durham, NC, USA
bDepartment of Neurology, Duke University School of Medicine, Durham, NC, USA
cBiomedical Engineering, Duke University, Durham, NC, USA
dBrain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA

Accepted 1 November 2023
Pre-press 23 December 2023

Abstract.
Background: Alzheimer’s disease (AD) involves brain neuropathologies such as amyloid plaque and hyperphosphorylated
tau tangles and is accompanied by cognitive decline. Identifying the biological mechanisms underlying disease onset and
progression based on quantifiable phenotypes will help understand disease etiology and devise therapies.
Objective: Our objective was to identify molecular pathways associated with hallmark AD biomarkers and cognitive status,
accounting for variables such as age, sex, education, and APOE genotype.
Methods: We introduce a pathway-based statistical approach, extending the gene set likelihood ratio test to continuous
phenotypes. We first analyzed independently each of the three phenotypes (amyloid-�, tau, cognition) using continuous gene
set likelihood ratio tests to account for covariates, including age, sex, education, and APOE genotype. The analysis involved
634 subjects with data available for all three phenotypes, allowing for the identification of common pathways.
Results: We identified 14 pathways significantly associated with amyloid-�; 5 associated with tau; and 174 associated with
cognition, which showed a larger number of pathways compared to biomarkers. A single pathway, vascular endothelial growth
factor receptor binding (VEGF-RB), exhibited associations with all three phenotypes. Mediation analysis showed that among
the VEGF-RB family genes, ITGA5 mediates the relationship between cognitive scores and pathological biomarkers.
Conclusions: We presented a new statistical approach linking continuous phenotypes, gene expression across pathways, and
covariates like sex, age, and education. Our results reinforced VEGF RB2’s role in AD cognition and demonstrated ITGA5’s
significant role in mediating the AD pathology-cognition connection.
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INTRODUCTION

Alzheimer’s disease (AD) has a deleterious impact
on American lives, as over 6 million individuals are
currently afflicted with AD, with a projected twofold
increase by 2050. The disease’s high mortality rate
claims 1 in 3 seniors while imposing significant
economic burdens, costing the nation billions [1].
However, the biological background conducive to
developing AD remains unknown. The aim of this
study was to address the existing knowledge gap by
pinpointing molecular pathways that play a crucial
role in modulating levels of hallmark AD pathologies,
as well as memory function.

One strategy to better understand and accurately
model multi factorial conditions such as late-onset
AD, is to incorporate various genetic, clinical, and
environmental factors into a cohesive model. This
model should establish connections between mea-
surable biomarkers and risk factors. Several known
factors play a significant role in shaping the risk
of AD. These factors encompass both genetic influ-
ences, such as APOE genotype and sex, as well as
environmental elements, including education level,
diet, and age. In recent years, the identification
and characterization of AD have been facilitated by
the use of biomarkers like amyloid-� (A�), phos-
phorylated tau (tau), in conjunction with measures
of neurodegeneration. Furthermore, AD is distin-
guished by memory impairment, often evaluated
using the Mini-Mental State Evaluation (MMSE).

Still, the molecular mechanisms involved in the
etiology and progression of AD are not fully under-
stood. Recent publications have revealed a role for
multiple pathways in AD, based on brain proteomics
and transcriptomic analyses [2, 3]. These pathways
are relevant not only to neurons but also to cells regu-
lating response to inflammation [4], such as microglia
[5]. Interestingly endothelial cells, astrocytes and
neurons that control neurovascular functions have
been shown to play an important role in AD [6].
Other cell types and subcellular components such
as mitochondria may be involved [7]. Liu et al. [8]
identified a novel brain-enriched RING finger E3
ligase, RNF182, which shows elevated expression
in AD brains and may play a role in controlling
neurotransmitter release. Pathways involved with
filament-based processes, cellular detoxification, and
wound healing have also been involved [2, 3]. A
decline in sensory function, including taste has also
been reported with aging and AD [9]. Importantly, the
vascular endothelial growth factor (VEGF) has been

associated with AD [10, 11], and while its role in neu-
rodegeneration is not fully understood, it presents a
druggable target for therapies. However, most stud-
ies focused on comparisons of two or three groups of
subjects using discrete classification variables, such
as case/control, without accounting for the relation-
ships between multiple hallmark biomarkers. Here
we propose an approach to detect common gene path-
ways based on RNA-Seq changes associated with
continuous-scale changes in multiple biomarkers and
clinical phenotypes.

Our study aims to develop a statistical approach
centered around identifying gene pathways involved
in one or more quantitative biomarker changes in AD.
This method incorporates continuous estimates of A�
and tau tangle brain levels, along with memory scores
from the MMSE, and integrates them into a compre-
hensive statistical model. Additionally, we include
disease-relevant traits such as age, sex, education, and
APOE genotype in this model. We note that some of
these traits are continuous, and some are categorical.
Our primary goal is to rank the pathways that undergo
alterations in AD, considering the influence of each
of the biomarkers. By doing so, we can effectively
identify shared pathways across the three domains:
amyloid, tau, and cognition, through MMSE scores.

Our approach factors in the unique characteristics
of human subjects, including age, sex, education, and
APOE genotype-specific differences. It also evaluates
the significance of the relationship between pathway-
level interactions and the presence of AD in relation
to each of these factors. We conduct analyses using
human transcriptomic data on AD progression and
explore interactions between individual gene expres-
sion in each gene pathway with the APOE genotype.

To identify relevant gene sets, Subramanian and
colleagues [12] introduced Gene Set Enrichment
Analysis (GSEA), a robust analytical method for
interpreting gene expression data from genome-wide
RNA analysis. GSEA focuses on gene sets—groups
of genes with shared biological function, chromo-
somal location, or regulation—and demonstrates
effectiveness in identifying common biological path-
ways, e.g., for cancer-related data sets, such as
leukemia and lung cancer, where single-gene analysis
falls short. This method using the Kolmogorov-
Smirnov statistics which has a limitation in that it
does not account for gene-gene interactions. Still,
this landmark paper has spurred the development
of many other methods [13]. Other statistics have
been proposed as well, e.g., the gene set likelihood
ratio test (gsLRT), which uses a logistic regression
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model [14]. However, this particular model has its
limitations as it is only applicable to binary outcome
variables. In contrast, our study proposes a method
to deal with continuous-scale variables, specifically
A�, tau, and MMSE scores. Additionally, we incor-
porated transcriptomic data, encompassing more than
20,000 genes, as opposed to the mere 542 genes used
in the referenced gsLRT study involving proteomics.

This work extends the model originally proposed
for the gsLRT from Logit to continuous phenotypes
or outcome measures, and while this extension may
seem straightforward, implementing such a model
has not been previously undertaken in the context
of gene pathways, and offers the benefit of being
able to examine continuous outcomes. In our case we
were able to identify that VEGFB plays a role in AD,
affecting both A� and tau hallmark neuropathologies
and cognition, and that the relationships between neu-
ropathology and cognition are putatively found to be
causally mediated by ITGA5.

METHODS

In this study, we introduce a new approach utiliz-
ing three biomarkers customarily assessed in LOAD:
i.e., A�, tau tangles, and MMSE scores to iden-
tify common pathways significantly associated with
the underlying changes in these biomarkers. Our
methodology for identifying pathways uses transcrip-
tomic data from the dorsolateral prefrontal cortex. By
integrating transcriptomic data with biomarkers, we
generate significance scores at the biological pathway
level. We then extract the gene expression from the
common significant pathway(s) and test if these genes
causally mediate the relation between AD pathol-
ogy (A�, tau) and cognition (MMSE). This step
identifies important genes of the common significant
pathway(s) selected by the statistical models.

Data and preprocessing

The data sample was taken from a subset of the
Religious Orders Study and Rush Memory and Aging
Project (ROSMAP) dataset [15–17] that had RNA-
Seq data available from the dorsolateral pre-frontal
cortex. ROS has enlisted nuns and brothers since
1994. MAP recruited individuals from the NORTH-
ERN ILLINOIS region since 1997. Both studies were
run by the same investigators using similar data col-
lection techniques. Thus, the results from both are
comparable. For the analyses reported in this paper,
the clinical consensus diagnoses of AD or mild cog-

Table 1
Demographic information of participants by gender

Group N age (mean) age (SD)

All 634 87.93 6.70
Female 406 89.02 6.57
Male 228 85.99 6.51

This table presents the demographic information for a sample of
634 participants, categorized by gender. It includes the mean age
and standard deviation (SD) for each group.

nitive impairment were used to define a case, while
the diagnosis of no cognitive impairment/no impaired
domains defined controls. Additional covariates for
the statistical models were age, sex, education, and
APOE genotype. The total sample with both gene
expression and clinical data contained 634 subjects,
with 433 cases and 201 controls. Demographic infor-
mation for the sample is summarized in Table 1.

Following the context of [18], the amyloid and
tangles metrics are computed as follows.

The overall amyloid level was determined as the
mean percentage of cortex occupied by A� pro-
tein in multiple brain regions. This measurement
was obtained through molecular-specific immunohis-
tochemistry, where the A� protein is targeted and
quantified using image analysis techniques. The A�
score was calculated in eight brain regions, namely
the hippocampus, entorhinal cortex, midfrontal cor-
tex, inferior temporal cortex, angular gyrus, calcarine
cortex, anterior cingulate cortex, and superior frontal
cortex. At least four of these regions are required to
calculate the mean A� score.

Tau tangles density was determined as the mean
density of neuronal neurofibrillary tangles in eight
specific brain regions. These tangles are identi-
fied using molecular-specific immunohistochemistry,
employing antibodies specific to abnormally phos-
phorylated tau protein, known as AT8. The cortical
density of tangles was measured per square millime-
ter using systematic sampling. The tangle score was
calculated as the mean density in the same eight brain
regions as above, for A�, and a minimum of four
regions were required to compute the mean tangle
density.

Clinical phenotypic information for the sample is
summarized in Table 2.

The RNA-Seq data was obtained from the
Accelerating Medicines Partnership Program
for Alzheimer’s Disease Data Knowledge Por-
tal (https://adknowledgeportal.synapse.org/),
specifically, the RNA-Seq Harmonization study
(https://www.synapse.org/#!Synapse:syn9702085).

https://adknowledgeportal.synapse.org/
https://www.synapse.org/#!Synapse:syn9702085
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Table 2
Clinical phenotypic data for different cognitive states

Cognitive
state/Phenotypes

N Rows MMSE
(mean)

MMSE (SD) Amyloid
(mean)

Amyloid
(SD)

log(tangles)
(mean)

log(tangles)
(SD)

No cognitive
impairment

201 28.21 1.6 2.78 3.44 0.32 1.58

MCI1 158 25.89 3.38 4.03 4.63 1.07 1.28
MCI2 10 25.19 3.73 1.35 1.33 –0.03 1.3
AD1 220 13.49 8.22 5.72 4.36 1.83 1.25
AD2 33 15.49 7.94 3.62 3.69 1.41 0.97
Other
dementia

12 15.17 5.47 2.59 3.6 0.5 1.31

MCI1 represents mild cognitive impairment (one impaired domain) and no other cause of Cognitive Impairment (CI). MCI2 represents
mild cognitive impairment (one impaired domain) and another cause of CI. AD1 represents Alzheimer’s disease and no other cause of
CI (NINCDS PROB AD). AD2 is for Alzheimer’s disease and another cause of CI (NINCDS POSS AD), and other dementia is other
primary cause of dementia. This table presents key clinical phenotypic data for different cognitive states in a diverse sample population. The
study includes individuals with no cognitive impairment, mild cognitive impairment (MCI), Alzheimer’s disease (AD), and other primary
causes of dementia. The table provides mean scores and standard deviations for Mini-Mental State Examination (MMSE), A� levels, and
log(tangles) for each cognitive state/phenotype. The findings highlight distinct cognitive profiles and potential biomarkers associated with
various cognitive conditions, contributing to better understanding and targeted interventions for cognitive disorders.

The ROSMAP data from this study was used to create
a combined dataset of RNA-Seq data in combination
with the three clinical phenotypes of amyloid burden,
tangles, and MMSE [19]. The RNA-Seq Harmo-
nization study has the goal of creating an RNA-Seq
database based on a consensus set of analytical tools.
The methodological details of the RNA-Seq process-
ing are given in Wan et al. [20], and at the RNA-Seq
reprocessing study website for the ROSMAP project
(https://www.synapse.org/#!Synapse:syn8456629).
In brief, RNA was extracted from samples consisting
of approximately 100 mg of gray matter tissue from
the dorsolateral prefrontal cortex. The RNA samples
were prepared and sequenced as described in [19].
The reprocessing of the RNA-Seq data was done
using a consensus set of tools with only library
type-specific parameters varying between pipelines.
Picard (https://broadinstitute.github.io/picard/) was
used to generate FASTQ files from source BAM
files. Generated FASTQ reads were aligned to the
GENCODE24 (GRCh38) reference genome using
STAR [21] and gene counts were computed for each
sample. To evaluate the quality of individual samples,
and to identify potentially important covariates for
expression modeling, two sets of metrics were com-
puted using the CollectAlignmentSummaryMetrics
and CollectRnaSeqMetrics functions in Picard. To
account for differences between samples, studies,
experimental batch effects, and unwanted RNA-Seq
specific technical variations library normalization
and covariate adjustments for each study separately
using fixed/mixed effects modeling. The workflow
consists of the following steps: 1) gene filtering:

Genes that are expressed more than 1 CPM (read
Counts Per Million total reads) in at least 50% of
samples in each tissue and diagnosis category were
used for further analysis, 2) conditional quantile
normalization was applied to account for variations
in gene length and GC content, 3) sample outlier
detection using principal component analysis and
clustering, 4) Covariates identification and adjust-
ment, where confidence of sampling abundance were
estimated using a weighted linear model using the
voom-limma package in Bioconductor [22]. For the
differential expression analysis, fixed/mixed effect
linear regression was used with the following mod-
els: gene expression ∼Diagnosis + Sex + covariates
+ (1| Donor) or gene expression ∼Diagnosis × Sex +
covariates + (1|Donor), where each gene is linearly
regressed independently with Diagnosis, a variable
explaining the AD status of an individual, identified
covariates, and donor information as a random effect.
Observation weights (if any) were calculated using
the voom-limma [22] pipeline such that observations
with higher presumed precision are up-weighted in
the linear model fitting process.

The data used for the gsLRT analysis included
the phenotypes MMSE, amyloid burden and
log(tangles). For gene expression, normalized
and filtered counts were used as per the descrip-
tion on the RNA-Seq reprocessing study website
(https://www.synapse.org/#!Synapse:syn8456629).
The specific datasets used for this study
are: RNA-Seq data is obtained from
(https://www.synapse.org/#!Synapse:syn8456638),
covariates are recorded in (https://www.

https://www.synapse.org/#!Synapse:syn8456629
https://broadinstitute.github.io/picard/
https://www.synapse.org/#!Synapse:syn8456629
https://www.synapse.org/#!Synapse:syn8456638
https://www.synapse.org/#!Synapse:syn11024258
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synapse.org/#!Synapse:syn11024258), dif-
ferential expression results are from
(https://www.synapse.org/#!Synapse:syn8456721)
and clinical phenotypic data was obtained
from the ROSMAP data sharing resource
(https://www.radc.rush.edu/). These datasets
were organized into the specific matrices for gene
expression results, covariates, and phenotypes
required by the gsLRT program.

For the pathway/signature analysis, well-
established databases including Gene Ontology
Molecular Function (GOMF) were used to enable
replication studies, support development of mecha-
nistic hypotheses based on the findings and provide
a framework for future work [23, 24].

Statistical model

To derive the pathways associated with each of
the AD related phenotypes (A�, tau, or MMSE
scores), we define the following hypothesis tests. In
our models, we utilize a matrix G ∈ Rn×m to rep-
resent measurement values (e.g., RNA expression)
for m genes and n samples. Additionally, we employ
a matrix, X ∈ Rn×d , which contains d = 4 covari-
ates such as sex, years of education, APOE genotype
(APOE �2, �3, �4), and age at death associated with
the samples. Moreover, we utilize a continuous vec-
tor Y ∈ Rn×1 for the n samples that is the phenotype
measurements (A�, tau, or MMSE scores). Suppose
(xi, yi) are pair realizations of (X, Y ) for subjects
i = 1, . . . , n. To conduct data analysis, we employ
nested models for each gene gj, j = 1, . . . , m and
all samples i = 1, . . . , n as outlined below:

H0 : yi = xiβ
j + g

j
i α

j + ei

Ha : yi = xiβ
j + g

j
i α

j + Genotypei ∗ g
j
i γ

j + ei

where ei∼N(0, σ). We denote the maximum likeli-
hood estimator of the two above models with ω̂0 =(

�

β0,
�
α0

)
, ω̂a =

(
�

βa,
�
αa,

�
γ

j
)

.

To assess the enhanced explanatory capacity of
the interaction term between the gene measurement
profile (gj) and genotype (APOE �2, �3, �4), in con-
trast to the simpler model that merely includes the
covariate matrix X and (gj), we introduce statistical
measures that evaluate the disparity in the models
via log-likelihoods at the gene level. These statistics
act as our metric for quantifying the supplementary

explanatory power.

∧j = 2 [l (ω̂a) − l (ω̂0)]

where l(·), is the log-likelihood. We define the enrich-
ment score (ESk) for gene set Gk:

ESk =
∑
j∈Gk

∧j

We calculate p-value for each enrichment score
through nperm = 10,000 permutation sampling by
computing the proportion of ESk

perm (enrichment
scores under permutation) greater than ES as follows,

pk = 1

nperm + 1

⎛
⎝ nperm∑

perm=1

1ESk
perm>ESk + 1

⎞
⎠

This empirical p-value computation provides
more conservative estimates but is computationally
intensive. Since gene set tests share overlapping
membership and exhibit interdependence, the pre-
sented p-values in this context and subsequent tables
have not been adjusted for multiple testing. Conse-
quently, they do not possess theoretical guarantees for
controlling the False Discovery Rate (FDR). Once the
pathways are sorted by their significance or ES, iden-
tifying the shared pathways among the three model
runs becomes possible.

The model utilized in this study closely resem-
bles that developed by Bryan et al. [14], based on
a logistic model, however our model accommodates
a continuous outcome variable.

Mediation analysis

After identifying common significant pathways
for A�, tau, and MMSE scores, we extracted gene
expression gj for each significant pathway j ∈ Gk

and assessed if it causally mediates the relation
between AD pathology (A�, tau) and cognition
(MMSE), as shown in Fig. 1.

RESULTS

Using public resources from RNA-Seq analyses of
prefrontal cortex in ROSMAP participants, we have
identified pathways associated for A�, tau tangles,
and MMSE, accounting for covariates, i.e., sex, geno-
type, education, age, and the interactions between
RNA expression levels and APOE genotype.

We have identified significant pathways when
examining the outcome of A�. We have chosen a

https://www.synapse.org/#!Synapse:syn8456721
https://www.radc.rush.edu/
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Fig. 1. Mediation analysis. To assess the causal mediation effect
of gene expression in predicting cognition (MMSE) based on AD
pathology (A� or tau scores), our approach involves several steps.
First, we treat MMSE scores as the dependent variable to be pre-
dicted, using A� or tau scores as separate independent variables in
two distinct models. Within each of these models, we predicted the
mediator variable, denoted as gj, using the respective independent
variable. We performed this analysis using the “mediation” pack-
age in R, conducting 1000 permutations to compute p-values for
the average causal mediation effects associated with each j ∈ Gk in
both models. Subsequently, we applied the False Discovery Rate
(FDR) correction method at a 5% level to adjust the p-values,
considering multiple comparisons within each model.

p-value threshold of 0.1 instead of the conventional
0.05 for hypothesis decision-making to capture a
broader range of potentially significant pathways.
This slightly relaxed threshold allowed for a more
inclusive analysis, potentially uncovering additional
pathways that may contribute to our understanding of
the relationship between A� and the identified path-
ways. Table 3 and Fig. 2 present the 14 significant
pathways associated with A�, such as Translocase
Activity, C3HC4 Type Ring Finger Domain Binding,
and Vascular Endothelial Growth Factor Receptor 2
Binding.

The 5 significant pathways associated with
log(tangles) are presented in Table 4 and illus-
trated in Fig. 3, such as Bitter Taste Receptor
Activity, Protein Glutamine Gamma Glutamyltrans-
ferase Activity, Taste Receptor Activity, and Vascular
Endothelial Growth Factor Receptor 2 Binding.

In addition to the pathways depicted in Fig. 4,
Table 5 includes a subset, i.e. the top candidates
of pathways with significant associations with the
MMSE outcome (with p-values smaller than 0.1).
Figure 4 provides a partial representation of 174
top pathways, including Trail Binding, Vascular
Endothelial Growth Factor Receptor Binding, Vascu-
lar Endothelial Growth Factor Receptor 2 Binding.

We then investigated the shared pathways among
all 3 studies involving A�, log(tangles), and MMSE,
shown in Fig. 5. This analysis allows us to gain

Table 3
Significant pathways associated with A�

Gene Pathways p ES

DNA Translocase Activity 0.032 3.761
C3HC4 Type Ring Finger Domain
Binding

0.040 3.047

Vascular Endothelial Growth Factor
Receptor 2 Binding

0.043 2.445

Sumo Polymer Binding 0.059 2.637
ATP Dependent Protein Disaggregase
Activity

0.064 2.468

Acetylesterase Activity 0.067 2.315
Dopamine Neurotransmitter Receptor
Activity

0.082 2.383

BH Domain Binding 0.084 2.074
Insulin Receptor Binding 0.086 2.217
Small Ribosomal Subunit Rrna Binding 0.087 2.002
Class I DNA Apurinic Or Apyrimidinic
Site Endonuclease Activity

0.091 2.298

Short Chain Carboxylesterase Activity 0.094 2.001
Vascular Endothelial Growth Factor
Receptor Binding

0.098 1.787

Alpha N Acetylgalactosaminide Alpha 2
6 Sialyltransferase Activity

0.099 1.869

This table presents the pathways that show significance (p-values
smaller than 0.1) in relation to A�. The pathways listed provide
insights into potential biological mechanisms and molecular pro-
cesses associated with A�.

insights into the shared biological mechanisms and
molecular processes that may contribute to the inter-
play between A�, log(tangles), and MMSE.

Finally, we extracted the 9 genes (CDH5, DAB2IP,
CADM4, GREM1, ITGA5, ITGB3, CCDC88A,
VEGFA, PDCL3) in the VEGF Receptor 2 Bind-
ing which was the only common significant pathway
among the results from the three models (for A�,
log(tangles), and MMSE). A partial correlation
analysis revealed no strong correlation among the
normalized gene expression of the genes within the
VEGF RB 2 group. The strongest partial corre-
lation observed was 0.6, which occurred between
ITGA5 and CADM expression. The partial corre-
lations between the remaining pairs of genes were
all below 0.2. Subsequently, we examined whether
any of these genes could act as mediators in the
relationship between AD pathology (measured by
amyloid and tau) and cognitive function (assessed
using MMSE). We use FDR correction to adjust
the p-values for multiple comparisons. When pre-
dicting MMSE using tau as predictor, ITGA5 was
the only significant mediator with adjusted Average
Causal Mediated Effect (ACME) p-value of 2e-16
and estimation of 0.043. The Nonparametric Boot-
strap Confidence Interval with the Percentile Method
for this effect were (0.018, 0.08). The Average Direct
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Fig. 2. Pathway analysis of A�. Each pathway is represented on the y-axis, while the corresponding -log10(p-value) is represented by bars
parallel to the x-axis, positioned in front of each pathway. The length of the bars reflects the statistical significance of the pathways with
amyloid burden; longer bars indicating greater significance. This visualization allows for a quick assessment of the significance levels for
each pathway, aiding in the identification of key pathways associated with A�.

Table 4
Significant pathways associated with log(tangles)

Gene Pathways p ES

Bitter Taste Receptor Activity 0.035 3.547
Protein Glutamine Gamma
Glutamyltransferase Activity

0.055 2.658

Taste Receptor Activity 0.066 2.486
Vascular Endothelial Growth Factor
Receptor 2 Binding

0.097 1.910

Hyalurononglucosaminidase Activity 0.098 2.074

This table shows the pathways that exhibited statistical significance
(p-values smaller than 0.1) in relation to log(tangles).

Effect (ADE) which measures the unmediated effect
had an adjusted p-value of almost 1, with estimated
value of 0; while the total effect had the same adjusted
p-value of ACME. ITGA5 was also the only mediator
with significant adjusted p-value of ACME of 2e-
16 when predicting MMSE using the amyloid score,
while the estimation was 0.0422 and the confidence
interval was (0.016, 0.08). In this case, the adjusted
p-value of ADE was almost 1 with an estimation of
0, and the total effect had the same estimation and
p-value as those of the ACME.

Following up on the finding of the VEGF-RB
pathway significance for all three phenotypes, we
verified whether this was supported by the results
of differential expression analysis for the VEGF-

family genes (Table 6). Higher expression in AD
samples relative to normal cognition was observed
for VEGFA, VEGFB, VEGFD, PGF, and FLT1 while
lower expression in AD samples relative to controls is
observed for FLT4, KDR, NRP1, and NRP2. The only
significant difference between the two groups after
adjusting for multiple comparisons was for VEGFB,
thus supporting the results of our initial analyses.

DISCUSSION

The progression of AD manifests through changes
in biomarkers that reflect abnormal protein expres-
sion, such as A�, phosphorylated tau, as well as
clinically measurable symptoms including memory
decline. In our study, we developed new methods to
reveal pathways related to changes in brain RNA-Seq
for each of these two neuropathological biomarkers,
as well as for MMSE. We observed a larger number of
significant pathways for gene expression association
with MMSE (174 pathways) than those associated
with the two hallmark biomarkers for AD, A� (14
pathways), and tau tangles (5 pathways). This under-
scores the complexity of behaviors, which can change
in response to a number of genetic and environmental
factors, including the presence of misfolded proteins
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Fig. 3. Pathway analysis of log(tangles). This figure presents the results of the pathway significance analysis for log(tangles). Each pathway
is displayed on the y-axis, while bars parallel to the x-axis represent the corresponding -log10(p-value). The length of each bar reflects the
statistical significance of the pathway association with log(tangles). Longer bars indicate greater significance/smaller p-values.

Fig. 4. Pathway analysis of MMSE. This figure shows a portion of the pathway significance analysis results for MMSE. Each pathway
is plotted on the y-axis, accompanied by bars parallel to the x-axis that represent the corresponding -log10(p-value). The length of each
bar reflects the statistical significance of the pathway, with longer bars indicating higher significance. This visual representation enables a
quick evaluation of the significance levels associated with each pathway. It assists in identifying key pathways that are linked to MMSE,
contributing to a better understanding of the underlying mechanisms influencing MMSE.

in AD, such as A� and tau. Surprisingly, we did not
identify the most genes associated with A�, or tau but
with cognition (MMSE). More importantly, we iden-
tified a single pathway, vascular endothelial grown
factor receptor binding (VEGF-RB) that was associ-
ated with differences reflective of all three phenotypes

analyzed by the continuous gene set likelihood ratio
test (gsLRT).

The methodological advance of this study was the
extension of gsLRT from binary (e.g. disease/control
status) to continuous value phenotypes. Our study
extends prior work by analyzing three continuous
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Fig. 5. Common significant pathways for A�, log(tangles), and
MMSE. This Venn diagram illustrates the common pathways
identified among the studies involving A�, log(tangles), and
MMSE. The diagram consists of overlapping circles that rep-
resent each study, with labeled sections indicating the shared
pathways among them. The shared pathways are listed within the
diagram, providing a concise overview of the biological processes
and molecular mechanisms that are consistently implicated across
these phenotypes. This analysis highlights the interconnectedness
of these factors and underlying gene ontology molecular function
(GOMF) pathways that contribute to the associations between A�,
log(tangles), and MMSE.

Table 5
Significant gene pathways associated with MMSE outcome

Gene Pathways p ES

Trail Binding 0.0010 7.071
Vascular Endothelial Growth Factor
Receptor Binding

0.0018 4.114

Vascular Endothelial Growth Factor
Receptor 2 Binding

0.0021 4.747

Death Receptor Activity 0.0023 4.800
Mechanosensitive Monoatomic Ion
Channel Activity

0.0027 4.061

Hexokinase Activity 0.0031 4.691
Tumor Necrosis Factor Binding 0.0032 5.289
CC Chemokine Binding 0.0049 4.886
Nerve Growth Factor Binding 0.0049 4.603
Rage Receptor Binding 0.0060 3.650

It highlights the top candidate pathways, including Trail Bind-
ing, and Vascular Endothelial Growth Factor Receptor 2 Binding,
among others.

scale phenotypes (A�, tau tangles, MMSE) in a
pathway analysis that accounts for the covariates
such as age, sex, and APOE genotype (gsLRT for

continuous phenotypes). The results indicate the
enhanced explanatory capacity of the interaction term
between the gene measurement profile and APOE
genotypes.

Among the pathways identified as significant for
A�, we noted several candidate pathways that sup-
port changes in DNA repair ability (DNA Translocase
Activity) [25], cell mediated immunity (C3hc4 Type
Ring Finger Domain Binding) [26], apoptosis (BH
Domain Binding) [27], protein synthesis (Small
Ribosomal Subunit RRNA Binding) [28] and dis-
aggregation (ATP Dependent Protein Disaggregase
Activity), as well as insulin signaling (Insulin Recep-
tor Binding) [29, 30], which have all been connected
to AD.

Among the pathways identified as significant for
tau tangles we noted two that support alterations in
sensory processing, pointing to taste (Bitter Taste
Receptor Activity; Taste Receptor Activity). Recent
studies have shown alterations in the sour taste
[31], while here we have identified changes in
pathways associated with bitter taste, and taste in
general. Since taste and olfaction are closely linked,
these results suggest possible changes in olfactory
function. Among sensory changes in AD, olfaction
has been proposed as one of the more promis-
ing biomarkers for early detection [32]. We also
noted pathways pointing to differences in the trans-
fer of amino acids across the membrane, cell survival
during oxidative stress (Protein Glutamine Gamma
Glutamyltransferase Activity) [33], and glutathione
homeostasis, relevant to several neurodegenerative
diseases, such as AD, Parkinson’s disease, and amy-
otrophic lateral sclerosis [33, 34]. Finally, the role of
extracellular matrix was suggested by the presence
of the Hyalurononglucosaminidase Activity pathway,
which has a less understood but complex role in aging
and disease [35, 36].

Among the large number of pathways related to
MMSE, we noted top candidates involved in apopto-
sis, through TRAIL which binds to death receptors,
suggesting a relation with immune related mecha-
nisms [37].

A� and tau biomarkers, in combination with mea-
sures of neurodegeneration have been associated with
the progression of AD neuropathology and mem-
ory loss [38–43]. We note that neuropsychological
measures such as MMSE can reflect other causes
of cognitive impairment including damage to the
cerebrovascular system, although individuals with
moderate to severe AD tend to have MMSE scores
less than 15 [44].
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Table 6
Differential expression of VEGF family related genes in Alzheimer’s disease (AD) samples compared to controls

Gene Comparison logFC CI.L CI.R AveExpr t p adj. p

VEGFA AD-CONTROL 0.16 –0.08 0.40 1.86 1.28 0.20 0.43
VEGFB AD-CONTROL 0.10 0.03 0.16 5.67 2.81 0.01 0.05
VEGFD AD-CONTROL 0.02 –0.07 0.12 1.10 0.50 0.62 0.79
PGF AD-CONTROL 0.15 –0.02 0.32 0.17 1.69 0.09 0.26
FLT1 AD-CONTROL 0.14 –0.05 0.32 3.86 1.44 0.15 0.36
FLT4 AD-CONTROL –0.03 –0.15 0.09 0.15 –0.54 0.59 0.78
KDR AD-CONTROL –0.07 –0.20 0.07 1.05 –1.00 0.32 0.55
NRP1 AD-CONTROL –0.07 –0.18 0.03 2.14 –1.41 0.16 0.37
NRP2 AD-CONTROL –0.02 –0.10 0.06 1.37 –0.58 0.56 0.75

This table presents the results of a comparative analysis between control and AD samples, focusing on the expression differences of
VEGF-family–related genes.

Our study identified only one pathway as sig-
nificantly associated with all the three phenotypes
we studied, Vascular Endothelial Growth Factor
Receptor 2 Binding, pointing to the role of VEGF
and related genes. The role of the VEGF signaling
family in neurodegeneration and AD has been exten-
sively studied including with multiomic approaches
that analyzed bulk RNA-Seq data, single nucleus
sequencing data, and mass spectrometry proteomics
data [10]. VEGF includes a family of five ligands
(VEGFA, VEGFB, VEGFC, VEGFD, and PGF),
three tyrosine kinase receptors (FLT1, FLT4, and
KDR), and two modulating receptors (NRP1 and
NRP2). However, since numerous pathways intersect
with VEGF receptor signaling, it has been difficult
to identify the specific receptors and molecules that
associate with disease endophenotypes or covariates
including age and sex.

The presence of VEGF alongside A� plaques in
AD brains and its strong binding to A� suggest
that VEGF may contribute to neurodegeneration and
vascular dysfunction [45]. Additionally, A� inhibits
VEGF receptor signaling, impairing angiogenesis
[46]. VEGF accumulation around amyloid plaques
interacts directly with A�, rescuing synaptic dysfunc-
tion caused by the toxic A� oligomers [47].

VEGF also interacted with tau and A�42, pre-
dicting hippocampal atrophy and memory decline.
Another study [48] revealed that VEGF genes, par-
ticularly FLT4 and FLT1, were associated with
AD neuropathology and cognition. Higher levels
of VEGF were associated with slower hippocam-
pal atrophy and better cognitive function [49]. These
findings emphasize the importance of understanding
the relationship between VEGF, A� and tau pathol-
ogy in AD, and present a possible target for potential
therapeutic interventions.

Several studies have investigated the role of VEGF
in cognitive impairment. For example, one study

found that VEGF AA genotype is associated with
an increased risk of developing AD and MCI, while
higher VEGF levels are observed in AD patients
[50]. Another study found lower VEGF levels in
AD patients and amnestic MCI patients compared
to controls, correlating with cognitive decline [51].
Additionally, [52] finds that higher serum VEGF
levels in ischemic stroke patients are associated
with post-stroke cognitive impairment. Conversely,
[53] shows that VEGF signaling is crucial for
maintaining cognition and neurogenesis, cautioning
against inhibiting VEGF signaling. Interestingly, [54]
demonstrates that VEGF levels increase during the
early stage of AD but decrease as the disease pro-
gresses, suggesting a link between VEGF levels and
cognitive decline. VEGF produced by macrophages
plays a role in preserving cognitive function in obe-
sity, which can be a risk factor during aging and AD
[55]. However, the literature is still controversial and
more work is needed to understand the role of various
VEGF isoforms role in modulating cognition [56].

Intriguingly, the ensemble of molecules in the
VEGF pathways and their interactions have been
reported to have varied effects on AD phenotypes.
The members of the VEGF measured in the brain
and blood have been characterized with respect to
cognitive performance, neural and cerebrovascular
pathology, and cerebrospinal fluid biomarkers [11,
48]. Blood and brain VEGFA has been reported
to be protective against memory impairment and
brain atrophy in AD [10]. We included differen-
tial gene analysis of the VEGF family members in
order to assess specific gene expression differences
between samples from AD and cognitively normal
samples in the context of the finding of the VEGF-
receptor finding pathway showing significance for
all three phenotypes. Higher expression levels of
VEGFB, PGF, FLT1, and FLT4 were reported to be
associated with faster cognitive decline and greater
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neuropathological lesion development [10] and our
data supported this direction of difference in expres-
sion levels. The VEGF family is involved in multiple
signaling pathways, leading to potentially differ-
ent effects on AD-related phenotypes; for example,
VEGFA can signal through KDR or FLT1 where
the receptors can elicit effects in opposing directions
[10]. In a study of microglial control of astro-
cytes in response to microbial metabolites, microglial
VEGFB was shown to trigger FLT1 signaling in
astrocytes and promote CNS inflammation [57]. Neu-
tropilin expression (NRP1 and NRP2) was decreased
AD samples relative to samples from individuals
with normal cognition in agreement with prior evi-
dence [10]. NRP1 and NRP2 have well-established
roles in angiogenesis [10, 58]. Moreover, interac-
tions between VEGF family proteins with APOE have
also been reported. Higher levels of VEGFA were
reported to be associated with worse outcomes among
APOE �4 carriers and better outcomes among non-
�4 carriers [10]. Interestingly VEGFB levels have
been positively associated with atherosclerosis and
arteriolosclerosis [48], pointing to the need to better
understand the VEGFB interactions with APOE.

Seto and colleagues [10] have associated higher
VEGFB mRNA expression in the dorsolateral pre-
frontal cortex with lower cognition and with faster
cognitive decline; and snRNA analyses demonstrated
these effects to were driven by microglia, oligoden-
drocytes and their precursor cells, and endothelial
cells. Moreover, VEGFB protein levels were robustly
related to higher amyloid and tau at autopsy. Thus,
although VEGFB is important for neurons survival
[59], the associations of high VEGFB expression with
AD pathology and cognitive decline suggests that
off-target effects, possibly through microglia, oligo-
dendrocytes or endothelia must be considered when
evaluating VEGFB as a treatment target.

Our mediation analysis identified among the genes
in the VEGFB pathway that ITGA5 acts as a causal
mediator between AD pathology and cognition. This
is supported by other studies [60] that have identified
ITGA5 as one of the top 10 hub genes signifi-
cantly associated with AD, with potential diagnostic
and therapeutic implications. Li et al. [61] inves-
tigates ITGA5’s role in gliomas and its impact on
the blood-brain barrier. High ITGA5 expression was
associated with worse outcomes in glioma patients
and influences immune cell infiltration, potentially
affecting the blood-brain barrier’s integrity. Inte-
grin �-5 (ITGA5), when paired with Integrin-�1,
forms a receptor for fibronectin, constituting a cru-

cial link between the cell and its surroundings [62].
Fibronectin, through its interaction with integrin
receptors on the cell surface, controls cell behav-
ior by facilitating communication between the intra
and extracellular environments [63]. Wang et al.
[64] examined the impact of ITGA5 in cardiac
microvascular endothelial cells during atheroscle-
rosis. Interestingly, overexpression of ITGA5, in
synergy with Talin-1, reduces cerebral microvascu-
lar endothelial cells dysfunction, offering potential
benefits for coronary artery disease treatment.

Our study has several strengths. First, the extension
of the gsLRT to continuous phenotypes allowed a
higher statistical level (continuous versus nominal)
of data for the pathway analysis. The relatively large
sample size where data was available for all three
phenotypes allowed for comparisons at the gene and
pathway level.

A limitation of the analysis is that the phenotypes
are measured at a single time point. Longitudi-
nal data for the A� and tau biomarkers are not
available from postmortem brains, though nuclear
imaging or fluid biomarkers present a great promise
for the future of such longitudinal studies. MMSE
is measured over time, so another possible pheno-
type to consider would be the decline in MMSE
from baseline to death. Studies that examine changes
in cerebrospinal fluid and blood biomarkers for
VEGF over time will provide information on tempo-
ral relationships between VEGF family mRNA and
protein concentrations and biomarker changes and
can open new avenues for exploiting its therapeutic
potential [10].

Conclusion

We introduced a novel statistical framework to
reveal the relationships between continuous phe-
notypes and gene expression across pathways,
while considering covariates such as sex, age, and
education. Our findings provide support for the
involvement of VEGF RB2 in modulating cognition
in AD. Additionally, our mediation analysis high-
lights the significant role of one of the VEGF R2
family genes, namely ITGA5 in mediating the rela-
tionship between AD pathology and cognition.

Our study proposes a method for pathway iden-
tification using continuous phenotypes and public
data bases on RNA-Seq, but can potentially be used
for proteomic analyses, or extended to multinet-
work omic studies and make use of extensive public
data base resources or de novo analyses to better
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understand the mechanistic substrates for neurode-
generative diseases.
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