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Altered Motor Activity Patterns within
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Abstract.
Background: Fractal motor activity regulation (FMAR), characterized by self-similar temporal patterns in motor activity
across timescales, is robust in healthy young humans but degrades with aging and in Alzheimer’s disease (AD).
Objective: To determine the timescales where alterations of FMAR can best predict the clinical onset of AD.
Methods: FMAR was assessed from actigraphy at baseline in 1,077 participants who had annual follow-up clinical assess-
ments for up to 15 years. Survival analysis combined with deep learning (DeepSurv) was used to examine how baseline
FMAR at different timescales from 3 minutes up to 6 hours contributed differently to the risk for incident clinical AD.
Results: Clinical AD occurred in 270 participants during the follow-up. DeepSurv identified three potential regions of
timescales in which FMAR alterations were significantly linked to the risk for clinical AD: <10, 20–40, and 100–200 minutes.
Confirmed by the Cox and random survival forest models, the effect of FMAR alterations in the timescale of <10 minutes
was the strongest, after adjusting for covariates.
Conclusions: Subtle changes in motor activity fluctuations predicted the clinical onset of AD, with the strongest association
observed in activity fluctuations at timescales <10 minutes. These findings suggest that short actigraphy recordings may be
used to assess the risk of AD.
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INTRODUCTION

The pathology of Alzheimer’s disease (AD) can
progress silently for decades before the clinical
diagnosis of the disease, and this long preclinical
phase is believed to provide a window for effective
interventions [1]. Thus, understanding physiological
changes in preclinical AD and identifying people at
risk for developing AD at earlier stages are of great
clinical relevance.
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Using concepts and methods derived from non-
linear dynamics, previous studies in healthy young
humans identified fractal motor activity regulation
(FMAR) that manifests as robust self-similar pat-
terns in spontaneous motor activity fluctuations with
similar temporal correlations across a wide range of
timescales from seconds to hours [2–7]. Using the
Memory and Aging Project (MAP) dataset at Rush
University AD Center [8], we previously showed
that FMAR degrades with aging, leading to more
random movements (i.e., reduced temporal activity
correlations), and the degradation accelerated after
the onset of mild cognitive impairment and dementia
[9]. In addition, after adjusting for other risk factors
for dementia (e.g., age, education, physical activity,
sleep fragmentation, and daily activity rhythm), more
random activity fluctuations predicted a faster cogni-
tive decline and increased risk of incident AD in older
people years before any sign of cognitive impairment
[10]. Furthermore, our recent study showed a link
between FMAR and AD pathology in preclinical AD
[11].

However, despite the established links between
FMAR and AD, the timescale where FMAR is the
most sensitive to risk of clinical AD is unknown.
In prior studies, average behaviors and changes
in FMAR were commonly examined in two wide
timescales: shorter and longer than 90 min [9, 10,
12–15]. Although there is strong evidence that
changes in these two wide timescales have been
linked to the effect of aging and the risk for demen-
tia, they are overly coarse, and no study has examined
the changes in FMAR across finer time scales. Clar-
ifying the alterations of FMAR at finer timescales
during the development/progression of AD is impor-
tant for the mechanistic understanding of the impacts
of AD on physiological processes/functions related
to motor control, which can facilitate better design of
biomarkers for early detection of AD.

Here, we test whether alterations in the temporal
correlations of motor activity at different timescales
have different contributions to the risk for clinical
AD. We followed the participants with no demen-
tia at baseline for up to 15 years. Using motor
activity recordings (actigraphy) collected from these
participants at baseline, we examined the temporal
correlations in activity fluctuations across a wide
range of timescales from 3 min to 6 h. We used deep
learning survival analysis to identify the timescale
region(s) significantly associated with incident clini-
cal AD. The identified candidate timescale regions
were then validated by examining the association

between the FMAR in these regions and incident clin-
ical AD with traditional survival analysis approaches,
including Cox Proportional Hazard model and ran-
dom survival forest.

MATERIALS AND METHODS

Participants

Participants were from the Rush Memory and
Aging Project (MAP), a longitudinal cohort study at
the Rush University Medical Center (RUMC). All
participants signed an informed consent for partici-
pation and a repository consent to allow data to be
re-purposed. MAP was approved by the Intuitional
Review Board of the RUMC. The current study was
approved by the Mass General Brigham Intuitional
Review Board. The inclusion criteria were 1) valid
motor activity assessment (actigraphy) and 2) valid
cognitive assessment at baseline. Until the end of
2018, 1,401 participants met these inclusion crite-
ria. The exclusion criteria were: 1) poor data quality
(see the following subsection); 2) no follow-up clin-
ical assessment until 2020; and 3) presence of any
type of dementia at baseline due to AD, Parkin-
son’s disease, Lewy body disease, stroke, depression,
or frontotemporal degeneration. Note that patients
with other neurological diseases but without demen-
tia were included. Based on the flowchart in Fig. 1,
we finally had 1,077 participants.

Exposure: Fractal motor activity regulation and
its alterations

First, motor activity during the baseline visit was
recorded using an actigraphy device (Actical, Philips
Respironics, Bend, OR, US) worn on participants’

Fig. 1. The flowchart for inclusion/exclusion of study participants.
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non-dominant wrist continuously for 10 days on aver-
age (max 14 days, standard deviation 1 day) [8].
Raw accelerometer data were integrated into pro-
prietary counts (activity counts) in 15-s epochs. All
activity count recordings were subject to signal qual-
ity screening [9, 10, 14], and low quality (defined
as long segments with continuous zeros during day-
time or spikes with amplitude 10 standard deviations
higher than individual recording means [10]) were
marked as gaps and excluded from subsequent data
analysis. Those recordings that were shorter than 3
days [10] or had ≥50% gaps were also excluded
(Fig. 1).

Next, to assess FMAR, detrended fluctuation
analysis (DFA) [16] was performed to obtain a fluc-
tuation amplitude F(n) as a function of timescales
n from 3 min up to 6 h (see details in the Supple-
mentary Methods and Supplementary Figure 1).
For fractal fluctuations within a region of time
scales, F(n) should be a power-law function (i.e.,
F(n) = n�), where the scaling exponent, �, estimates
the temporal correlation in the fluctuations within the
timescale region [17]. Note that all the participants
in this study were old (59 to 100 years) and at
risk for many diseases. Thus, it is expected that
activity fluctuations in these participants may have
altered temporal fluctuations. The altered temporal
fluctuations can cause deviation from the power-law,
hence different scaling exponents (�’s) at different
timescales. To identify the timescales where altered
FMAR was associated with the risk for clinical AD,
we obtained the local scaling exponent “�(n)” at
each timescale n by performing the power-law fit of 5
consecutive points (two points at both sides plus one
middle point) of the function centered at timescale n
(Supplementary Figure 2). The choice of 5 points is a
trade-off between estimation reliability and locality,
with Pearson’s R2 of the local estimation more than
0.5 for 98% of �(n)’s. The result of using different
numbers of points to evaluate the local �(n) is in
Supplementary Figure 3. Note, compared to other
analyses to assess FMAR, such as the Hurst analysis
and the auto-correlation analysis, the DFA can better
quantify positive temporal correlations embed-
ded in non-stationary biological/physiological
fluctuations including motor activity
fluctuations.

Outcome: Onset of clinical Alzheimer’s disease

To determine the clinical onset of AD, the
1984 National Institute of Neurological and

Communicative Disorders and Stroke and the
Alzheimer’s Disease and Related Disorders Asso-
ciation (NINCDS-ADRDA) criteria [18] were used
since the Rush MAP started on 1997. The diagnosis
of dementia due to AD was based on comprehensive
clinical assessment according to the following four
steps in the Rush MAP [19]. Step 1: History of cogni-
tive decline was based on a structured interview with
participants. Step 2: Cognitive impairment ratings of
eleven tests were assessed covering five areas of cog-
nition: orientation, attention, memory, language, and
visuospatial ability. Step 3: A neuropsychologist ren-
dered a clinical judgment: Impairment in one or two
areas was consistent with single- or multiple-domain
mild cognitive impairment, and impairment in three
to five areas was consistent with dementia. When two
areas of impairment were present, the neuropsychol-
ogist rendered an opinion regarding the presence of
dementia. Step 4: A clinician entered all the informa-
tion (i.e., history of cognitive decline, the number of
impaired domains, the presence of memory impair-
ment, and a clinical judgment regarding meaningful
cognitive decline) to a decision tree, which generated
a clinical diagnosis of dementia and AD based on the
NINCDS-ADRDA criteria. The clinician was then
offered an opportunity to override the decision. Note
that “Alzheimer’s dementia” was used in the Rush
MAP to describe the above multi-domain clinical
dementia symptom of AD.

Other types of dementia were also identified in the
Rush MAP using other criteria, including dementia
related to vascular (NINDS-AIREN [20]), Parkin-
son’s or Lewy bodies (CAPIT [21]), depression
(DSM-III-R criteria supported by the Hamilton rat-
ing scale for depression [22]), and frontotemporal
degeneration (strict clinical judgment [19]).

Death is a competing risk. Here we assigned
the primary outcome, clinical AD, as censored
(unknown) for participants who died before the clin-
ical diagnosis of AD.

Covariates

We considered the following categories of covari-
ates at baseline: 1) Demographics: age, sex, years of
education; 2) Cognition: Scores of 19 neuropsycho-
logical tests were z-transformed based on the means
and standard deviations of the cohort, and then aver-
aged to obtain a global composite cognitive measure
(higher scores indicate better cognitive performance);
3) motor function assessed by a composite score cov-
ering 10 motor performance tests [23]; 4) chronic
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health conditions assessed by the number (ranging
from 0 to 3) of present vascular risk factors (hyperten-
sion, diabetes, and smoking) and the number (ranging
from 0 to 4) of present vascular diseases (myocar-
dial infarction, congestive heart failure, claudication,
and stroke) [24]; 5) physical activity assessed by
total activity counts per day [25]; 6) the probabil-
ity of the transition from activity to resting (kar)
[26] that likely represents the fragmentation of day-
time active period, and the probability of transition
from resting to activity after a long (about 5 min)
period of rest (kra) that represents sleep fragmen-
tation [26]; 7) Interdaily stability, a measure of the
stability of 24-h activity rhythms (ranging between
0–1 with low values for higher day-to-day variations);
and 8) Intradaily variability, a measure of fragmenta-
tion of the rest-activity rhythms [27]. The collinearity
structure among these covariates plus some scaling
exponents is shown in Supplementary Figure 4 in
the Supplementary Material. 1.6% of the covariates
are missing. We imputed them using the K-nearest
neighbor model with K = 10.

We also explored the potential interaction effect
of altered FMAR and genetic risk on the clinical
onset of AD. We considered the APOE �4 allele that
increases the risk of late-onset AD and predicts cog-
nitive decline with aging [28]. APOE genotyping in
the Rush MAP was performed by Polymorphic DNA
Technologies (Alameda, CA). DNA was extracted
from peripheral blood mononuclear cells, and the
APOE haplotypes were determined by the two poly-
morphisms of rs7412 (codon 158) and rs429358
(codon 112) at exon 4 of the APOE gene. APOE �4
genotype status was dichotomized as APOE �4 car-
rier (heterozygote or homozygote, including APOE
�2/�4, �3/�4, and �4/�4) or noncarrier.

Survival analysis with DeepSurv

We used DeepSurv [29], a deep learning approach
of survival analysis, using convolutional neural net-
work (CNN) as its hazard function. The rationale
of using DeepSurv is that it takes all �(n)’s as
input and let us inspect the importance of �(n).
The inputs to DeepSurv were the covariates at
the baseline visit and the local scaling exponents
�(n) at different timescales. �(n) went through two
convolution blocks, where each block contained a
convolution layer (see the learned kernels of the
first convolutional layer in Supplementary Figure 5),
batch normalization, ReLU activation, max-pooling
(downsampling the inputs 4 times), and dropout. The

outputs were then concatenated with the baseline
covariates defined above and fed to a fully connected
layer with sigmoid activation. The model was trained
using Adam’s optimizer with 0.001 learning rate (a
common choice). The learning rate was reduced to
its 10% to allow for annealing when the loss on the
validation set did not decrease in 5 consecutive scans
of the training dataset. The training was early stopped
when the loss on the validation set did not decrease
in 10 consecutive scans.

Determining the important timescales for AD risk

To obtain candidate timescales, we first computed
the gradient of the DeepSurv-predicted AD hazard
with respect to the local DFA scaling exponents �(n)
at each timescale n. Since every participant has dif-
ferent gradient, we took the average of the gradients
across all participants. We further smoothed the gra-
dient across timescales using Savitzky-Golay filter
with window length of 21 points and polynomial
order of 2. The importance of �(n) was defined as the
gradient. The candidate important timescales were
identified as those with significant importance at 95%
level (95% confidence interval does not include 0).
The confidence interval was constructed as follows.
First, assume the gradients follow normal distribu-
tion at each timescale, with mean equals to the mean
across all participants, standard deviation equal to
the standard error across all participants. Second, we
used Bonferroni correction to control for family-wise
error rate, therefore the lower bound is the value with
cumulative probability at 2.5%/number of timescales
in the normal distribution; and the upper bound is
the value with cumulative probability at 100% –
(2.5%/number of timescales in the normal distribu-
tion). The conserveness is good for our case of no a
priori hypothesis over certain timescale. Note that we
did not do variable selection since it is often affected
by collinearity among predictors.

To validate candidate timescales found by Deep-
Surv, we performed analyses using two other survival
analysis models: the Cox proportional hazards model
with ElasticNet penalty (Cox), and random survival
forests (RSF) [30]. The inputs to these two mod-
els were the DFA scaling exponent in the important
timescales identified by the gradient of DeepSurv,
adjusted by age, sex, education, and APOE �4. Note
that DeepSurv, Cox, and RSF models were trained
with nested 5-fold cross validation (see Supplemen-
tary Methods). Since the results can be affected by
the collinearity among the �(n) at different timescales
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n, we also investigated the univariate importance of
each �(n), by fitting a Cox model to each �(n) while
adjusting for the covariates.

Metrics for performance evaluation

To evaluate the performance of all models, we
obtained two metrics: 1) concordance index (C-
index) that measures how concordant the ranking of
time to the clinical onset of AD is compared to the
ranking of individual risks at the end of 15 years of
follow-up; and 2) the average 3-to-9 years cumula-
tive/dynamic AUC that measures the discrimination
between the cases of clinical AD until a given time
and the cases without the clinical onset at or after the
given time. The range of 3-to-9 years was used to
ensure enough participants for each point of time to
the onset such that AUC was less subject to random
noise.

All confidence intervals were obtained from boot-
strapping the dataset 1000 times. The 2.5% and
97.5% percentiles were taken as the lower and upper
bounds respectively to form 95% percentile confi-
dence interval.

RESULTS

Participants characteristics

As shown in Table 1, 1,077 participants (age at
baseline: 59 to 100 years old, 23% males) were
included in this study. Until 15 years after baseline,
270 out of 1,077 participants were diagnosed with
clinical AD. The median time to the clinical onset of

AD was 6 years (1st and 3rd quartiles 3 and 8 years).
The Kaplan-Meier survival curve in Fig. 2 shows that,
about 30% participants had the clinical onset of AD
at 10 years after baseline and about 46% at 15 years
after baseline.

Candidate timescales associated with incident
clinical AD

Between groups with different risk for clini-
cal AD, the local scaling exponents �(n) showed
the greatest and consistent difference at timescales
n < 10 min (Fig. 3A). This observation was confirmed
by the importance of �(n) from the DeepSurv model
(Fig. 3B). The importance was significant at 0.05
level in three timescale regions: 1) <10 min, impor-
tance <0 such that larger �(n) was associated with a
lower risk for clinical AD; 2) Between 20 to 40 min,
importance > 0 such that larger �(n) was associated
with a higher risk; 3) Between 100 to 200 min, impor-
tance >0 such that larger �(n) was associated with a
higher risk.

To examine the potential effects of the collinear-
ity among the �(n)’s at different timescales on the
result in Fig. 3B, the univariate hazard ratio of each
�(n) after adjusting for covariates was examined,
which are not affected by the collinearity but nois-
ier since being univariate (Supplementary Figure 6).
The shape of the univariate hazard ratio as a function
of n was similar to the shape of DeepSurv-derived
importance in Fig. 3B, i.e., both their zero-crossing
point were around 13 to 14 min and both the direction-
ality of being harmful and beneficial to AD risk were
the same. On the other hand, the univariate hazard

Table 1
Participant characteristics

Variable Value

Number of participants 1,077
Time to the clinical onset of AD (y) (median, 1st and 3rd quartiles) 6 (3, 8)
Age at baseline visit (y) (mean, stdev) 80.9 (7.3)
Male sex (n, %) 247, 23%
Years of education (y) (mean, stdev) 15 (3)
APOE �4 carrier (n, %) 226, 21%
Cognition score at baseline visit (normalized, a.u.) (mean, stdev) 0.15 (0.53)
Interdaily stability (mean, stdev) [is]∗ 0.53 (0.12)
Intradaily variability (mean, stdev) [iv]∗ 0.72 (0.19)
Motor function (mean, stdev) 1.02 (0.23)
Daily activity level (mean, stdev) 2.75 (1.54)
Transition probability from activity to resting (median, 1st, 3rd quartiles) [kar]∗ 0.06 (0.05, 0.08)
Transition probability from resting to activity (median, 1st, 3rd quartiles) [kra]∗ 0.03 (0.02, 0.03)
Vascular disease burden+ (median, 1st and 3rd quartiles) 0 (0, 1)
Vascular disease risk factor∧ (median, 1st and 3rd quartiles) 1 (1, 2)
∗Abbreviation. +Including four vascular diseases: myocardial infarction, congestive heart failure, claudication, and
stroke, ranges from 0 to 4. ∧Including three risk factors: hypertension, diabetes, and smoking, ranges from 0 to 3.
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Fig. 2. Overall survival curve using Kaplan-Meier estimator. The shaded area represents the 95% confidence interval. The risk table at the
bottom shows the number of participants at risk (who has not developed clinical AD) at different years after baseline visit. Here, at risk is
defined as participants who have not developed clinical AD yet; censored is defined as participants lost-to-follow up due to any reason; and
event is defined as being diagnosed of clinical AD.

Fig. 3. Results of deep learning for survival analysis. A) The average local scaling exponents �(n) of participants stratified by percentile of
predicted hazards. The predicted hazards are obtained after adjusting for the covariates. The x-axis represents timescale n (in min). B) The
importance based on the DeepSurv gradients for each local scaling exponent. The data were the averages of all participants. Both the raw
(thin solid line) and smoothed curves (thick solid line) are shown. The horizontal dashed line indicates importance of 0, i.e., no effect. The
vertical dashed lines indicate the borders of the three candidate timescales represented by �’1, �’2, and �’3.

ratios of �(n) had wider confidence interval compared
to that in Fig. 3B, likely due to lower predictability
of using only one local �(n). Overall, these results

indicated that the identified timescale regions rele-
vant to clinical AD risk (Fig. 3B) were reliable, not
significantly affected by collinearity.
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Validation of timescales associated with incident
clinical AD

We next used the Cox and RSF models to vali-
date the feature importance of the scaling exponents
within the three candidate timescale regions iden-
tified by DeepSurv (<10 min: �’1; 20–40 min: �’2;
100–200 min: �’3). Note that �’1, �’2, and �’3 were
not computed by averaging �(n), but by fitting a line
to the timescale region. As shown in Table 2, both
Cox and RSF models confirmed that �’1 among all
scaling exponents contributed the most to the predic-
tion of clinical AD. The direction of the impact of
�’1 on hazard was also consistent with that observed
in DeepSurv, i.e., larger �’1 for lower risk. For the
impacts of �’2 and �’3, the impact directions in Cox
and RSF models appeared to be consistent with those
in DeepSurv but the effects did not reach the signifi-
cance level (p values > 0.05).

Contributions of FMAR alterations after
adjusting for APOE �4

To examine the effects of �’1, APOE �4 status (1
for homozygous or heterozygous carrier and 0 oth-
erwise), and their interaction, the Cox model was
used while adjusting for age, sex, and education.
Other covariates such as motor function and cog-
nition based on clinical tests at baseline were not
included because these covariates were linked to
FMAR as reported previously and the current study
was not focused on whether or how FMAR alter-
ations predict the risk of AD via or independent of
motor function and cognition. The hazard ratio for
APOE �4 carriers compared to non-carriers was 2.17
(95% CI: 1.65–2.84, p < 0.0001). The hazard ratio for
�’1 remained statistically significant: for one stan-
dard deviation increase in �’1, the hazard ratio was
0.79 (95% CI: 0.70–0.91, p = 0.0013). The interaction

between �’1 and APOE �4 carrier was not statistically
significant (p = 0.4).

Comparison to previous FMAR measure

We tested whether �’1 contributed to the risk for
clinical AD, similar to or differently from the pre-
viously used scaling exponent at <90 min (�1). We
performed analyses using Cox model, where we only
adjust for age, sex, years of education, and APOE �4
(Table 3). We selected Cox model because the model
was used in a previous study to demonstrate the effect
of �1 on the risk of clinical AD, and the Cox model
had an equivalent performance compared to RSF and
DeepSurv (next subsection).

When including �1 (<90 min) and �’1 (<10 min) in
separate models (�1 in Model A and �’1 in Model B),
we found that both were significantly associated with
the risk of clinical AD (both p < 0.001). Consistently,
�’1 and �1 were highly correlated (Spearman’s cor-
relation 0.76, p < 0.001) (Supplementary Figure 4).
When both �1 and �’1 were included in the same
model (Model C), the contribution of �’1 remained
significant (HR = 0.77, p = 0.009) while the contribu-
tion of �1 became not significant (p > 0.6). In Model
D, the effects of �’2 and �’3 did not reach significance
level.

Survival analysis performance

The C-index at 15 years of follow-up (averaged
from the five testing sets) was similar in the Cox
model and RSF models (Cox: 0.84, 95% confidence
interval [0.81–0.87]; RSF: 0.82 [0.78–0.84]; p > 0.05
compared to Cox). The C-index was slightly but sig-
nificantly lower in the DeepSurv (0.80 [0.78–0.81]).
To confirm the importance of <10-min timescale,
we repeated DeepSurv without <10-min timescale
and obtained a C-index of 0.74 [0.72–0.76], which

Table 2
Feature importance of candidate scaling exponents based on Cox and RSF

Model Feature Hazard ratio 15 years after
baseline when increased 1 stdev

Cox �’1: <10 min (stdev = 0.08) 0.76 [0.66–0.87]∗
�’2: 20 to 40 min (stdev = 0.09) 0.98 [0.86–1.12]

�’3: 100 to 200 min (stdev = 0.13) 1.07 [0.95–1.20]

Model Feature RSF feature importance
(Reduction in Gini impurity)

RSF �’1: <10 min 9.8 [6.8–12.8]
�’2: 20 to 40 min 0.1 [−0.9–1.2]

�’3: 100 to 200 min 2.0 [0.9–3.1]
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Table 3
Hazard ratios and p-values of scaling exponents for prediction of clinical AD using Cox model

Variable Basic Model: Model A: Model B: Model C: Model D:
Covariates only Covariates + �1 Covariates + �’1 Covariates + �1, �’1 Covariates +

�’1, �’2, �’3
HR p HR p HR p HR p HR p

Age 2.48 0.0∗∗ 2.43 0.0∗∗ 2.36 0.0∗∗ 2.37 0.0∗∗ 2.35 0.0∗∗
Male sex 1.06 0.37 1.05 0.42 1.03 0.66 1.03 0.60 1.03 0.67
Education 0.83 0.004∗ 0.83 0.004∗ 0.83 0.004∗ 0.83 0.004∗ 0.83 0.006∗
APOE �4 2.25 0.0∗∗ 2.22 0.0∗∗ 2.13 0.0∗∗ 2.16 0.0∗∗ 2.10 0.0∗∗
�1 (<90 min) / / 0.79 0.0∗∗ / / 0.91 0.34 / /
�’1 (<10 min) / / / / 0.76 0.0∗∗ 0.82 0.04∗ 0.76 0.0∗∗
�’2 (20–40 min) / / / / / / / / 0.98 0.76
�’3 (100–200 min) / / / / / / / / 1.07 0.28
∗p < 0.05; ∗∗p < 0.001. HR, Adjusted hazard ratio 15 years after baseline when increased by 1 standard deviation.

showed a statistically significant drop. Note that the
0.06 difference in C-index is considered numeri-
cally big because we obtained a C-index of 0.72
[0.70–0.74] by fitting another DeepSurv without age,
a known important covariate, which corresponded to
a 0.08 difference. The 3-to-9-year averaged cumu-
lative/dynamic AUC was also similar in the Cox
model and RSF (Cox: 0.88 [0.85–0.90]; RSF: 0.89
[0.86–0.90]; p > 0.05 compared to Cox) and was
slightly lower in the DeepSurv (0.84 [0.83–0.86],
p < 0.05 compared to both Cox and RSF). The cumu-
lative/dynamic AUC showed a trend to decrease
over the years since baseline, e.g., AUC in the
DeepSurv = 0.86 after 3 years, 0.85 after 4 years,
0.85 after 5 years, 0.85 after 6 years, 0.84 after 7
years, 0.83 after 8 years, and 0.83 after 9 years.
We also compared their survival curves of clinical
AD during 15 years of follow-up in Supplementary
Figure 7.

DISCUSSION

In this study, we systematically examined the tem-
poral correlations of motor activity across a wide
range of timescales (3 min to 6 h) and their associ-
ations with the clinical onset of AD (“Alzheimer’s
dementia” used in Rush MAP) in the cohort of
the Rush Memory and Aging Project. We showed
that temporal correlations in these participants var-
ied dramatically at different timescales (Fig. 3 and
Supplementary Figure 8), suggesting loss of the
scale-invariance and degraded FMAR. Our results
showed that reduced temporal correlations (indi-
cating more random motor activity fluctuations) at
<10 min timescale was associated with increased risk
for clinical AD.

Potential application of motor activity
assessment in healthcare

Wearable devices allow collection of motor activity
at a high sampling rate. The short-term activity fluctu-
ations (at small timescales <90 min) attract attentions
due to recent findings of their associations with mood
disorders [4, 15], faster cognitive decline and risk
for dementia [10], AD pathology in preclinical AD
[11], and many other health outcomes such as frailty
and disability in the elderly [14]. Our new results
indicated that the pathophysiological alterations in
FMAR linked to the development or clinical onset of
AD is within the timescale of <10 min. This inter-
pretation was supported by other findings: 1) �1
was correlated with both �’1 and �’2 (scaling expo-
nent at timescales between 20–40 min) (�1 versus
�’2: Spearman’s correlation 0.68, p < 0.001) (Sup-
plementary Figure 4), but �’2 hardly predicted the
clinical onset of AD (Table 2); and 2) the associa-
tion between �1 and the clinical onset of AD became
not significant when �’1 was included in the same
model. In addition, we found that FMAR within
10 min estimated from one day was both reliable
(Supplementary Figure 9) and enough for predicting
onset of AD (Supplementary Figure 10). Thus, our
findings support the potential of using actigraphy-
based FMAR in continuous, long-term monitoring
of the risk for dementia in older adults. One of the
follow-up questions is how early altered FMAR can
predict the risk for Alzheimer’s dementia. Relatedly,
the observed decrease of the cumulative AUC over the
time (Year 3–9 after baseline) in the DeepSurv sug-
gests that FMAR might have a better performance
in predicting the risk of Alzheimer’s dementia in
a shorter term. Because AD-related neuropathology
may progress silently for two decades before the onset
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of cognitive symptoms, further studies with more
participants during a longer follow-up period are
required to systematically determine the reliability of
FMAR in the prediction at early preclinical stages.

Possible mechanisms of FMAR and its links to
clinical AD

As proposed by Buchman et al., “motor function
is not a unitary process” and “complexity and nov-
elty of motor tasks demand increasing cognitive and
sensory information processing for the accuracy of
successful movements” [31]. Based on this theory,
subtle changes in motor control such as more ran-
dom activity fluctuations may reflect the effects of
AD pathology on cognitive and sensory information
processing in preclinical AD, which may explain the
observed association between altered FMAR at small
timescales and AD risk.

Another possible mechanism is related to sleep
disturbances. There is evidence that sleep quality is
linked to the pathology of amyloid-� (A�) in pre-
clinical AD [32]; deep sleep enhances the glymphatic
system that helps clear A� [33]; and sleep depriva-
tion increases A� [34]. In this cohort, we did not
find significant association of an actigraphy-based
sleep fragmentation measure (kra, see Supplemen-
tary Tables 1 and 2) with incident clinical AD after
controlling for FMAR measures and other covari-
ates. In addition, kra was not significantly associated
with FMAR at <10 min (�’1, Spearman’s corre-
lation 0.026, p > 0.05) or in the other timescale
regions linked to AD risk (20–40 min: �’2, Spear-
man’s correlation 0.034, p > 0.05; 100 to 200 min:
�’3, Spearman’s correlation 0.028, p > 0.05) (Sup-
plementary Figure 4). To formally confirm or refute
that sleep disturbances are linked to temporal activ-
ity correlations at small timescales and contribute
the FMAR-AD association, better sleep assessments
based on polysomnography should be used to quan-
tify sleep in future studies.

APOE �4 status

The other important finding in the study was that
the association between �’1 and the clinical onset of
AD remains after adjusting for APOE �4 status. It is
important to note that genetics cannot fully explain
the risk of developing AD and related dementias. The
estimated heritability for AD is about 60% to 80% in
a twin study [35]. The alternative risk factors for AD
can be environmental conditions, lifestyle and sched-

uled daily activities such as smoking, air pollution,
and shift work [36–38]. In addition, although APOE
gene is the major genetic risk factor for AD, studies
have continued to identify other risk loci [39], provid-
ing evidence for AD as a polygenic disorder. Thus, it
is not surprising that the effect of fractal activity mea-
sures contributed to the risk for AD, after adjusting
for APOE �4 status. Consistently, our recent study
showed that changes in fractal activity patterns were
linked to AD pathology in preclinical AD, and the
association was significant after adjusting for APOE
�4 status [11]. Changes in other non-cognitive phys-
iological functions such as circadian variables have
also been found to be linked to AD pathology, after
adjusting for APOE �4 status [40].

Limitations

Due to the historical reason (i.e., the Rush MAP
was first launched in 1997), the NINCDS-ADRDA
criteria established in 1984 was still the key criteria to
determine the clinical onset of AD in the Rush MAP.
Meanwhile, the 2011 NIA-AA guideline introduced
the new criteria for clinical diagnosis of dementia
due to AD [41], and the 2018 NIA-AA Research
Framework further recommended certain changes in
the criteria or terminology related to diagnosis of AD
and related dementia [42]. This limitation may lead to
certain misdiagnosis of AD based on clinical symp-
toms without pathological biomarkers. However, the
potential effects on this and other studies in the Rush
MAP should be minimized with the following two
considerations: 1) The onset of dementia due to AD
was based on the comprehensive cognitive assess-
ments according to Rush MAP’s 4-step procedure
(see details in the Methods Section). 2) Other types
of dementia were also evaluated using other relevant
criteria such that the diagnosis of dementia related
to AD was not treated as a stand-alone evaluation.
Thus, the cases of misdiagnosis related to other types
of dementias should be rare.

The mechanisms underlying the temporal activity
correlations within 10 min are yet to be determined.
Observational/retrospective studies are inherently
limited to addressing all questions comprehensively.
Future prospective and mechanistic studies should be
designed to examine the patterns during specific, rel-
atively short task events using approaches such as
video or other modalities to test whether the sug-
gested timescales of fractal motor regulation can
genuinely enhance the diagnosis of AD without sig-
nificantly increasing the clinical burden.
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This is a community-based cohort, reflecting the
local demographics of participants, which may not
be generalizable to a broader population. The other
source of selection bias can come from recruitment,
where some individuals might be more or less likely
to be enrolled into the study than others (healthy
cohort effect). The prospective nature of the Rush
MAP helped alleviate this bias because the outcome
was unknown at time of enrollment, making it less
prone to selection bias.

Conclusion

The fluctuation pattern in motor activity varied
dramatically at different timescales. More random
fluctuations in motor activity at timescales within
10 min were associated with increased risk for inci-
dent clinical AD. The finding implies the potential
of using a short actigraphy in identifying individu-
als at risk of AD. Future work is needed to study
the longitudinal change of FMAR within 10 min over
the course of the follow-up, the circadian influence
over FMAR within 10 min, and the robustness against
more survival analysis models.

AUTHOR CONTRIBUTIONS

Kun Hu (Conceptualization; Funding acquisition;
Methodology; Resources; Supervision; Writing –
review & editing); Haoqi Sun (Data curation; Formal
analysis; Investigation; Methodology; Validation;
Visualization; Writing – original draft; Writing –
review & editing); Peng Li (Data curation; For-
mal analysis; Methodology; Writing – original draft;
Writing – review & editing); Lei Gao (Data cura-
tion; Investigation; Methodology; Writing – review
& editing); Jingyun Yang (Data curation; Writing –
review & editing); Lei Yu (Data curation; Writing –
review & editing); Aron S. Buchman (Data curation;
Writing – review & editing); David A. Bennett (Data
curation; Writing – review & editing); M. Brandon
Westover (Conceptualization; Funding acquisition;
Supervision; Writing – review & editing).

ACKNOWLEDGMENTS

The authors would like to thank the participants
and staff of the Rush Memory and Aging Project and
the Rush Alzheimer’s Disease Center.

FUNDING

This work was supported by the National Insti-
tutes of Health (grant numbers R01AG048108,
RF1AG064312, RF1AG059867, R01AG083799,
and R03AG067985), and the BrightFocus Founda-
tion Alzheimer’s Research Program (A2020886 S).

CONFLICT OF INTEREST

Dr. Westover is a co-founder of Beacon Biosignal.
The work presented here is not relevant to it.

DATA AVAILABILITY

The data supporting the findings of this study
are available on request from the corresponding
author or from the Memory and Aging Project at
the Rush University Medical Center (RUMC) at
https://www.radc.rush.edu.

SUPPLEMENTARY MATERIAL

The supplementary material is available in the
electronic version of this article: https://dx.doi.org/
10.3233/JAD-230928.

REFERENCES

[1] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S,
Fagan AM, Iwatsubo T, Jack CR, Kaye J, Montine TJ, Park
DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K,
Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV,
Phelps CH (2011) Toward defining the preclinical stages of
Alzheimer’s disease: Recommendations from the National
Institute on Aging-Alzheimer’s Association workgroups on
diagnostic guidelines for Alzheimer’s disease. Alzheimers
Dement 7, 280-292.

[2] Hu K, Ivanov PC, Chen Z, Hilton MF, Stanley HE, Shea SA
(2004) Non-random fluctuations and multi-scale dynamics
regulation of human activity. Physica A 337, 307-318.

[3] Hu K, Van Someren EJW, Shea SA, Scheer FAJL (2009)
Reduction of scale invariance of activity fluctuations with
aging and Alzheimer’s disease: Involvement of the circadian
pacemaker. Proc Natl Acad Sci U S A 106, 2490-2494.

[4] Indic P, Salvatore P, Maggini C, Ghidini S, Ferraro G,
Baldessarini RJ, Murray G (2011) Scaling behavior of
human locomotor activity amplitude: Association with
bipolar disorder. PLoS One 6, e20650.

[5] Aybek S, Ionescu A, Berney A, Chocron O, Aminian K,
Vingerhoets FJG (2012) Fractal temporal organisation of
motricity is altered in major depression. Psychiatry Res 200,
288-293.

[6] Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PC,
Peng C-K, Stanley HE (2002) Fractal dynamics in physiol-
ogy: Alterations with disease and aging. Proc Natl Acad Sci
U S A 99(Suppl 1), 2466-2472.

https://www.radc.rush.edu
https://dx.doi.org/10.3233/JAD-230928


H. Sun et al. / Motor Activity at Short Timescale Predicts AD 219

[7] Pittman-Polletta BR, Scheer FAJL, Butler MP, Shea SA,
Hu K (2013) The role of the circadian system in fractal
neurophysiological control. Biol Rev Camb Philos Soc 88,
873-894.

[8] Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle
PA, Wilson RS (2012) Overview and findings from the rush
Memory and Aging Project. Curr Alzheimer Res 9, 646-663.

[9] Li P, Yu L, Yang J, Lo M-T, Hu C, Buchman AS, Ben-
nett DA, Hu K (2019) Interaction between the progression
of Alzheimer’s disease and fractal degradation. Neurobiol
Aging 83, 21-30.

[10] Li P, Yu L, Lim ASP, Buchman AS, Scheer FAJL, Shea
SA, Schneider JA, Bennett DA, Hu K (2018) Fractal regula-
tion and incident Alzheimer’s disease in elderly individuals.
Alzheimers Dement 14, 1114-1125.

[11] Gao L, Li P, Gaba A, Musiek E, Ju Y-ES, Hu K (2021)
Fractal motor activity regulation and sex differences in pre-
clinical Alzheimer’s disease pathology. Alzheimers Dement
(Amst) 13, e12211.

[12] Hu K, Harper DG, Shea SA, Stopa EG, Scheer FAJL (2013)
Noninvasive fractal biomarker of clock neurotransmitter
disturbance in humans with dementia. Sci Rep 3, 2229.

[13] Hu K, Riemersma-van der Lek RF, Patxot M, Li P, Shea SA,
Scheer FA, Van Someren EJ (2016) Progression of demen-
tia assessed by temporal correlations of physical activity:
Results from a 3.5-year, longitudinal randomized controlled
trial. Sci Rep 6, 27742.

[14] Li P, Lim ASP, Gao L, Hu C, Yu L, Bennett DA, Buchman
AS, Hu K (2019) More random motor activity fluctuations
predict incident frailty, disability, and mortality. Sci Transl
Med 11, eaax1977.

[15] Knapen SE, Li P, Riemersma-van der Lek RF, Verkooijen S,
Boks MPM, Schoevers RA, Scheer FAJL, Hu K (2021) Frac-
tal biomarker of activity in patients with bipolar disorder.
Psychol Med 1, 1562-1569.

[16] Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley
HE, Goldberger AL (1994) Mosaic organization of DNA
nucleotides. Phys Rev E Stat Phys Plasmas Fluids Relat
Interdiscip Topics 49, 1685-1689.

[17] Hu K, Ivanov PC, Chen Z, Carpena P, Stanley HE (2001)
Effect of trends on detrended fluctuation analysis. Phys Rev
E 64, 011114.

[18] McKhann G, Drachman D, Folstein M, Katzman R, Price D,
Stadlan EM (1984) Clinical diagnosis of Alzheimer’s dis-
ease Report of the NINCDS-ADRDA Work Group∗ under
the auspices of Department of Health and Human Services
Task Force on Alzheimer’s Disease. Neurology 34, 939-939.

[19] Bennett DA, Schneider JA, Aggarwal NT, Arvanitakis
Z, Shah RC, Kelly JF, Fox JH, Cochran EJ, Arends D,
Treinkman AD, others (2006) Decision rules guiding the
clinical diagnosis of Alzheimer’s disease in two community-
based cohort studies compared to standard practice in a
clinic-based cohort study. Neuroepidemiology 27, 169-176.

[20] Román GC, Tatemichi TK, Erkinjuntti T, Cummings J,
Masdeu J, Garcia J, Amaducci L, Orgogozo J-M, Brun A,
Hofman A, others (1993) Vascular dementia: Diagnostic
criteria for research studies: Report of the NINDS-AIREN
International Workshop. Neurology 43, 250-250.

[21] Langston JW, Widner H, Goetz CG, Brooks D, Fahn S,
Freeman T, Watts R (1992) Core assessment program for
intracerebral transplantations (CAPIT). Mov Disord 7, 2-13.

[22] Hamilton M (1960) A rating scale for depression. J Neurol
Neurosurg Psychiatry 23, 56.

[23] Buchman AS, Wilson RS, Leurgans SE, Bennett DA, Barnes
LL (2015) Change in motor function and adverse health

outcomes in older African-Americans. Exp Gerontol 70, 71-
77.

[24] Buchman AS, Yu L, Boyle PA, Shah RC, Bennett DA (2012)
Total daily physical activity and longevity in old age. Arch
Intern Med 172, 444-446.

[25] Buchman AS, Boyle PA, Yu L, Shah RC, Wilson RS, Ben-
nett DA (2012) Total daily physical activity and the risk
of AD and cognitive decline in older adults. Neurology 78,
1323-1329.

[26] Lim ASP, Yu L, Costa MD, Buchman AS, Bennett DA,
Leurgans SE, Saper CB (2011) Quantification of the frag-
mentation of rest-activity patterns in elderly individuals
using a state transition analysis. Sleep 34, 1569-1581.

[27] Van Someren EJ, Swaab DF, Colenda CC, Cohen W,
McCall WV, Rosenquist PB (1999) Bright light therapy:
Improved sensitivity to its effects on rest-activity rhythms
in Alzheimer patients by application of nonparametric meth-
ods. Chronobiol Int 16, 505-518.

[28] Schiepers OJG, Harris SE, Gow AJ, Pattie A, Brett CE, Starr
JM, Deary IJ (2012) APOE E4 status predicts age-related
cognitive decline in the ninth decade: Longitudinal follow-
up of the Lothian Birth Cohort 1921. Mol Psychiatry 17,
315-324.

[29] Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T,
Kluger Y (2018) DeepSurv: Personalized treatment rec-
ommender system using a Cox proportional hazards deep
neural network. BMC Med Res Methodol 18, 1-12.

[30] Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008)
Random survival forests. Ann Appl Stat 2, 841-860.

[31] Buchman AS, Bennett DA (2011) Loss of motor function in
preclinical Alzheimer’s disease. Expert Rev Neurother 11,
665-676.

[32] Ju Y-ES, McLeland JS, Toedebusch CD, Xiong C, Fagan
AM, Duntley SP, Morris JC, Holtzman DM (2013) Sleep
quality and preclinical Alzheimer disease. JAMA Neurol 70,
587-593.

[33] Fultz NE, Bonmassar G, Setsompop K, Stickgold RA,
Rosen BR, Polimeni JR, Lewis LD (2019) Coupled elec-
trophysiological, hemodynamic, and cerebrospinal fluid
oscillations in human sleep. Science 366, 628-631.

[34] Shokri-Kojori E, Wang G-J, Wiers CE, Demiral SB, Guo
M, Kim SW, Lindgren E, Ramirez V, Zehra A, Freeman C,
others (2018) �-Amyloid accumulation in the human brain
after one night of sleep deprivation. Proc Natl Acad Sci U S
A 115, 4483-4488.

[35] Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer
JA, Berg S, Fiske A, Pedersen NL (2006) Role of genes and
environments for explaining Alzheimer disease. Arch Gen
Psychiatry 63, 168-174.

[36] Durazzo TC, Mattsson N, Weiner MW, Initiative ADN
(2014) Smoking and increased Alzheimer’s disease risk:
A review of potential mechanisms. Alzheimers Dement 10,
S122-S145.
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