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Abstract.
Background: Recent Alzheimer’s disease (AD) discoveries are increasingly based on studies from a variety of omics
technologies on large cohorts. Currently, there is no easily accessible resource for neuroscientists to browse, query, and
visualize these complex datasets in a harmonized manner.
Objective: Create an online portal of public omics datasets for AD research.
Methods: We developed Alzheimer DataLENS, a web-based portal, using the R Shiny platform to query and visualize
publicly available transcriptomics and genetics studies of AD on human cohorts. To ensure consistent representation of AD
findings, all datasets were processed through a uniform bioinformatics pipeline.
Results: Alzheimer DataLENS currently houses 2 single-nucleus RNA sequencing datasets, over 30 bulk RNA sequencing
datasets from 19 brain regions and 3 cohorts, and 2 genome-wide association studies (GWAS). Available visualizations
for single-nucleus data include bubble plots, heatmaps, and UMAP plots; for bulk expression data include box plots
and heatmaps; for pathways include protein-protein interaction network plots; and for GWAS results include Manhattan
plots. Alzheimer DataLENS also links to two other knowledge resources: the AD Progression Atlas and the Astrocyte
Atlas.
Conclusions: Alzheimer DataLENS is a valuable resource for investigators to quickly and systematically explore omics
datasets and is freely accessible at https://alzdatalens.partners.org.
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INTRODUCTION

Research studies into Alzheimer’s disease (AD)
and related dementias have historically been con-
strained by the lack of deep phenotyping. Histopatho-
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logical examination of brain tissue was often limited
by the number of quantifiable proteins or transcripts
and small sample sizes. In recent years, however, the
advent of new omics technologies—including tran-
scriptomics (e.g., bulk, single-cell, single-nucleus,
and spatial RNA sequencing [RNA-seq]), pro-
teomics (e.g., multiplexed immunohistochemistry,
mass spectrometry), and genomics (e.g., genome-
wide association studies [GWAS], whole exome
and whole genome sequencing)—has enabled deep
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phenotyping of the molecular and cellular changes
that underlie AD across many modalities and large
patient cohorts. In particular, single-cell technologies
have begun to illuminate the heterogeneous states
of the various brain cell types and their responses
to AD pathology [1–6], their spatial relationships
[7–9], and their genomic and epigenomic landscapes
[10, 11]. As datasets generated by these methods
increase in dimensionality and complexity, the bar-
rier to new insights in AD research is no longer just
the acquisition of sufficient data; rather, neuroscien-
tists must also make sense of these high dimensional
and multimodal datasets, which may span an array
of technological platforms, inclusion criteria, disease
stages, and brain regions studied. Only by visualizing
and summarizing results across these diverse experi-
mental conditions may we begin to appreciate the key
changes driving AD.

To that end, there is a need for publicly avail-
able tools for neuroscientists to query omics studies
from AD cohorts. Online portals and application pro-
gramming interfaces (APIs) exist to store and share
AD-related data: these include the Gene Expression
Omnibus (GEO) repository [12, 13] and associ-
ated GEOquery software [14], the AD Knowledge
Portal with the associated Synapse platform by
Sage Bionetworks [15], and the National Institute
on Aging Genetics of Alzheimer’s Disease Data
Storage Site (NIAGADS) [16]. Although these repos-
itories are valuable for computational scientists to
access and analyze raw files, they remain inacces-
sible to neuroscientists who seek to investigate a
gene or pathway of interest. Other data explorers
have also been developed to host and visualize data
from control and AD brains, such as the Seattle
Alzheimer’s Disease Brain Cell Atlas (SEA-AD,
http://sea-ad.org) [17], http://adsn.ddnetbio.com [1]
and https://www.brainrnaseq.org [18]. These web
tools, however, are specific to individual studies or
platforms, and there remains no general reference
platform for neuroscientists to easily access, analyze,
and visualize AD omics data across a range of studies.

To address this need, we developed Alzheimer
DataLENS, a data analytics portal that aims to
advance research in AD and related dementias by
democratizing AD omics data access and making
consistent data analysis pipelines available to all
neuroscientists. DataLENS features bioinformatics
pipelines for the analysis of omics data on AD and
related dementias as well as streamlined web inter-
faces which allow neuroscientists to browse and
query the results of those analyses.

MATERIALS AND METHODS

Overall architecture

DataLENS is an R Shiny web application with
an HTML, CSS, and JavaScript front-end, an R
back-end, and a MongoDB database. Specifically,
the golem framework for building high performance
production-grade Shiny applications [19] was used.
Web pages within DataLENS correspond to individ-
ual Shiny modules, each with its own namespace,
UI, and server functions. We selected a document-
oriented database such as MongoDB to accommodate
different relational architectures among datasets
included in DataLENS, and permit datasets to be
deposited in DataLENS while retaining their origi-
nal schemas. For instances where fast retrieval was
required, datasets were also stored in the native R data
file format. All required data pre-processing was per-
formed in R prior to insertion into the database. The
overall architecture of DataLENS is shown in Fig. 1.

Bulk gene expression dataset retrieval and
processing

Bulk gene expression (RNA-seq and microarray)
data was obtained from three Accelerating Medicines
Partnership Program for Alzheimer’s Disease (AMP-
AD) studies: the Religious Orders Study and Memory
and Aging Project (ROSMAP), the Mount Sinai Brain
Bank (MSBB) study, and the Mayo Clinic Brain
Bank (MCBB), as described previously [20]. The
ROSMAP study included RNA-seq data from the
dorsolateral prefrontal cortex of 638 donors [21, 22].
Clinical and demographic covariates, including sex,
race, age of death, APOE status, and clinical and neu-
ropathological scores, were available for all donors.
The ROSMAP study also provides microarray data
[23]. The MSBB study contains RNA-seq data from
301 individuals across four brain regions: inferior
frontal gyrus, superior temporal gyrus, parahip-
pocampal gyrus, and frontal pole [24]. Covariates,
including sex, race, age of death, APOE status, and
clinical and neuropathological scores, were reported.
The MSBB study also contains microarray data from
19 different brain regions [25]. For MCBB, RNA-
seq data was collected from 275 cerebellar and 276
temporal cortex samples [26] and microarray data
was also obtained from the cerebellar and temporal
cortices [27].

All transcriptomics data was processed in a consis-
tent manner as described previously [20]. Differential
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Fig. 1. Architecture overview. Summary of the technology stack used in Alzheimer DataLENS. Primary data is processed by consistent
pipelines and stored either in a MongoDB database or as .RDS files. The R Shiny server queries and processes the data to display on the
front-end web browser.

gene expression analysis was performed using the
limma voom package. No prior filtering was per-
formed, neither on variance nor intensity. If the data
was available as raw counts, trimmed mean of M
values (TMM) normalization was performed with
the edgeR package [28]. Counts per million (CPM)
and fragments per kilobase of transcript per million
(FPKM) data were directly analyzed with limma fol-
lowing a log-transformation. For microarray datasets,
the probe annotation file was downloaded from the
Gene Expression Omnibus (GEO) repository; poor
quality Illumina mRNA probes were identified and
removed. Multiple comparison adjustments were per-
formed using the Benjamin-Hochberg method for
both RNA-seq and microarray datasets. After differ-
ential expression analysis results were generated, all
results for each gene, including fold change with con-
fidence intervals, p value, and adjusted p value, along
with the respective study information, were recorded

in a MongoDB database for easy query and visual-
ization.

Single-nucleus RNA-sequencing dataset retrieval
and processing

The single nucleus RNA-seq (snRNA-seq) datasets
from the Mathys et al. [4] and Grubman et al. [1]
studies were downloaded. The downloaded data was
processed with the Seurat R package (version 4.0.0)
[29], which is often used for analysis of single-
nucleus studies. Subsequently, the ShinyCell package
[30] was used to convert the results to .RDS objects
that were then loaded into DataLENS. For the aggre-
gate analysis, average expression across all cells and
the proportion of cells where the gene is expressed
were computed for each gene by user-specified vari-
able of interest (e.g., different cell types). For the
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cell level analysis, if processed data was not avail-
able, we removed cells with fewer than 200 genes,
greater than 20,000 unique molecular identifiers,
and/or greater than 15% mitochondrial genes, and
used reciprocal principal component analysis inte-
gration based on the top 2,000 highly variable genes
to remove donor-specific effects. Gene expression
data was log-normalized, scaled, and subjected to
principal component analysis to choose the num-
ber of principal components for clustering, which
was followed by non-linear dimensionality reduction
via uniform manifold approximation and projection
(UMAP). Cell level UMAP embeddings were cre-
ated using the RunUMAP function from Seurat. The
proportion of cells across user-specified variables of
interest (e.g., cell types in disease versus control
donors) was also computed.

Query and visualization

Queries for results of bulk transcriptomics analy-
sis and GWAS studies were made to the MongoDB
database using the mongolite library in R. The results
were processed in R using the data.table package and
were rendered using the reactable package, which is
based on React Table, a front-end JavaScript library
to allow interactive table sorting, filtering, and pagi-
nation.

All plots were first created in R using the ggplot2
package, an open-source data visualization toolkit
based on The Grammar of Graphics; subsequently,
plots were made interactive using functionality from
the plotly and ggiraph packages. Visualization of
transcriptomics data was performed using the ggplot
function. The bubble charts, heatmaps, proportion
plots, box plots, and violin plots were created with
the geom point, geom tile, geom col, geom box, and
geom violin functions, respectively. The colors in the
bubble charts and heatmaps represent average expres-
sion, while bubble size represents the proportion of
cells where the queried gene is expressed. UMAP
plots were created with the geom scatter function and
the Manhattan plot was created using the geom point
function. The protein-protein interaction network
plot was created using the geom point interactive and
geom edge link functions from the ggraph package,
an extension of ggplot2 to support relational data
structures like graphs. Finally, the visualization of
brain regions was created using the Desikan-Killiany
and automatic subcortical segmentation atlases from
the ggseg package, an extension of ggplot2 to support
the plotting of brain atlases.

RESULTS

Alzheimer DataLENS is a unified portal of omics
data

Alzheimer DataLENS (https://alzdatalens.part
ners.org) is an open data analytics platform that aims
to advance research in AD and related dementias
by making omics data accessible to everyday
neuroscience researchers through (i) consistent
pipelines to process and analyze public omics data
from AMP-AD and other sources; (ii) easy-to-use
web interfaces for query and visualization of these
analytics; (iii) information from multiple heteroge-
nous modalities to present an integrated view of
molecular mechanisms to a neuroscientist; and
(iv) tools and methods open to all bioinformatics
researchers. Alzheimer DataLENS allows the
exploration of single-cell transcriptomics studies,
including cell-level and aggregate queries of public
datasets; bulk transcriptomics studies, including the
query and visualization of public human datasets
spanning multiple brain regions and cohorts; and
GWAS studies, including the query and visualization
of the International Genomics of Alzheimer’s Project
(IGAP) meta-analysis [31] and AMP-AD GWAS
results [32].

Bulk RNA-sequencing query and visualization

Bulk RNA-seq results can be explored via sev-
eral avenues, including regional analysis, interaction
network plots, box plots, and heatmaps. In regional
analyses, the transcriptomic datasets available for the
brain regions of interest can be explored and visual-
ized, and accession codes (e.g., GEO and Synapse
IDs) are made available for downstream query and
retrieval. In network analysis, relationships between
genes of interest are shown as edges in a graph,
which is constructed based on the STRING database
of known and predicted protein-protein interactions.
Nodes in the PPI network are colored according to
the fold-change in the selected dataset, node size
represents statistical significance, and edge thickness
represents the combined score of evidence for interac-
tion between two nodes. Differential gene expression
results across various covariates available for a given
study can be easily queried using a list of gene
symbols. Top differentially expressed genes with
effect size, confidence intervals, significance (both
adjusted and unadjusted p-values), and other details
are shown in a table that can be sorted, filtered, and

https://alzdatalens.partners.org
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Fig. 2. Box plots of GFAP in the ROSMAP dataset. GFAP expression shown across sex, APOE genotype, Braak stage, and CERAD
neuritic plaque score. The box plots on the right illustrate the rise in GFAP expression with increasing AD neuropathology.

downloaded as a comma-separated file. To further
investigate gene expression changes, users can also
create box plots and heatmaps of gene expression
across sex, APOE genotype, Braak neurofibrillary
tangle stage, CERAD neuritic plaque score, and/or
diagnosis (e.g., AD, progressive supranuclear palsy,
pathologic aging, or elderly controls). Example plots
for GFAP, a gene expressed in astrocytes that is upreg-
ulated in AD in the ROSMAP dataset, are shown in
Fig. 2.

Single-nucleus RNA-sequencing query and
visualization

The single-nucleus transcriptomics section in
Alzheimer DataLENS includes both aggregate and
cell-level analyses of two publicly available snRNA-
seq datasets [1, 4].

The aggregate-level analysis page offers
researchers the ability to visualize average gene
expression using both bubble plots and heatmaps
across various available factors, including cell types,
subclusters, and AD disease/pathology. In the bubble
plot, researchers can observe both the average gene
expression (represented by bubble color) and the
proportion of cells expressing a gene in a particular
group (indicated by bubble size). On the other hand,
the heatmap displays only the average gene expres-
sion (represented again by color) for each group.

Figure 3 presents an illustrative example of several
cell type-specific genes plotted using this approach.

Researchers have the flexibility to choose the vari-
ables by which the data is grouped and subset. For
instance, in the Grubman et al. dataset, if users choose
to group by Disease Pathology and subset by Cell
Type (e.g., astrocytes), then astrocytes in AD versus
control are visualized. Moreover, users can person-
alize the color scheme and font size according to
their preferences. To enhance the user experience, the
plots are interactive, allowing researchers to interact
with the visualizations for a more in-depth explo-
ration. Additionally, these plots can be downloaded as
portable network graphic (PNG) files, enabling users
to include them in their presentations, publications,
or further analyses as needed. This comprehensive
and user-friendly approach empowers researchers to
gain valuable insights into gene expression patterns
across different sample parameters and contributes to
a deeper understanding of the underlying biology in
AD.

Cell-level analysis, on the other hand, offers a
powerful approach to visualize and explore cell
proportions and cell-level information using dimen-
sionality reduction plots. The proportion plot displays
cell proportions based on cell types, subclusters, and
disease/pathology. For instance, in the Grubman et
al. dataset, one can plot Disease Pathology on the x-
axis and group by Astrocyte Subclusters to observe
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Fig. 3. Aggregate gene expression of several cell-type marker genes. The bubble plot shows gene expression of several cell types. Color
represents average gene expression, while bubble size indicates the proportion of cells expressing each gene.

the proportion of each astrocyte subcluster in both
AD and control samples. Additionally, by filtering
data based on specific attributes like Sex and select-
ing Female, for example, the plot will exclusively
visualize the proportion of cells from female donors.
On the UMAP tab, the top plot serves to explore cell-
level information across cell types, subclusters, and
disease pathology. Each dot on the UMAP plot repre-
sents an individual cell, and the proximity of two dots
signifies similar transcriptomic profiles. This allows
a deep understanding of the cellular landscape and
its relation to various factors. The UMAP plot at
the bottom depicts gene expression for the selected
gene. This feature enables researchers to investigate
gene expression patterns at the cellular level and
compare them, for example, to the disease pathol-
ogy patterns, providing valuable insights into the
underlying molecular mechanisms. In summary, the
cell-level analysis features facilitate the exploration
of complex cellular compositions, their proportions,
and their gene expression profiles, aiding in the iden-
tification of critical relationships between cell types,
subclusters, disease pathology, and gene expression
patterns in AD.

Genetics

GWAS studies are essential in understanding the
genetic basis of complex diseases like AD. Alzheimer
DataLENS goes beyond bulk transcriptomics and
cell-level analysis and also provides access to valu-
able genetic data through its integration of two GWAS
datasets: the IGAP meta-analysis [31] and the AMP-
AD GWAS results [32].

With Alzheimer DataLENS, researchers have the
ability to query and visualize these GWAS datasets
using either the gene or single nucleotide polymor-
phism (SNP) identifiers. This flexibility allows users
to explore specific genetic variants of interest or
investigate the association of particular genes with
AD. GWAS studies frequently visualize their results
using Manhattan plots; thus, Alzheimer DataLENS
also offers an interactive Manhattan plot that displays
the associations between genetic variants (SNPs)
and the disease (in this case, AD) across the entire
genome. Each SNP is represented as a point on the
plot, with its position on the x-axis corresponding
to its genomic location, and the –log10 (p-value) of
its association with the disease on the y-axis. The
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plot typically shows peaks (indicative of significant
associations) rising above a horizontal line repre-
senting the significance threshold. By offering an
interactive version of the Manhattan plot, Alzheimer
DataLENS allows researchers to delve deeper into
the genetic associations by zooming in on specific
genomic regions of interest, inspecting individual
SNP details, and adjusting significance thresholds to
identify potential genetic markers related to AD.

Case study

One of the most altered functional pathways
in AD and other neurodegenerative proteinopathies
is proteostasis, which encompasses the ubiquitin-
proteasome and autophagy systems [33, 34]. Con-
sider the BCL2-associated athanogene 3 (BAG3),
a cochaperone critical for autophagy that has been
reported to clear tau in primary neurons [35, 36] and
mouse models of tauopathy [37]. Indeed, the box
plots from various bulk RNA-seq datasets obtained by
selecting BAG3 in the “Transcriptomics” tab indicate
that BAG3 expression increases along Braak neu-
rofibrillary tangle stages in multiple brain regions,
supporting the idea that BAG3 may be implicated
in the degradation of misfolded tau aggregates by
neurons via autophagy (Fig. 4A). However, selecting
BAG3 in the snRNA-seq “Sample Level Analysis”
tab and “Box Plot Across Braak Stages” in the
“Plot Type” menu reveals that the BAG3 upregula-
tion paralleling Braak stages is surprisingly driven
mainly by astrocytes, followed by endothelial and
microglial cells (oligodendrocytes are not avail-
able), whereas both excitatory and inhibitory neurons
express BAG3 at very low levels even at advanced
Braak stages (Fig. 4B). The “Cell Level Analysis”
in the “Transcriptomics Single Nucleus” tab permits
the exploration of BAG3 expression at the individ-
ual nucleus level in the Mathys et al. and Grubman
et al. snRNA-seq datasets (Fig. 4C, D). Overlay-
ing the cell type UMAP with the BAG3 expression
level UMAP confirms the astrocyte-predominant
expression of BAG3 in both datasets (besides a
subset of oligodendrocytes in the Grubman et al.
dataset). Moreover, selecting BAG3 and “Astrocyte
Subclusters” in the “Cell Level Analysis” tab of
AD Progression Atlas—a related knowledge resource
recently developed by our group that is linked from
the AlzDataLENS website—reveals that the astR2
cluster of reactive astrocytes is driving BAG3 expres-
sion, as they exhibit higher levels relative to the
homeostatic astrocyte clusters (astH1 and astH2)

(Fig. 4E). Remarkably, a recent study has discovered
a key role of astrocyte BAG3 in tau and �-synuclein
clearance [38].

DISCUSSION

Alzheimer DataLENS is a valuable and compre-
hensive resource that addresses the growing need
for an easily accessible and harmonized platform
for exploring omics datasets in AD research. By
integrating multiple omics data types, including tran-
scriptomics and genetics from diverse studies and
cohorts, DataLENS provides neuroscientists with
a unified portal to query and visualize complex
datasets. Thus, DataLENS provides a one-stop shop
for AD datasets. As we continue to expand our dataset
collection within DataLENS, this unique advantage
over other platforms will be reinforced.

One of the key strengths of Alzheimer DataL-
ENS is its consistent bioinformatics pipeline for
processing and analyzing omics data. By apply-
ing standardized methods to all datasets, DataLENS
ensures that the results are comparable and inter-
pretable across different studies. This harmonization
is crucial in overcoming the challenges posed by the
vast heterogeneity in experimental conditions, dis-
ease stages, and brain regions studied in AD research.
Overall, Alzheimer DataLENS is a user-friendly and
versatile tool that democratizes access to omics data
in AD research. Its streamlined web interfaces and
interactive features enable neuroscientists to explore,
analyze, and visualize data without the need for exten-
sive bioinformatics expertise. By facilitating data
exploration and knowledge discovery, DataLENS
holds the potential to accelerate advancements in AD
research and foster collaborations among researchers
in the field. The case study illustrated in Fig. 5 is a
typical example of how DataLENS can help generate
or confirm hypotheses.

The bulk RNA-seq analysis in DataLENS allows
researchers to explore gene expression patterns
across different brain regions and cohorts. The abil-
ity to visualize results in various ways, such as
regional analyses, interaction network plots, box
plots, and heatmaps, facilitates the identification
of key gene expression changes associated with
increasing AD pathology and clinical characteris-
tics. Further, the display of known and predicted
protein-protein interactions in a network diagram
provides additional insight into the molecular interac-
tions that underlie AD. The inclusion of snRNA-seq
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Fig. 4. (Continued)
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Fig. 4. BAG3 case study. A) Expression of the autophagy gene BAG3 parallels Braak neurofibrillary tangle stages in several brain regions
and bulk RNA-seq datasets, lending support to the hypothesis that it has a key role in tau degradation, as suggested by in vitro studies in
primary mouse neurons. B) However, an snRNA-seq study visualized in the AD Progression Atlas—a related knowledge resource linked
from AlzDataLENS—demonstrates that it is mainly astrocytes that drive BAG3 upregulation along Braak stages, followed by endothelial
cells and microglia. In good agreement, interrogation of BAG3 in Mathys et al. (C) and Grubman et al. (D) snRNA-seq datasets confirms
predominant expression of BAG3 in astrocytes as indicated by cell type UMAPs. E) The astrocyte UMAP visualized in the AD Progression
Atlas shows increased BAG3 expression specifically in the astR2 cluster of reactive astrocytes.

datasets in DataLENS is a significant advancement
in understanding the cellular heterogeneity of AD.
The aggregate and cell-level analysis features enable
researchers to explore gene expression patterns in
different cell types, subclusters, and disease pathol-
ogy states. The interactive bubble plots and UMAP
visualizations offer an intuitive way to navigate
through the complex single-cell data landscape and
identify potential biomarkers and cell-type-specific
alterations associated with AD. Moreover, the inte-
gration of GWAS datasets in DataLENS provides a
valuable resource for investigating the genetic basis
of AD. The interactive Manhattan plots empower
researchers to explore genetic associations and iden-
tify potential risk loci for further investigation.

As with any resource, there are some limita-
tions to consider. While DataLENS includes valuable
datasets, it is essential to recognize that the datasets
are collected from different studies and cohorts,
which may introduce inherent biases and limitations.
The cross-study comparisons should be interpreted
with caution due to potential differences in sam-
ple sizes, demographics, and experimental protocols.
Additionally, DataLENS is currently limited to pub-
lic omics datasets, and researchers should be aware
of the data availability policies and any access restric-
tions imposed by the original studies. Finally, some
pages that analyze or visualize large datasets may be
slow to load.

We have linked Alzheimer DataLens to two
other knowledge resources produced by our
group in recent years: the AD Progression Atlas
(https://ad-progression-atlas.partners.org), a large
snRNA-seq study of five brain regions across
32 brain donors spanning the normal aging-AD
continuum [39, 40], and the Astrocyte Atlas
(https://www.astrocyteatlas.org), a compendium of
markers of AD reactive astrocytes extracted from a
systematic review of the neuropathological literature
[41]. As more omics datasets become available, both
from our own and others’ research, we will provide
continued updates and improvements to DataLENS
(with support from external funding) to extend its
life cycle and further enhance its utility and impact

in the scientific community. In the future, we will
also include other data types such as proteomics and
metabolomics data, as well as develop visualizations
of multi-omics data.

In conclusion, Alzheimer DataLENS represents a
significant contribution to AD research by providing
a unified and easily accessible platform for query-
ing and visualizing omics datasets. The harmonized
analysis pipelines, diverse visualization tools, and
integration of single-cell and genetic data make the
Alzheimer DataLENS portal a valuable resource for
neuroscientists investigating the molecular and cel-
lular mechanisms underlying AD pathogenesis.
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