Genetic Insights into the Risk of Metabolic Syndrome and Its Components on Dementia: A Mendelian Randomization

Qiang He^a, Wenjing Wang^b, Hao Li^c, Yang Xiong^d, Chuanyuan Tao^{a,*}, Lu Ma^a and Chao You^{a,*} ^aDepartment of Neurosurgery, West China Hospital, Sichuan University, Wuhou District, Chengdu, Sichuan, China ^bDepartment of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,

Sichuan University, Wuhou District, Chengdu, China ^cState Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of

Radiation Medicine, Beijing, China

^dDepartment of Urology, West China Hospital, Sichuan University, Chengdu, China

Handling Associate Editor: Liyong Wu

Accepted 4 September 2023 Pre-press 9 October 2023

Abstract.

Background: The role of metabolic syndrome (MetS) on dementia is disputed.

Objective: We conducted a Mendelian randomization to clarify whether the genetically predicted MetS and its components are casually associated with the risk of different dementia types.

Methods: The genetic predictors of MetS and its five components (waist circumference, hypertension, fasting blood glucose, triglycerides, and high-density lipoprotein cholesterol [HDL-C]) come from comprehensive public genome-wide association studies (GWAS). Different dementia types are collected from the GWAS in the European population. Inverse variance weighting is utilized as the main method, complemented by several sensitivity approaches to verify the robustness of the results.

Results: Genetically predicted MetS and its five components are not causally associated with the increasing risk of dementia (all p > 0.05). In addition, no significant association between MetS and its components and Alzheimer's disease, vascular dementia, frontotemporal dementia, dementia with Lewy bodies, and dementia due to Parkinson's disease (all p > 0.05), except the association between HDL-C and dementia with Lewy bodies. HDL-C may play a protective role in dementia with Lewy bodies (OR: 0.81, 95% CI: 0.72–0.92, p = 0.0010).

Conclusions: From the perspective of genetic variants, our study provides novel evidence that MetS and its components are not associated with different dementia types.

Keywords: Alzheimer's disease, causal association, components, dementia, Mendelian randomization, metabolic syndrome, types

INTRODUCTION

*Correspondence to: Chuanyuan Tao and Chao You, Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China. E-mails: 1614778865@qq.com, chaoyouwch6@163.com Dementia is characterized by a chronic and progressive decline affecting cognitive function in aged adults [1]. Generally, the main types of dementia consist of Alzheimer's disease (AD), vascular

ISSN 1387-2877 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

dementia, frontotemporal dementia, dementia with Lewy bodies, and dementia in Parkinson's disease. It is estimated that there have 50 million patients around the world [2]. More seriously, the number of cases is dramatically increasing due to the increasing life expectancy and risk factors [3], which puts a heavy burden on individuals, families, health care, and society. Therefore, strategies for preventing and alleviating dementia are priorities in healthcare.

Metabolic syndrome (MetS) is a cluster of pathological conditions based on the World Health Organization's (WHO) definition, including glucose abnormalities, hyperlipidemia, central obesity, and hypertension [4]. At present, the incidence of MetS is increasing rapidly, and approximately 25% adults have MetS [5]. Some studies have shown that MetS has a positive association with the risk of dementia [6, 7], while no association is observed, even the inverse relationship in other studies [8, 9]. In addition, obvious confounding factors such as the study design and retrospective features are inherent shortcomings in these observational studies, which may interfere with the understanding of these conclusions.

Mendelian randomization (MR), as a genetic approach, is a robust statistical analysis using genetic variants to make a causal inference, which can overcome the limitation of observational studies [10]. During gestation, single nucleotide polymorphism (SNP), a genomic variant at a single base position in the deoxyribonucleic acid (DNA), is assorted randomly in forming a zygote [11]. However, no study has been conducted to investigate the causal association of MetS and its five components on dementia. Therefore, we performed this MR analysis to illustrate their causal links.

METHODS

Study design

The overview of our MR study is shown in Fig. 1. In our study, we explored the causal relationship between MetS, waist circumference (WC), hypertension, fasting blood glucose (FBG), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and different dementia types, including AD, vascular dementia, frontotemporal dementia, dementia with Lewy bodies, and dementia due to Parkinson's disease. No ethical approval is required due to the analysis of the public summary-level datasets.

Date sources of exposures and outcomes

All exposure datasets are originated from public databases. MetS (N=291,107 samples), WC (N=462,166 samples), hypertension (N=463,010 samples), TG (441,016 samples), and HDL-C (403,943 samples) are obtained from the UK biobank [12, 13]. Genetic predictors for FBG (281,416 participants) are available from the Meta-Analyses Glucose and Insulin-related traits Consortium (MAGIC) [14]. The detailed sources of these datasets utilized in our MR study are described in Table 1.

All outcome datasets are derived from European ancestry. The summary-level dataset for AD are taken from the MR study including 954 cases and 487,331 controls [15]. The dataset for vascular dementia is extracted from the FinnGen consortium, consisting of 212,389 samples (881 cases and 211,508 controls). As to frontotemporal dementia, its dataset includes 515 cases and 2,509 controls [16]. Summary statistics for dementia with Lewy bodies are collected from an independent GWAS multicenter study with 2,591 cases and 4,027 controls [17]. Dementia due to Parkinson's disease consists of 212,389 samples (267 cases and 216,628 controls) from the FinnGen consortium. The detailed resources of our datasets are visualized in Table 1.

Genetic instrument selection

Genetic instruments are usually collected as those having statistically robust associations with the risk factor in a MR analysis [18]. The genetic instrument selection undertaken the following procedures. All the genetic instrumental variables (IVs) associated with MetS and its five components must meet a significance level at a genome-wide statistical threshold of $p < 5 \times 10^{-8}$. Then, the independent SNPs are identified using the linkage disequilibrium (LD) with the threshold of LD $r^2 < 0.05$ at a window size of 10,000 Kb [19, 20]. In addition, Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) analysis is used to detect the potential outlier SNPs accounting for possible pleiotropy [21]. The SNPs will be removed when the outlier SNPs are detected. The qualified SNPs of MetS and its five components are displayed in Table 1.

Main statistical analyses

The inverse variance weighting (IVW) approach is deemed as the main method in our MR study because

Fig. 1. The flow chart of our MR analysis. MetS, metabolic syndrome; MR, Mendelian randomization; SNP, single nucleotide polymorphism; HDL-C, high-density lipoprotein cholesterol.

it can obtain a robust result by integrating the Wald ratio of each SNP into an overall weighted effect [22]. The Bonferroni-corrected p < 0.0013 (0.05/36) is regarded as the statistical significance. All analyses are performed using R packages including "TwoSampleMR", "mr.raps", and "cause", in R software (version: 4.1.2, The R Foundation, Vienna, Austria).

Sensitivity analyses

We also chosen five methods to perform sensitivity analyses, including MR robust adjusted profile score (MR.RAPS), MR-PRESSO, weighted median, MR-Egger, and Maximum likelihood. When there were weak IVs that led to horizontal pleiotropy, the results of MR.RAPS could remain stable [23]. Significant outliers could be detected using MR-PRESSO and then removed for pleiotropy [21]. The weighted median approach could obtain consistent results even though 50% of SNPs were invalid [24]. The results of the comparison between the egger intercept term and zero were introduced in MR-Egger analysis, which represented the directional pleiotropy [25]. In the maximum likelihood analysis, a relatively low standard error existed, and it might be deviated by a small sample [26]. Furthermore, the egger intercept term in MR-Egger analysis and the p value in MR-PRESSO analysis were introduced into the regression model to test the directional pleiotropy. Cochran's Q test was performed to identify possible heterogeneity. In addition, leave-one-out analysis was utilized to explain the robustness of the results when removing SNPs in turn.

RESULTS

THE CASUAL EFFECTS OF GENETICALLY PREDICTED METS AND ITS COMPONENTS ON DEMENTIA

The results of this MR study are presented in Table 2. The demographic characteristics for dementia are displayed in Tables 3–5.

As to any dementia, it can be found that MetS, WC, hypertension, FBG, TG, and HDL-C are not causally associated with the risk of any dementia (all p > 0.0016, Table 2, Fig. 2). The results of Cochran's Q analysis show a visible heterogeneity between TG and any dementia (Table 2), while a symmetry of MR results in the funnel plot (Fig. 3) is observed. In the MR-Egger and MR-PRESSO analyses, no pleiotropy is identified (MR-Egger: all p > 0.05; MR-PRESSO: all p > 0.05, Table 2). Additionally, no influential SNPs are detected in the leave-one-out analysis when excluding any one of the SNP in turn (Fig. 4). Figure 5 presents the results of the causal estimate of every SNP on any dementia.

For AD, the results of IVW method show that no causal relationship of MetS and its subtypes is identified (all p > 0.0016, Table 2, Fig. 2). No evidence of heterogeneity is detected in Cochran's Q analysis (all

Exposure	Outcome	No. SNP	R^2	F-statistic
Mets	Any Dementia	122	3.04%	66.77
WC	Any Dementia	561	7.21%	53.67
Hypertension	Any Dementia	66	0.85%	46.78
FBG	Any Dementia	108	4.37%	101.31
TG	Any Dementia	749	17.90%	110.95
HDL-C	Any Dementia	900	29.50%	161.96
Mets	Alzheimer's disease	119	3.07%	68.89
WC	Alzheimer's disease	565	7.23%	53.89
Hypertension	Alzheimer's disease	66	0.84%	46.24
FBG	Alzheimer's disease	107	4.33%	102.01
TG	Alzheimer's disease	789	19.77%	118.26
HDL-C	Alzheimer's disease	951	30.53%	159.49
Mets	Vascular dementia	124	3.13%	67.69
WC	Vascular dementia	564	7.26%	53.76
Hypertension	Vascular dementia	66	0.85%	46.78
FBG	Vascular dementia	108	4.37%	101.31
TG	Vascular dementia	757	18.43%	113.44
HDL-C	Vascular dementia	906	29.70%	162.42
Mets	Frontotemporal dementia	46	1.27%	75.39
WC	Frontotemporal dementia	227	3.14%	57.51
Hypertension	Frontotemporal dementia	23	0.27%	50.25
FBG	Frontotemporal dementia	32	1.06%	79.91
TG	Frontotemporal dementia	199	5.25%	109.23
HDL-C	Frontotemporal dementia	237	8.63%	146.18
Mets	Dementia with Lewy bodies	114	2.96%	69.56
WC	Dementia with Lewy bodies	516	6.66%	53.54
Hypertension	Dementia with Lewy bodies	63	0.82%	47.14
FBG	Dementia with Lewy bodies	101	4.20%	102.97
TG	Dementia with Lewy bodies	698	18.16%	121.05
HDL-C	Dementia with Lewy bodies	831	27.99%	161.51
Mets	Dementia due to Parkinson's disease	125	3.19%	68.12
WC	Dementia due to Parkinson's disease	565	7.28%	53.88
Hypertension	Dementia due to Parkinson's disease	66	0.85%	46.78
FBG	Dementia due to Parkinson's disease	108	4.37%	101.31
TG	Dementia due to Parkinson's disease	758	18.74%	115.63
HDL-C	Dementia due to Parkinson's disease	907	29.90%	163.85

Table 1 The R^2 and F-statistics for the genetic instruments in the MR analyses

MetS, metabolic syndrome; WC, waist circumference; FBG, fasting blood glucose; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol.

p > 0.05, Table 2) and the funnel plot (Fig. 3). Furthermore, no signs of pleiotropy is found in MR-Egger and MR-PRESSO analyses (Table 2). The leave-one-out analyses indicate the robustness of our MR results (Fig. 4). The causal estimate of each IV on AD is shown in Fig. 5.

In MR analysis for vascular dementia, we do not observe significant causal association between MetS, its subtypes, and vascular dementia (all p > 0.0016, Table 2, Fig. 2). In sensitivity analysis, Cochran's Qtest does not find any heterogeneity (Fig. 3, Table 2). In addition, there is no evidence of pleiotropyin MR-Egger and MR-PRESSO analyses (Table 2). The causal estimates are not driven by single SNP in the leave-one-out analysis (Fig. 4, Table 2). The frost plot manifesting the casual estimate of every SNP on vascular dementia is shown in Fig. 5. As to frontotemporal dementia, there is no causal association between MetS, WC, hypertension, FBG, TG, HDL-C, and frontotemporal dementia (all p > 0.0016, Table 2, Fig. 2). Although the results in Cochran's Q test demonstrate a visible heterogeneity between MetS and frontotemporal dementia (Table 2), the funnel plot reveals a symmetry of MR results (Fig. 3). We do not find pleiotropy in MR-Egger and MR-PRESSO analyses (Table 2), and the results of leave-one-out analysis remain robust (Fig. 4, Table 2). The causal estimate of each IV on frontotemporal dementia is displayed in frost plot (Fig. 5).

HDL-C decreases the risk of dementia with Lewy bodies (odd ratios (OR) = 0.81, 95% confidential index (CI) = 0.72-0.92, p = 0.0010), while no causal relationship is observed between MetS, WC, hyper-

Exposure	Outcome	Methods	OR (95%)	р	Egger_intercept	p-Egger intercept	Cochran's	Cochran's p
MetS	Any Dementia	IVW	0.98 (0.92,1.06)	0.7564			128.71	0.2985
	•	MR-Egger	0.90 (0.77,1.07)	0.2574	0.0062	0.2678	127.40	0.3046
		Weighted median	0.95 (0.85,1.05)	0.3646				
		Maximum likelihood	0.98 (0.92,1.06)	0.7537				
		RAPS	0.97 (0.90,1.05)	0.5708				
WC	Any Dementia	IVW	1.07 (0.93,1.22)	0.3128			562.58	0.4613
		MR-Egger	1.48 (0.99,2.22)	0.0544	-0.0051	0.0923	559.73	0.4832
		Weighted median	1.11 (0.87,1.41)	0.3627				
		Maximum likelihood	1.07 (0.93,1.22)	0.3086				
		RAPS	1.04 (0.91,1.21)	0.5050				
Hypertension	Any Dementia	IVW	0.97 (0.31,3.02)	0.9590			69.91	0.3159
		MR-Egger	1.28 (0.02,5.46)	0.9048	-0.0015	0.8890	69.89	0.2862
		Weighted median	1.48 (0.28,7.79)	0.6416				
		Maximum likelihood	0.97 (0.32,2.93)	0.9574				
		RAPS	1.00 (0.31,3.16)	0.9975				
FBG	Any Dementia	IVW	1.26 (1.01,1.57)	0.0394			111.27	0.3444
		MR-Egger	1.08 (0.72,1.60)	0.7039	0.0045	0.3525	111.36	0.3417
		Weighted median	1.29 (0.91,1.84)	0.1474				
		Maximum likelihood	1.27 (1.02,1.58)	0.0321				
		RAPS	1.23 (0.97,1.57)	0.0780				
TG	Any Dementia	IVW	0.94 (0.86,1.02)	0.1481			829.31	0.0202
		MR-Egger	0.87 (0.76,0.99)	0.0470	0.0024	0.1628	827.15	0.0216
		Weighted median	0.93 (0.80,1.07)	0.3398				
		Maximum likelihood	0.94 (0.87,1.01)	0.1300				
		RAPS	0.94 (0.86,1.02)	0.1799				
HDL-C	Any Dementia	IVW	1.04 (0.97,1.12)	0.1751			931.91	0.2169
		MR-Egger	1.03 (0.93,1.15)	0.4753	0.0002	0.8435	931.87	0.2103
		Weighted median	0.96 (0.85,1.09)	0.6065				
		Maximum likelihood	1.04 (0.98,1.11)	0.1693				
		RAPS	1.03 (0.96,1.10)	0.3650				

 Table 2

 The causal effect of MetS and its components on different types of dementia

(Continued)

			(Coni	inuea)				
Exposure	Outcome	Methods	OR (95%)	р	Egger_intercept	p-Egger intercept	Cochran's	Cochran's p
MetS	Alzheimer's disease	IVW	1.00 (0.99,1.00)	0.9354			107.68	0.7415
		MR-Egger	0.99 (0.99,1.00)	0.8255	6.82e-06	0.7737	107.60	0.7215
		Weighted median	1.00 (0.99,1.00)	0.7967				
	Maximum likelihood	1.00 (0.99,1.00)	0.9354					
		RAPS	1.00 (0.99,1.00)	0.9205				
WC	Alzheimer's disease	IVW	1.00 (0.99,1.00)	0.0628			563.75	0.4949
		MR-Egger	1.00 (1.00,1.00)	0.0143	-2.61e-05	0.0534	560.01	0.5276
		Weighted median	1.00 (1.00,1.00)	0.0227				
		Maximum likelihood	1.00 (0.99,1.00)	0.0628				
		RAPS	1.00 (0.99,1.00)	0.0875				
Hypertension	Alzheimer's disease	IVW	1.00 (0.99,1.01)	0.1914			57.11	0.7461
		MR-Egger	1.01 (0.99,1.02)	0.2078	-4.51e-05	0.3491	56.22	0.7445
		Weighted median	1.00 (0.99,1.01)	0.4181				
		Maximum likelihood	1.00 (0.99,1.01)	0.1914				
		RAPS	1.00 (0.99,1.01)	0.2233				
FBG Alzheimer's	Alzheimer's disease	IVW	1.00 (0.99,1.00)	0.5977			104.17	0.5318
		MR-Egger	1.00 (0.99,1.00)	0.4385	-1.24e-05	0.5615	103.84	0.5136
		Weighted median	1.00 (0.99,1.00)	0.4037				
		Maximum likelihood	1.00 (0.99,1.00)	0.5989				
		RAPS	1.00 (0.99,1.00)	0.6898				
TG	Alzheimer's disease	IVW	0.99 (0.99,1.00)	0.7071			824.29	0.1795
		MR-Egger	1.00 (0.99,1.00)	0.6987	-5.82e-06	0.4371	823.65	0.1770
		Weighted median	1.00 (0.99.1.00)	0.9353				
		Maximum likelihood	0.99 (0.99,1.00)	0.7023				
		RAPS	0.99 (0.99,1.00)	0.8574				
HDL-C	Alzheimer's disease	IVW	1.00 (0.99,1.00)	0.9896			974.46	0.2837
	albease	MR-Egger	1.00 (0.99,1.00)	0.9293	-6.79e-07	0.9170	974.45	0.2761
		Weighted median	1.00 (0.99,1.00)	0.9875	01770 07	00170	<i>,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	012701
		Maximum likelihood	1.00 (0.99,1.00)	0.9895				
		RAPS	0.99 (0.99,1.00)	0.9850				
MetS	Vascular dementia	IVW	1.05 (0.89,1.24)	0.5115			121.13	0.5305
	domonta	MR-Egger	1.04 (0.73,1.50)	0.7929	0.0004	0.9726	121.13	0.5050
		Weighted median	1.18 (0.91.1.53)	0.1970				
		Maximum likelihood	1.05 (0.89,1.24)	0.5076				
		RAPS	1.06 (0.89,1.25)	0.4906				

WC	Vascular dementia	IVW	1.30 (0.94,1.79)	0.1028			539.81	0.7520
		MR-Egger	1.32 (0.50,3.43)	0.5652	-0.0002	0.9757	539.81	0.7424
		Weighted median	1.26 (0.70,2.24)	0.4304				
		Maximum likelihood	1.31 (0.95,1.81)	0.0955				
		RAPS	1.27 (0.91,1.78)	0.1516				
Hypertension	Vascular dementia	IVW	4.17 (0.23,75.75)	0.3336			80.22	0.0966
• •		MR-Egger	1.56 (4.71e-05,51732.67)	0.9332	0.0055	0.8476	80.18	0.0833
		Weighted median	12.82 (0.26,628.59)	0.1987				
		Maximum likelihood	4.37 (0.31,61.56)	0.2740				
		RAPS	6.69 (0.32,136.52)	0.2165				
FBG	Vascular dementia	IVW	1.09 (0.63,1.87)	0.7435			114.96	0.2819
		MR-Egger	0.67 (0.26,1.76)	0.4275	0.0137	0.2389	113.46	0.2922
		Weighted median	1.16 (0.51,2.63)	0.7138				
		Maximum likelihood	1.09 (0.64,1.84)	0.7362				
		RAPS	1.06 (0.60,1.87)	0.8399				
TG	Vascular dementia	IVW	0.97 (0.81,1.17)	0.8242			737.33	0.6796
		MR-Egger	0.92 (0.68,1.24)	0.6011	0.0019	0.6250	737.10	0.6726
		Weighted median	1.14 (0.82,1.59)	0.4237				
		Maximum likelihood	0.97 (0.81,1.17)	0.8251				
		RAPS	1.01 (0.83,1.22)	0.9121				
HDL-C	Vascular dementia	IVW	0.93 (0.79,1.09)	0.3940			838.12	0.9448
		MR-Egger	0.93 (0.72,1.19)	0.5739	8.37e-05	0.9807	838.12	0.9421
		Weighted median	0.81 (0.61,1.07)	0.1495				
		Maximum likelihood	0.93 (0.79,1.09)	0.3960				
		RAPS	0.93 (0.79,1.10)	0.4526				
MetS	Frontotemporal	IVW	1.26 (0.81,1.95)	0.2926			67.29	0.0172
	dementia							
		MR-Egger	2.76 (0.85,8.94)	0.0965	-0.0535	0.1667	64.39	0.0240
		Weighted median	1.55 (0.89,2.71)	0.1155				
		Maximum likelihood	1.26 (0.88,1.81)	0.1929				
		RAPS	1.31 (0.82,2.06)	0.2470				
WC	Frontotemporal dementia	IVW	0.88 (0.45,1.73)	0.7227			235.42	0.3196
		MR-Egger	0.70 (0.10,4.65)	0.7140	0.0031	0.8267	235.37	0.3038
		Weighted median	1.00 (0.31,3.20)	0.9941				
		Maximum likelihood	0.88 (0.45,1.71)	0.7160				
		RAPS	0.84 (0.42,1.69)	0.6413				
Hypertension	Frontotemporal	IVW	9.15 (0.01,7.77e+03)	0.5200			28.00	0.1756
• •	dementia							
		MR-Egger	1.95e+08 (0.001,2.35e+19)	0.1573	-0.0925	0.1937	25.78	0.2146
		Weighted median	9.66e+02 (0.13,6.86e+06)	0.1287				
		Maximum likelihood	1.01e+01 (0.02,4.33e+03)	0.4533				
		RAPS	3.37e+01 (0.02,4.03e+04)	0.3305				

(Continued)

	(Continued)								
Exposure	Outcome	Methods	OR (95%)	р	Egger_intercept	p-Egger intercept	Cochran's	Cochran's p	
FBG	Frontotemporal dementia	IVW	0.49 (0.08,2.98)	0.4446			39.37	0.1437	
		MR-Egger	0.20 (0.01,32.55)	0.5440	0.0174	0.7153	39.19	0.1213	
		Weighted median	1.49 (0.13,16.66)	0.7417					
		Maximum likelihood	0.50 (0.10,2.50)	0.4034					
		RAPS	0.58 (0.09,3.43)	0.5492					
TG	Frontotemporal dementia	IVW	1.40 (0.86,2.28)	0.1675			220.16	0.1338	
		MR-Egger	2.45 (1.08,5.52)	0.0317	-0.0164	0.0975	217.11	0.1552	
		Weighted median	1.61 (0.76,3.42)	0,2079					
		Maximum likelihood	1.40 (0.88,2.23)	0.1450					
		RAPS	1.47 (0.91,2.37)	0.1135					
HDL-C	Frontotemporal dementia	IVW	0.91 (0.61,1.35)	0.6463			244.24	0.3424	
		MR-Egger	0.75 (0.40,1.42)	0.3888	0.0060	0.4596	243.67	0.3350	
		Weighted median	0.65 (0.33,1.29)	0.2209					
		Maximum likelihood	0.90 (0.61,1.34)	0.6380					
		RAPS	0.87 (0.58,1.31)	0.5139					
MetS	Dementia with Lewy bodies	IVW	1.15 (1.01,1.30)	0.0252			114.09	0.4533	
	•	MR-Egger	1.19 (0.90,1.59)	0.2149	0.0098	0.7750	114.01	0.4292	
		Weighted median	1.21 (1.01,1.46)	0.0422					
		Maximum likelihood	1.15 (1.01,1.31)	0.0242					
		RAPS	1.14 (0.99,1.31)	0.0530					
WC	Dementia with Lewy bodies	IVW	0.94 (0.73,1.21)	0.6346			522.79	0.3965	
	•	MR-Egger	0.85 (0.40,1.80)	0.6814	0.0014	0.7902	522.72	0.3854	
		Weighted median	0.98 (0.64,1.51)	0.9278					
		Maximum likelihood	0.94 (0.73,1.21)	0.6445					
		RAPS	0.96 (0.73,1.25)	0.7733					
Hypertension	Dementia with Lewy bodies	IVW	1.02 (9.75e-02,10.83)	0.9817			86.68	0.0209	
	5	MR-Egger	0.04 (7.97e-06,273.56)	0.4914	0.0170	0.4706	85.94	0.0193	
		Weighted median	1.74 (8.96e-02,34.00)	0.7129					
		Maximum likelihood	1.02 (1.36e-01,7.76)	0.9781					
		RAPS	1.02 (8.49e-02,12.36)	0.9845					
FBG	Dementia with Lewy bodies	IVW	1.50 (1.01,2.24)	0.0423			94.59	0.6339	
	•	MR-Egger	1.13 (0.56,2.30)	0.7173	0.0080	0.3467	93.69	0.6316	
		Weighted median	1.19 (0.63,2.26)	0.5789					
		Maximum likelihood	1.51 (1.01,2.25)	0.0420					
		RAPS	1.49 (0.98,2.25)	0.0561					

Table 2

TG	Dementia with Lewy bodies	IVW	1.07 (0.93,1.23)	0.3290			748.16	0.0875
		MR-Egger	1.04 (0.83,1.31)	0.7078	0.0009	0.7670	748.06	0.0838
		Weighted median	0.99 (0.78,1.25)	0.9756				
		Maximum likelihood	1.07 (0.93,1.23)	0.3144				
		RAPS	1.05 (0.91,1.22)	0.4502				
HDL-C	Dementia with	IVW	0.81 (0.72,0.92)	0.0010			836.34	0.4318
	Lewy bodies							
		MR-Egger	0.71 (0.59,0.87)	0.0007	0.0045	0.0918	833.48	0.4497
		Weighted median	0.78 (0.63,0.97)	0.0257				
		Maximum likelihood	0.81 (0.72,0.92)	0.0010				
		RAPS	0.82 (0.72,0.93)	0.0026				
MetS	Dementia due to	IVW	0.84 (0.63,1.12)	0.2546			125.51	0.4451
	Parkinson's							
	disease							
		MR-Egger	0.60 (0.31,1.14)	0.1270	0.0254	0.2527	124.17	0.4532
		Weighted median	0.74 (0.48,1.12)	0.1600				
		Maximum likelihood	0.84 (0.63,1.12)	0.2517				
		RAPS	0.84 (0.62,1.13)	0.2661				
WC	Dementia due to	IVW	0.65 (0.36,1.17)	0.1542			592.46	0.1966
	disease							
	disease	MR-Egger	0.72(0.12404)	0.7112	-0.0015	0.9092	592.45	0 1886
		Weighted median	0.91 (0.36.2.29)	0.8494	0.0015	0.9092	572.45	0.1000
		Maximum likelihood	0.66(0.37,1.17)	0.1628				
		RAPS	0.68(0.37,1.17)	0.2105				
Hypertension	Dementia due to	IVW	0.05(4.11e-04.6.36)	0.2270			70 94	0.2861
rijpertension	Parkinson's	1	0.05 (1.110 0 1,0.50)	0.2270			70.91	0.2001
	disease							
		MR-Egger	0.01 (2.04e - 10.2.09e + 05)	0.5704	0.0115	0.8087	70.88	0.2590
		Weighted median	0.02 (2.44e-05,28.70)	0.3137				
		Maximum likelihood	0.04 (4.51e-04,5.13e)	0.2029				
		RAPS	0.01 (1.09e-04,1.77e)	0.0841				

(Continued)

Exposure	Outcome	Methods	OR (95%)	p	Egger_intercept	<i>p</i> -Egger intercept	Cochran's	Cochran's p
FBG	Dementia due to Parkinson's	IVW	1.79 (0.71,4.48)	0.2100			96.64	0.7536
	disease							
		MR-Egger	1.14 (0.22,5.84)	0.8744	0.0130	0.5124	96.21	0.7414
		Weighted median	1.89 (0.43,8.33)	0.3962				
		Maximum likelihood	1.79 (0.71,4.50)	0.2113				
		RAPS	1.81 (0.70,4.68)	0.2165				
TG	Dementia due to Parkinson's	IVW	1.01 (0.73,1.39)	0.9441				
	uisease	MR_Egger	0.00 (0.50.1.68)	0.000	0.0004	0.9442		
		Weighted median	1.25 (0.71,2.23)	0.4296	0.0004	0.9442		
		Maximum likelihood	1.01 (0.73,1.39)	0.9444				
		RAPS	1.01 (0.72,1.41)	0.9389				
HDL-C	Dementia due to Parkinson's disease	IVW	1.07 (0.80,1.42)	0.6446			982.43	0.0389
		MR-Egger	1.67 (1.07,2.63)	0.0239	-0.0162	0.0107	975.39	0.0516
		Weighted median	1.45 (0.86,2.45)	0.1621				
		Maximum likelihood	1.07 (0.81,1.41)	0.6326				
		RAPS	1.09 (0.81,1.47)	0.5292				

Table 2

MetS, metabolic syndrome; WC, waist circumference; FBG, fasting blood glucose; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; IVW, inverse-variance weighted; RAPS, robust adjusted profile score; OR, odds ratio.

The demographic characteristics for any dementia, vascular dementia, dementia due to Parkinson's disease								
Exposure	Female	Male	Mean age at first event (year-old)	Absolute risk (15 years)				
Any dementia	4,281	5,441	77.53	0.02				
Vascular dementia	567	1,035	78.53	0.01				
Dementia due to	128	262	75.53	-				
Parkinson's disease								

Table 3 The demographic characteristics for any dementia, vascular dementia, dementia due to Parkinson's disea

Table 4 The demographic characteristics for frontotemporal dementia								
Exposure Female Male Mean age of Mean age of Motor neuron Family history onset (year-old) death (year-old) disease (present)								
Frontotemporal dementia	227	286	59.8	67.6	104	169		
Table 5 The demographic characteristics for dementia with Lewy bodies								

The demographic characteristics for demendia with Lewy bodies							
Exposure	Female	Male	Clinically ascertained	Pathologically diagnosed	Mean age (year-old)		
Dementia with Lewy bodies	948	1,643	802	1,789	75		

tension, FBG, TG, and dementia with Lewy bodies (all p > 0.0016, Table 2, Fig. 2). The funnel plot is symmetrical despite a visible heterogeneity in Cochran's Q analysis (Table 2, Fig. 3). MR-Egger method and MR-PRESSO do not find potential pleiotropy (Table 2). The results of the leave-one-out analysis are stable (Fig. 4). The causal estimate of each SNP on dementia with Lewy bodies is depicted in Fig. 5.

As shown in Table 2 and Fig. 2, MetS and its five components are not causally related to dementia due to Parkinson's disease (all p > 0.05). In sensitivity analyses, although there has pleiotropy (MR-Egger: p-Egger intercept <0.05, Table 2), the relationship still does not exist after performing CAUSE analysis (p = 0.94). There is no evidence of heterogeneity according to the findings of Cochran's Q test and the funnel plot (Fig. 3, Table 2). Additionally, the robustness of the MR estimates is verified by the leave-one-out analysis (Fig. 4). Figure 5 demonstrates the casual estimate of each SNP on dementia due to Parkinson's disease.

DISCUSSION

In our MR analysis, we find that no significant causal association exists between MetS, its five components, and different dementia types, including any dementia, AD, vascular dementia, frontotemporal dementia, dementia with Lewy bodies, and dementia due to Parkinson's disease, except for the relationship between HDL-C and dementia with Lewy bodies. HDL-C may play a protective role in dementia with Lewy bodies.

The previous results of the association between MetS, its components, and dementia is summarized in Table 6. The role of MetS on any dementia is not yet concluded. Some studies support the association between MetS and any dementia. For example, a cohort study including 1,519 participants conducted in Singapore finds that the MetS is associated with an increased risk of dementia [6]. The findings in the Whitehall II study also reveal that persistent MetS decline cognitive performance in late midlife [7]. In contrast, other studies do not support the association. In a cross-sectional and prospective study consisting of 2,476 men and women aged 65 years, researchers find that MetS is not associated with the increasing risk of dementia after 4.4 years of follow-up [8]. A recent meta-analysis including 18,313 participants ranging from January 1, 2000 to August 31, 2018 shows that no statistical significance pooled association emerges between MetS and dementia [27]. Some studies even support the protective role of MetS on dementia [9]. In our MR study, we do not identify the causal association between MetS and any dementia.

For the relationship between five components of MetS and any dementia, the association remains inconsistent. As to waist circumference, Abbatecola and his colleagues think that WC can predict the risk of cognitive decline during the 12-year follow-up in older patients with diabetes [28]. However, a study including 2,565 men and women does not find the association [29]. In our MR study, we do not support

Fig. 2. The scatter plots of the association between genetically predicted MetS and its components on dementia in the MR analysis. MetS, metabolic syndrome; WC, waist circumference; FBG, fasting blood glucose; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; AD, Alzheimer's disease; VD, vascular dementia; FD, frontotemporal dementia; DLB, dementia with Lewy bodies; D-PD, dementia due to Parkinson's disease.

the causal association. The effect of hypertension on dementia remains unclear. Considering the numerous factors affecting hypertension, such as age and hypertension chronicity, the role of hypertension in dementia is complex [30]. For example, large epidemiological studies have demonstrated a consistent association between high midlife blood pressure and cognitive decline, while a similar association between late-life blood pressure and cognition decline is not consistent [31]. From the perspective of neuroimage, a recent study finds that hypertension may alter brain structure and function, which may result in disruption in cognitive function [32]. However, the causal association between hypertension and dementia does not exist in this study. FBG represents the abnormality of glucose level and is recognized as a well-known risk factor for dementia [33, 34], while we do not identify the causal association. In the association of TG, HDL-C, and dementia, the results also remain inclusive [35–37]. Our MR analysis does not find a causal relationship.

Inconsistent conclusions are also obtained about the association between MetS, its components, and AD [27, 38]. A meta-analysis, including a total of 18,313 participants aged older than 40 years with mean MetS prevalence of 22.7% and followed on average for 9.41 years, found that no significant pooled association existed between MetS and AD [27]. However, contradictory results also been reported [39], and the inverse association also have

Fig. 3. The funnel plots of the association between genetically predicted MetS and its components on dementia in the MR analysis. AD, Alzheimer's disease; VD, vascular dementia; FD, frontotemporal dementia; DLB, dementia with Lewy bodies; HDL-C, high-density lipoprotein cholesterol; MR, Mendelian randomization; D-PD, dementia due to Parkinson's disease.

been observed [40]. As for MetS components, the effects on AD remain inconsistent. For example, a meta-analysis including 16 cohort studies and 41,781 participants and 4,511 dementia cases, no beneficial impacts of obesity in older age on incident dementia is found [41]. However, a study including a total of 10,308 adults found the detrimental effects on AD incidence [42]. In our MR study, no causal association between MetS, its components and the risk of AD were identified.

The studies related to the role of MetS on vascular dementia support the detrimental effect of MetS and may increase the risk of vascular dementia [43, 44], although these studies are scarce. In the Italian Longitudinal Study on Ageing including a total of 2,097 participants (MetS subjects [n=918], subjects without MetS [n=1,179]), studies found that MetS elevated the risk of vascular dementia [44]. So far, potential associations between frontotemporal dementia, and head trauma [45], diabetes [46], and autoimmune conditions may exist [47]. However, the study about the causal association between MetS and frontotemporal dementia is limited [48]. The study related to the association between MetS and dementia with Lewy bodies [49] and dementia due to Parkinson's disease is also scarce, and no association between MetS, its components and dementia due to Parkinson's disease was identified [50]. In our MR study, we find no significant casual association between MetS, its components and vascular dementia, frontotemporal dementia, and dementia due to Parkinson's disease. As for dementia with Lewy bod-

Fig. 4. The leave-one-out analysis of the association between genetically MetS and its components on dementia in the MR analysis. AD, Alzheimer's disease; VD, vascular dementia; FD, frontotemporal dementia; DLB, dementia with Lewy bodies; HDL-C, high-density lipoprotein cholesterol; MR, Mendelian randomization; D-PD, dementia due to Parkinson's disease.

ies, Dou and colleagues thought that reduced levels of HDL-C were associated with the development of dementia with Lewy bodies in a case-control study including 65 patients with Lewy body dementia and 110 older adult controls [51]. Several studies also supported the relationship [52, 53].

Many observational studies may be influenced by many confounding factors such as limited sample

Fig. 5. The frost plots of the association between genetically MetS and its components on dementia in the MR analysis. AD, Alzheimer's disease; VD, vascular dementia; FD, frontotemporal dementia; DLB, dementia with Lewy bodies; HDL-C, high-density lipoprotein cholesterol; MR, mendelian randomization; D-PD, dementia due to Parkinson's disease.

size or (and) retrospective study. The strength of our MR study overcomes the possible confounders and

Metabolic syndrome

Waist circumference

Hypertension

Fasting blood glucose

Triglycerides

clarifies the causal association between MetS and different dementia types. Additionally, it is the first study

Q. He et al. / Genetic Insights into the Risk of Metabolic Syndrome

Author	Study	Relationship	Opinion
Ng TP [6]	Singapore	MetS and any	Harm
	Longitudinal	dementia	
	Ageing Study		
	Cohort		
Akbaraly TN [7]	Whitehall II study	MetS and any	Harm
		dementia	
Muller M [8]	Multiethnic	MetS and any	None
	elderly cohort	dementia	
Atti AR [27]	Meta-Analysis of	MetS and any	None
	Longitudinal	dementia	
	Studies		
Watts AS [9]	_	MetS and any	Protective
		dementia	
Abbatecola AM [28]	_	WC and any	Harm
		dementia	
Ong HL [29]	Cross-sectional	WC and any	None
	epidemiological	dementia	
	study		
Walker KA [31]	_	Hypertension and	Harm
		any dementia	
Sierra C [30]	_	Hypertension and	Unknown
		any dementia	
Jennings JR [32]	_	Hypertension and	Harm
		any dementia	
Barbiellini Amidei C [33] and Mortimer JA [34]	_	FBG and any	Harm
		dementia	
Reitz C, Li J, Han KT [35–37]	_	TG, HDL-C and	Inclusive
		any dementia	
Atti AR [27]	Meta-analysis	MetS and AD	None
Lee JE [39]	_	MetS and AD	Harm
Forti P [40]	Prospective	MetS and AD	Protective
	population-based		
	cohort		
Danat IM [41]	Meta-analysis	WC and AD	None
Singh-Manoux A [42]	Whitehall II Study	WC and AD	Harm
Raffaitin C and Solfrizzi V [43, 44]	_	MetS and vascular	Harm
		dementia	
Golimstok A [46]	Case-control study	FBG and	Harm
		frontotemporal	
		dementia	
Schelp AO [50]	Cross-sectional	MetS, its	None
x	study	components and	
	2	dementia due to	
		Parkinson's	
		disease	
Dou Y, Yasuno F, Svensson T [51–53]	_	HDL-C and	Protective
		dementia with	
		Lewy bodies	

 Table 6

 The opinion about the relationship between MetS, its components and dementia in references

AD, Alzheimer's disease; MetS, metabolic syndrome; WC, waist circumference; FBG, fasting blood glucose; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol.

to illustrate their association. However, this study has several limitations. Firstly, the cases of different dementia are relatively small. Second, there is an ethnic bias because the datasets are all of European ancestry, which may limit the generalization of the conclusion. Third, we do not make stratification based on some factors such as age and gender due to the unavailability of stratification datasets. Future studies are required to verify these association in other ancestries, larger studies, and proper stratification people.

Conclusion

In our MR study, MetS and its components do not increase the risk of different dementia types., while

HDL-C may play a protective role in dementia with Lewy bodies.

ACKNOWLEDGMENTS

We give great appreciation to the participants and working staff for their excellent job to the study.

FUNDING

This study was supported by the 1.3.5 project for disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University (2018HXFH010).

CONFLICT OF INTEREST

The authors have no conflict of interest to report.

DATA AVAILABILITY

All data in our MR analyses are available from public databases (https://gwas.mrcieu.ac.uk/).

REFERENCES

- Bosnjak Kuharic D, Markovic D, Brkovic T, Jeric Kegalj M, Rubic Z, Vuica Vukasovic A, Jeroncic A, Puljak L (2021) Cannabinoids for the treatment of dementia. *Cochrane Database Syst Rev* 9, CD012820.
- [2] (2022) 2022 Alzheimer's disease facts and figures. Alzheimers Dement 18, 700-789.
- [3] Collaborators GBDDF (2022) Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105-e125.
- [4] Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. *Lancet* 365, 1415-1428.
- [5] Mogre V, Salifu ZS, Abedandi R (2014) Prevalence, components and associated demographic and lifestyle factors of the metabolic syndrome in type 2 diabetes mellitus. J Diabetes Metab Disord 13, 80.
- [6] Ng TP, Feng L, Nyunt MS, Feng L, Gao Q, Lim ML, Collinson SL, Chong MS, Lim WS, Lee TS, Yap P, Yap KB (2016) Metabolic syndrome and the risk of mild cognitive impairment and progression to dementia: Follow-up of the Singapore Longitudinal Ageing Study Cohort. JAMA Neurol 73, 456-463.
- [7] Akbaraly TN, Kivimaki M, Shipley MJ, Tabak AG, Jokela M, Virtanen M, Marmot MG, Ferrie JE, Singh-Manoux A (2010) Metabolic syndrome over 10 years and cognitive functioning in late midlife: The Whitehall II study. *Diabetes Care* 33, 84-89.
- [8] Muller M, Tang MX, Schupf N, Manly JJ, Mayeux R, Luchsinger JA (2007) Metabolic syndrome and dementia risk in a multiethnic elderly cohort. *Dement Geriatr Cogn Disord* 24, 185-192.

- [9] Watts AS, Loskutova N, Burns JM, Johnson DK (2013) Metabolic syndrome and cognitive decline in early Alzheimer's disease and healthy older adults. J Alzheimers Dis 35, 253-265.
- [10] Emdin CA, Khera AV, Kathiresan S (2017) Mendelian randomization. JAMA 318, 1925-1926.
- [11] Smith GD, Ebrahim S (2003) 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? *Int J Epidemiol* 32, 1-22.
- [12] Lind L (2019) Genome-wide association study of the metabolic syndrome in UK Biobank. *Metab Syndr Relat Disord* 17, 505-511.
- [13] Richardson TG, Sanderson E, Palmer TM, Ala-Korpela M, Ference BA, Davey Smith G, Holmes MV (2020) Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. *PLoS Med* 17, e1003062.
- [14] Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, Willems SM, Wu Y, Zhang X, Horikoshi M, et al. (2021) The trans-ancestral genomic architecture of glycemic traits. *Nat Genet* 53, 840-860.
- [15] Larsson SC, Woolf B, Gill D (2022) Plasma caffeine levels and risk of Alzheimer's disease and Parkinson's disease: Mendelian randomization study. *Nutrients* 14, 1697.
- [16] Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR, Dickson DW, Rademakers R, Boeve BF, Grossman M, Arnold SE, Mann DM, Pickering-Brown SM, Seelaar H, Heutink P, van Swieten JC, Murrell JR, Ghetti B, Spina S, Grafman J, Hodges J, Spillantini MG, Gilman S, Lieberman AP, Kaye JA, Woltjer RL, Bigio EH, Mesulam M, Al-Sarraj S, Troakes C, Rosenberg RN, White CL, 3rd, Ferrer I, Llado A, Neumann M, Kretzschmar HA, Hulette CM, Welsh-Bohmer KA, Miller BL, Alzualde A, Lopez de Munain A, McKee AC, Gearing M, Levey AI, Lah JJ, Hardy J, Rohrer JD, Lashley T, Mackenzie IR, Feldman HH, Hamilton RL, Dekosky ST, van der Zee J, Kumar-Singh S, Van Broeckhoven C, Mayeux R, Vonsattel JP, Troncoso JC, Kril JJ, Kwok JB, Halliday GM, Bird TD, Ince PG, Shaw PJ, Cairns NJ, Morris JC, McLean CA, DeCarli C, Ellis WG, Freeman SH, Frosch MP, Growdon JH, Perl DP, Sano M, Bennett DA, Schneider JA, Beach TG, Reiman EM, Woodruff BK, Cummings J, Vinters HV, Miller CA, Chui HC, Alafuzoff I, Hartikainen P, Seilhean D, Galasko D, Masliah E, Cotman CW, Tunon MT, Martinez MC, Munoz DG, Carroll SL, Marson D, Riederer PF, Bogdanovic N, Schellenberg GD, Hakonarson H, Trojanowski JQ, Lee VM (2010) Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 42, 234-239.
- [17] Chia R, Sabir MS, Bandres-Ciga S, Saez-Atienzar S, Reynolds RH, Gustavsson E, Walton RL, Ahmed S, Viollet C, Ding J, Makarious MB, Diez-Fairen M, Portley MK, Shah Z, Abramzon Y, Hernandez DG, Blauwendraat C, Stone DJ, Eicher J, Parkkinen L, Ansorge O, Clark L, Honig LS, Marder K, Lemstra A, St George-Hyslop P, Londos E, Morgan K, Lashley T, Warner TT, Jaunmuktane Z, Galasko D, Santana I, Tienari PJ, Myllykangas L, Oinas M, Cairns NJ, Morris JC, Halliday GM, Van Deerlin VM, Trojanowski JQ, Grassano M, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Brett F, Gan-Or Z, Geiger JT, Moore A, May P, Kruger R, Goldstein DS, Lopez G, Tayebi N, Sidransky E, American Genome C, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Shakkottai VG, Perkins M, Newell KL, Gasser T, Schulte C, Landi F, Salvi E, Cusi D, Masliah

E, Kim RC, Caraway CA, Monuki ES, Brunetti M, Dawson TM, Rosenthal LS, Albert MS, Pletnikova O, Troncoso JC, Flanagan ME, Mao Q, Bigio EH, Rodriguez-Rodriguez E, Infante J, Lage C, Gonzalez-Aramburu I, Sanchez-Juan P, Ghetti B, Keith J, Black SE, Masellis M, Rogaeva E, Duyckaerts C, Brice A, Lesage S, Xiromerisiou G, Barrett MJ, Tilley BS, Gentleman S, Logroscino G, Serrano GE, Beach TG, McKeith IG, Thomas AJ, Attems J, Morris CM, Palmer L, Love S, Troakes C, Al-Sarraj S, Hodges AK, Aarsland D, Klein G, Kaiser SM, Woltjer R, Pastor P, Bekris LM, Leverenz JB, Besser LM, Kuzma A, Renton AE, Goate A, Bennett DA, Scherzer CR, Morris HR, Ferrari R, Albani D, Pickering-Brown S, Faber K, Kukull WA, Morenas-Rodriguez E, Lleo A, Fortea J, Alcolea D, Clarimon J, Nalls MA, Ferrucci L, Resnick SM, Tanaka T, Foroud TM, Graff-Radford NR, Wszolek ZK, Ferman T, Boeve BF, Hardy JA, Topol EJ, Torkamani A, Singleton AB, Ryten M, Dickson DW, Chio A, Ross OA, Gibbs JR, Dalgard CL, Traynor BJ, Scholz SW (2021) Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet 53, 294-303.

- [18] Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. *Eur J Epidemiol* 32, 377-389.
- [19] Ng JCM, Schooling CM (2020) Effect of glucagon on ischemic heart disease and its risk factors: A Mendelian randomization study. J Clin Endocrinol Metab 105.
- [20] He Q, Wang W, Li H, Xiong Y, Tao C, Ma L, You C (2023) Genetic insights into the risk of metabolic syndrome and its components on stroke and its subtypes: Bidirectional Mendelian randomization. J Cereb Blood Flow Metab, doi: 10.1177/0271678X231169838.
- [21] Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. *Nat Genet* 50, 693-698.
- [22] Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC (2018) The MR-Base platform supports systematic causal inference across the human phenome. *Elife* 7, e34408.
- [23] Zhao Q, Chen Y, Wang J, Small DS (2019) Powerful threesample genome-wide design and robust statistical inference in summary-data Mendelian randomization. *Int J Epidemiol* 48, 1478-1492.
- [24] Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. *Genet Epidemiol* 40, 304-314.
- [25] Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. *Int J Epidemiol* 44, 512-525.
- [26] Milligan BG (2003) Maximum-likelihood estimation of relatedness. *Genetics* 163, 1153-1167.
- [27] Atti AR, Valente S, Iodice A, Caramella I, Ferrari B, Albert U, Mandelli L, De Ronchi D (2019) Metabolic syndrome, mild cognitive impairment, and dementia: A meta-analysis of longitudinal studies. *Am J Geriatr Psychiatry* 27, 625-637.
- [28] Abbatecola AM, Lattanzio F, Spazzafumo L, Molinari AM, Cioffi M, Canonico R, Dicioccio L, Paolisso G (2010)

Adiposity predicts cognitive decline in older persons with diabetes: A 2-year follow-up. *PLoS One* **5**, e10333.

- [29] Ong HL, Chang SH, Abdin E, Vaingankar JA, Jeyagurunathan A, Shafie S, Magadi H, Chong SA, Subramaniam M (2016) Association of grip strength, upper arm circumference, and waist circumference with dementia in older adults of the WiSE Study: A cross-sectional analysis. *J Nutr Health Aging* 20, 996-1001.
- [30] Sierra C (2020) Hypertension and the risk of dementia. *Front Cardiovasc Med* **7**, 5.
- [31] Walker KA, Power MC, Gottesman RF (2017) Defining the relationship between hypertension, cognitive decline, and dementia: A review. *Curr Hypertens Rep* 19, 24.
- [32] Jennings JR, Mendelson DN, Muldoon MF, Ryan CM, Gianaros PJ, Raz N, Aizenstein H (2012) Regional grey matter shrinks in hypertensive individuals despite successful lowering of blood pressure. J Hum Hypertens 26, 295-305.
- [33] Barbiellini Amidei C, Fayosse A, Dumurgier J, Machado-Fragua MD, Tabak AG, van Sloten T, Kivimaki M, Dugravot A, Sabia S, Singh-Manoux A (2021) Association between age at diabetes onset and subsequent risk of dementia. *JAMA* 325, 1640-1649.
- [34] Mortimer JA, Borenstein AR, Ding D, Decarli C, Zhao Q, Copenhaver C, Guo Q, Chu S, Galasko D, Salmon DP, Dai Q, Wu Y, Petersen R, Hong Z (2010) High normal fasting blood glucose is associated with dementia in Chinese elderly. *Alzheimers Dement* 6, 440-447.
- [35] Reitz C, Tang MX, Luchsinger J, Mayeux R (2004) Relation of plasma lipids to Alzheimer disease and vascular dementia. *Arch Neurol* 61, 705-714.
- [36] Li J, Jiao M, Wen J, Fan D, Xia Y, Cao Y, Shi R, Xiao C (2020) Association of body mass index and blood lipid profile with cognitive function in Chinese elderly population based on data from the China Health and Nutrition Survey, 2009–2015. *Psychogeriatrics* 20, 663-672.
- [37] Han KT, Kim SJ (2021) Are serum cholesterol levels associated with cognitive impairment and depression in elderly individuals without dementia?: A retrospective cohort study in South Korea. Int J Geriatr Psychiatry 36, 163-173.
- [38] Cervellati C, Wood PL, Romani A, Valacchi G, Squerzanti M, Sanz JM, Ortolani B, Zuliani G (2016) Oxidative challenge in Alzheimer's disease: State of knowledge and future needs. J Investig Med 64, 21-32.
- [39] Lee JE, Shin DW, Han K, Kim D, Yoo JE, Lee J, Kim S, Son KY, Cho B, Kim MJ (2020) Changes in metabolic syndrome status and risk of dementia. *J Clin Med* 9, 122.
- [40] Forti P, Pisacane N, Rietti E, Lucicesare A, Olivelli V, Mariani E, Mecocci P, Ravaglia G (2010) Metabolic syndrome and risk of dementia in older adults. *J Am Geriatr Soc* 58, 487-492.
- [41] Danat IM, Clifford A, Partridge M, Zhou W, Bakre AT, Chen A, McFeeters D, Smith T, Wan Y, Copeland J, Anstey KJ, Chen R (2019) Impacts of overweight and obesity in older age on the risk of dementia: A systematic literature review and a meta-analysis. J Alzheimers Dis 70, S87-S99.
- [42] Singh-Manoux A, Dugravot A, Shipley M, Brunner EJ, Elbaz A, Sabia S, Kivimaki M (2018) Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. *Alzheimers Dement* 14, 178-186.
- [43] Raffaitin C, Gin H, Empana JP, Helmer C, Berr C, Tzourio C, Portet F, Dartigues JF, Alperovitch A, Barberger-Gateau P (2009) Metabolic syndrome and risk for incident Alzheimer's disease or vascular dementia: The Three-City Study. *Diabetes Care* 32, 169-174.

- [44] Solfrizzi V, Scafato E, Capurso C, D'Introno A, Colacicco AM, Frisardi V, Vendemiale G, Baldereschi M, Crepaldi G, Di Carlo A, Galluzzo L, Gandin C, Inzitari D, Maggi S, Capurso A, Panza F, Italian Longitudinal Study on Ageing Working Group (2010) Metabolic syndrome and the risk of vascular dementia: The Italian Longitudinal Study on Ageing. J Neurol Neurosurg Psychiatry 81, 433-440.
- [45] LoBue C, Wilmoth K, Cullum CM, Rossetti HC, Lacritz LH, Hynan LS, Hart J, Jr., Womack KB (2016) Traumatic brain injury history is associated with earlier age of onset of frontotemporal dementia. *J Neurol Neurosurg Psychiatry* 87, 817-820.
- [46] Golimstok A, Campora N, Rojas JI, Fernandez MC, Elizondo C, Soriano E, Cristiano E (2014) Cardiovascular risk factors and frontotemporal dementia: A case-control study. *Transl Neurodegener* 3, 13.
- [47] Katisko K, Solje E, Koivisto AM, Kruger J, Kinnunen T, Hartikainen P, Helisalmi S, Korhonen V, Herukka SK, Haapasalo A, Remes AM (2018) Prevalence of immunological diseases in a Finnish frontotemporal lobar degeneration cohort with the C9orf72 repeat expansion carriers and noncarriers. J Neuroimmunol 321, 29-35.
- [48] Kalkonde YV, Jawaid A, Qureshi SU, Shirani P, Wheaton M, Pinto-Patarroyo GP, Schulz PE (2012) Medical and environmental risk factors associated with frontotemporal dementia: A case-control study in a veteran population. *Alzheimers Dement* 8, 204-210.

- [49] Kung WM, Ho YJ, Yoshizawa H, Matsuo S, Wei CY (2018) Behavioural and cognitive changes in Lewy body dementias. *Behav Neurol* 2018, 2404191.
- [50] Schelp AO, Mendes-Chiloff CL, Bazan R, Paduan VC, Pioltini AB (2012) Metabolic syndrome and dementia associated with Parkinson's disease: Impact of age and hypertension. Arg Neuropsiquiatr 70, 114-118.
- [51] Dou Y, Liu S, Li Y, Wu H, Chen H, Ji Y (2022) Plasma cholesterol levels as potential nutritional biomarkers for Lewy body dementia. J Alzheimers Dis 86, 779-786.
- [52] Yasuno F, Tanimukai S, Sasaki M, Ikejima C, Yamashita F, Kodama C, Hidaka S, Mizukami K, Asada T (2012) Effect of plasma lipids, hypertension and APOE genotype on cognitive decline. *Neurobiol Aging* 33, 2633-2640.
- [53] Svensson T, Sawada N, Mimura M, Nozaki S, Shikimoto R, Tsugane S (2019) The association between midlife serum high-density lipoprotein and mild cognitive impairment and dementia after 19 years of follow-up. *Transl Psychiatry* 9, 26.