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Abstract.
Background: Patients are at increased risk of dementia, including Alzheimer’s disease (AD), after myocardial infarction
(MI), but the biological link between MI and AD is unclear.
Objective: To understand the association between the pathogenesis of MI and AD and identify common biomarkers of both
diseases.
Methods: Using public databases, we identified common biomarkers of MI and AD. Least absolute shrinkage and selection
operator (LASSO) regression and protein-protein interaction (PPI) network were performed to further screen hub biomarkers.
Functional enrichment analyses were performed on the hub biomarkers. Single-cell/nucleus analysis was utilized to further
analyze the hub biomarkers at the cellular level in carotid atherosclerosis and AD datasets. Motif enrichment analysis was
used to screen key transcription factors.
Results: 26 common differentially expressed genes were screened between MI and AD. Function enrichment analyses
showed that these differentially expressed genes were mainly associated with inflammatory pathways. A key gene, Regulator
of G-protein Signaling 1 (RGS1), was obtained by LASSO regression and PPI network. RGS1 was confirmed to mainly
express in macrophages and microglia according to single-cell/nucleus analysis. The difference in expression of RGS1 in
macrophages and microglia between disease groups and controls was statistically significant (p < 0.0001). The expression
of RGS1 in the disease groups was upregulated with the differentiation of macrophages and microglia. RelA was a key
transcription factor regulating RGS1.
Conclusions: Macrophages and microglia are involved in the inflammatory response of MI and AD. RGS1 may be a key
biomarker in this process.
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INTRODUCTION

The incidence of cardiovascular diseases is
increasing year by year worldwide. Myocardial
infarction (MI), a critical condition among cardiovas-
cular diseases, has a high lethality rate. According to
statistics, about 9 million people died of MI world-
wide in 2019 [1]. With an increased understanding of
the disease, opening blocked vessels to restore blood
flow supply is gradually becoming a mainstream
treatment strategy [2, 3], effectively reducing mortal-
ity from MI. However, at the same time, patients may
face myocardial damage from complications such as
ischemia-reperfusion and coronary restenosis [3, 4].
Therefore, the academic community is still exploring
better treatment options.

Alzheimer’s disease (AD) is a neurodegenera-
tive disorder. Although its incidence has declined
in recent years because of the control of risk fac-
tors, the number of people with the disease continues
to rise as the aging problem. In the United States,
AD is already the fifth leading cause of death in
the elderly [5]. AD is the leading cause of demen-
tia in the elderly population [5], but it was actually
only 100 years ago that Alzheimer found character-
istic neurotic plaques and pathological changes of
amyloidosis in brain specimens from patients with
dementia [6]. Early symptoms of AD are dominated
by episodic memory impairment, attention deficit,
and progressive aphasia. It has been reported that the
pathological manifestations of AD appear decades
before the symptoms [7–9]. And some studies have
shown that patients with AD have heterogeneity in
their cognitive deficits due to the different patholog-
ical manifestations [10, 11], which obviously makes
the timing and accuracy of the diagnosis of AD dif-
ficult. The medications currently available for the
treatment of AD are primarily used to relieve patients’
symptoms, and antipsychotic intervention may be
required in patients with more severe aggressive
symptoms [5]. However, the use of antipsychotics
has been reported to increase the chance of stroke
and death in patients with dementia [12] and has
been shown to induce AMI [13]. Based on the
current understanding of AD mechanisms, existing
clinical drug studies have focused on amyloidosis
and pathological tau [14–19]. The approval of Adu-
canumab and Lecanemab, two amyloid-�-targeted
drugs, in the United States has given clinicians more
options in treating AD patients [20, 21], but it comes
with high costs and risks such as brain hemorrhage
[22].

The inflammatory theory is one of the mecha-
nisms of atherosclerotic plaque formation. Signaling
pathways including NF-κB and transforming growth
factor beta (TGF-�) have been found to be involved
in the inflammatory response after a heart attack [23,
24]. For AD, the mechanism is still unclear, and more
studies have suggested that AD is associated with
�-amyloidosis and pathological modification of tau
[25–27], followed by concomitant neuroinflamma-
tion and glial cell proliferation [28]. The involvement
of inflammation in the pathogenesis of AD has been
demonstrated [29]. Researchers have found that the
levels of pro-inflammatory cytokines such as IL-1�,
IL-6, and TNF-� are elevated in the cerebrospinal
fluid of AD patients compared to normal [30]. A sys-
tematic review showed that coronary heart disease
may mildly to moderately raise the risk of suffering
from dementia, including Alzheimer’s disease, but
the biological link between the two is unclear [31].
Inflammation as a common mechanism in both dis-
eases makes some connection between them. Cohort
studies have been performed showing that after coro-
nary events, patients experience a cognitive decline
[32], which may be associated with cerebrovascular
lesions and neuroinflammation due to the release of
inflammatory cytokines and chemokines after MI [33,
34].

Bioinformatic analysis is a technique based on data
from gene sequencing to discover disease-associated
genes and explore possible mechanisms. Single-cell
RNA sequencing (scRNA-seq) and single-nucleus
RNA sequencing (snRNA-seq) are gene sequenc-
ing performed on a single-cell basis, allowing the
discovery of differences at the cell level [35]. Our
study utilized public databases to identify differen-
tially expressed genes (DEGs) of MI and AD, and
further analyzed common DEGs with scRNA-seq and
snRNA-seq datasets to explore possible associations
in the development of both diseases.

MATERIALS AND METHODS

Data processing

We obtained MI bulk RNA-seq dataset (GSE66360
[36]), AD bulk RNA-seq dataset (GSE5281 [37–40]),
carotid atherosclerosis (CA) scRNA-seq dataset
(GSE159677 [41]), and AD snRNA-seq dataset
(GSE157827 [42]) from Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/
geo/). All datasets were derived from human sam-
ples. GSE66360 contains 43 samples (22 normal

https://www.ncbi.nlm.nih.gov/geo/
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samples and 21 MI samples), GSE5281 contains 161
samples (74 normal samples and 87 AD samples),
GSE159677 contains 6 samples (3 atherosclerotic
core (AC) samples and 3 patient-matched proximal
adjacent (PA) samples). We obtained 4 samples in
GSE157827 (2 AD samples and 2 normal samples).
The characteristics of the four datasets were listed in
the text (Supplementary Table 1).

Identification of DEGs and functional
enrichment analysis

Using the “limma” package, DEGs for MI and
AD were identified by comparing the expression
of GSE66360 and GSE5281, respectively. DEGs
adjusted for p < 0.05 and |log2 FC|>1 were considered
statistically significant. DEGs of the two diseases
were taken as intersection and the obtained genes
were subjected to Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) func-
tional enrichment analysis with the “clusterProfiler”
package in R software, and p < 0.05 was considered
to indicate statistical significance.

Screening and GSEA of hub genes

LASSO regression in the “glmnet” package was
used to build machine learning models respectively
for MI and AD based on the datasets GSE66360
and GSE5281. STRING (http://string-db.org/) is a
database that integrates a large amount of known and
predicted protein-protein association data [43]. The
DEGs of MI and AD were entered into the STRING
database with species limited to “Homo sapi-
ens”, interaction scores ≥0.4, and non-interacting
targets were removed to finalize the protein-protein-
interaction (PPI) network. Cytoscape (version 3.10.0)
is an open-source software for analyzing and visu-
alizing networks [44]. The PPI network obtained
from STRING was imported into Cytoscape, and
the degree of each node was calculated using the
cytoNCA plugin. The nodes with one digit after the
median or higher degree were taken as core nodes. To
screen the hub genes, candidate genes and core nodes
were intersected to obtain the common hub diagnostic
genes for both diseases. Also, the “ggpubr” package
was used to determine the differential expression of
hub genes and p < 0.05 was considered statistically
significant.

To explore the signaling pathways associated with
hub genes in disease progression, we performed gene
set enrichment analysis (GSEA) of key genes in each

of the two diseases by the “clusterProfiler” package,
and p < 0.05 was considered statistically significant.

ScRNA-seq/snRNA-seq data preprocessing

ScRNA-seq and snRNA-seq data were read with
the “Seurat” [45] package. Low-quality cells were
excluded by 1) features <200 and >4000 (CA dataset),
features <200 and >5000 (AD dataset), and 2) mito-
chondrial genes >10%.

After normalizing the cells obtained from the
screening, 2,000 hypervariable genes were found
through the “FindVariableFeatures” function. After
the data centering process, principal component
analysis (PCA) was performed with the 2,000 hyper-
variable genes. By using an appropriate number of
principal components (15 in CA and 20 in AD) to
reduce dimensions of dataset, the samples were inte-
grated by the “Harmony” function to remove batch
effects [46]. Afterward, cells were clustered via the
“FindNeighbors” and the “FindClusters” functions.

Manual annotation and atherosclerosis-related
DEGs

The “FindAllMarkers” function was used to find
DEGs between cell clusters, with the top 10 DEGs of
each cluster as a reference for annotation. CellMarker
(http://biocc.hrbmu.edu.cn/CellMarker/ or http://bio-
bigdata.hrbmu.edu.cn/CellMarker/) is a database that
collates data from 100,000 published papers to pro-
vide a comprehensive and accurate resource of cell
markers for cell types in tissues of human and mouse
[47, 48]. We combined the “singleR” package with
CellMarker database to manually annotate cell clus-
ters and display the results on a UMAP plot.

Subsequently, the “FindMarkers” function was
used to find CA-related DEGs between the
atherosclerotic core (AC) group and the proxi-
mal adjacent (PA) group. Atherosclerosis (AS)-
associated DEGs were obtained by taking the
intersection of MI-related and CA-related DEGs.
The expression of AS-associated DEGs in each cell
cluster of the CA dataset was scored with the “Per-
centageFeatureset” function.

Expression of hub genes in CA and AD and
pseudotime analysis

In the previous analysis we found that the common
DEGs of MI and CA had the highest expression score
in macrophages, which is consistent with previous

http://string-db.org/
http://biocc.hrbmu.edu.cn/CellMarker/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
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studies on the important role of macrophages in the
formation of atherosclerosis. According to the current
literature review, microglia, as macrophages of the
central nervous system (CNS), also play an important
role in the progression of AD [5], so we compared
the expression of the obtained hub genes between the
macrophages in atherosclerosis and the microglia in
AD.

We extracted macrophages and microglia as sub-
jects in single-cell/nucleus datasets of CA and AD,
respectively. Randomly selected mean expression
>0.1 and dispersion empirical >1 * dispersion fit
cells were used for pseudotime analysis. After that,
the dimensionality of the cells was reduced by the
“DDRTree” method, and then the cells were sorted
using the “orderCells” function. Finally, we used the
“plot cell trajectory” function in “monocle” package
to visualize the differentiation trajectory of the cells.
The “plot genes in pseudotime” function was used
to visualize the changes in gene expression in the
differentiation trajectory.

Prediction of key transcription factors

To further investigate the molecular insight,
we screened transcription factors (TFs) that bind
to our key genes through the NetworkAnalyst
(https://www.networkanalyst.ca/) platform [49]. In
combination with the immune cells associated with
hub genes in our study, the “ggalluvial” package was
used to construct a Sankey diagram of TFs-Genes-
Immune cells.

There is a base preference for the binding of TFs
to genes. Motif enrichment analysis can obtain regu-
lar linkage patterns in complex interaction networks
[50]. The “RcisTarget” package which based on motif
enrichment analysis was used to find key TFs related
to gene sets by gene-motif ranking and annotation of
TFs. Then, we visualized the regulatory network of
genes and TFs through the “visNetwork” package.

Statistical analysis

The R software was used to perform statisti-
cal analyses. Differential expression analysis was
performed based on the moderate t-test with the
“limma” package. Functional enrichment analysis
was assessed based on the hypergeometric test via
the “clusterProfiler” package. The p-value correction
for multiple tests was performed using the Benjamin-
Hochberg (BH) procedure. Adobe Illustrator (AI)
2020 was used to edit the figures.

RESULTS

Our flow chart is shown in Fig. 1.

Identification of DEGs and functional
enrichment analysis

We used the “limma” package to identify DEGs in
the MI and AD datasets and plotted heatmaps sepa-
rately. 375 DEGs of MI and 898 DEGs of AD were
identified (Fig. 2A, B). The expression of these genes
differed significantly between groups. The results
were shown in heatmap with red color indicating
higher expression levels and blue color indicating
lower expression levels. The DEGs of the two dis-
eases were taken to intersect to obtain 26 common
DEGs (Supplementary Table 2) between MI and AD
(Fig. 2C).

Subsequently, the common DEGs were subjected
to GO (Supplementary Table 3) and KEGG (Supple-
mentary Table 4) functional enrichment analyses by
the “clusterProfiler” package in R software. p < 0.05
was considered to indicate statistical significance.
Figure 2D shows the circle plot of GO enrichment
analysis, and the enriched pathways were mainly
inflammation-related.

Identification and GSEA of hub genes

LASSO regression was used for the MI and AD
datasets separately to screen the candidate genes for
each of the two diseases (Fig. 3A, B). 23 candi-
date genes were obtained in the MI dataset, and 31
candidate genes were obtained in the AD dataset
(Supplementary Table 5).

PPI networks were constructed using STRING to
analyze 375 DEGs from MI and 898 DEGs from AD,
respectively. The interaction network for MI included
322 nodes and 2,861 edges, and the interaction net-
work for AD included 798 nodes and 4,266 edges.
Next, we used the cytoNCA plugin to screen core
nodes in MI with degree ≥8 and in AD with degree
≥6 (Supplementary Table 6). The network of core
nodes was visualized with Cytoscape software (Sup-
plementary Figure 1).

The candidate genes and core nodes of the two
diseases were intersected to obtain one hub gene,
regulator of G-protein signaling 1 (RGS1) (Fig. 3C).

GSEA was performed by comparing the target
genes with a predefined set of genes to obtain
the pathways and regulatory trends of target gene
enrichment [51]. In AD, RGS1 was mainly asso-

https://www.networkanalyst.ca/
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Fig. 1. Flow chart of this study.

ciated with complement and coagulation cascade
responses, cytokine receptors, hematopoietic cell
profiles, JAK-STAT signaling pathways, neuroactive
ligand receptor interactions, and olfactory trans-
mission, which were upregulated with elevated
expression of RGS1 (Fig. 3D). In MI, RGS1 was
mainly associated with the cell cycle, cell meiosis,
p53 signaling pathway, progesterone mediated oocyte
maturation, ribosome, and spliceosome, which were
also upregulated with elevated expression of RGS1
(Fig. 3D).

Quality control and dimension reduction
clustering of CA scRNA-seq dataset

We performed quality control on the CA scRNA-
seq dataset. The result is shown in Fig. 4A, and a total
of 45,492 cells were included in the subsequent anal-
ysis according to the screening criteria. The Elbow
plot of the principal components in the PCA analy-
sis is shown in Fig. 4B. There was a clear inflection
point at the 15th principal component, so the first 15
principal components were used for dimensionality
reduction. As shown in the UMAP plot (Fig. 4C),
the cell clusters in the AC and PA groups in the CA
dataset overlapped, indicating that batch effects were
eliminated during data integration. After clustering,
the CA dataset was divided into 22 clusters based
on the UMAP plot with different colors represent-
ing different cell clusters (Fig. 4D). Figure 4E shows
the results of cell cluster annotation using the “sin-

gleR” package. The machine annotation classified
cell populations into B cells, Chondrocytes, Com-
mon Myeloid Progenitors (CMP), Endothelial cells,
Erythroblast, Macrophages, Monocytes, pre-B cell
CD34, T cells, and Tissue stem cells (Supplementary
Table 7).

Manual annotation and AS-related DEGs

The “FindAllmarkers” function obtained the top
10 DEGs in each of the 22 cell clusters of the CA
dataset. Combining the CellMarker database and the
annotation results of “singleR”, we manually anno-
tated the cell clusters (Fig. 5A). Cell clusters 0 and
1 were identified as T cells; 2, 12, 21 as endothelial
cells; 3, 10 as vascular smooth muscle cells; 4, 7, 16,
17 as NKT cells; 5, 6, 8, 11, 19, 20 as macrophages;
and 9, 13, 14, 15, 18 as B cells. We finally chose IL7R,
CST7, and GZMA as markers for T cells; RAMP2
and GNG11 as markers for endothelial cells; TAGLN,
TPM2, and MYL9 as markers for vascular smooth
muscle cells; SFRP2, DCN, and LUM as markers for
NKT cells; AIF1, CD14, and CD68 as markers for
macrophages; IGKC, MS4A1, and CD79A as mark-
ers for B cells. The heatmap shows the expression
of our final selected markers in cell clusters, and
the markers differed significantly between cell clus-
ters (Fig. 5B). Figure 5C shows the differences in
the percentage of each cell cluster between groups
and samples in the CA dataset. The “FindMarkers”
function found 725 DEGs in the CA dataset (Supple-
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Fig. 2. A) Heatmap of DEGs in AD. B) Heatmap of DEGs in MI. C) Venn diagram shows that 26 genes are identified from the intersection
of DEGs in MI and AD. D) Circle plot of GO enrichment analysis of common DEGs.

mentary Table 8). Intersection with MI-related DEGs
was taken and 16 DEGs (Supplementary Table 9)
were filtered by LASSO regression (Fig. 5D). The 16
DEGs were considered as AS-related DEGs. Refer-
ring to the manually annotated results, the expression
of AS-related DEGs in 6 cell types of the CA dataset
was scored and visualized with violin plots (Fig. 5E).
The expression score of AS-related DEGs was higher
in macrophages than in other cell clusters, and the dif-
ferences between macrophages and other cell types
were statistically significant (p < 0.0001).

Processing and manual annotation of AD
SnRNA-seq dataset

To compare the expression of RGS1 in the AD at
the single-cell level, we obtained an AD snRNA-seq

dataset GSE157827 from the GEO database. First,
we performed quality control on the AD snRNA-seq
dataset similarly. Figure 6A shows the AD dataset
after quality control, and a total of 31,488 cells were
screened. Figure 6B shows the principal component
Elbow plots for PCA analysis of the AD dataset. The
AD dataset showed a clear inflection point at the 20th
principal component, and the first 20 principal com-
ponents were used for dimensionality reduction. The
UMAP plot of Fig. 6C demonstrates the removal of
batch effects. The AD dataset was divided into 22 cell
clusters (Fig. 6D). After manual annotation with ref-
erence to singleR results (Supplementary Table 10)
and markers from previous literature, the cell clus-
ters in the AD dataset were identified as excitatory
neurons, inhibitory neurons, microglia, oligodendro-
cytes, astrocytes, and endothelial cells (Fig. 6E).
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Fig. 3. A) Biomarkers screening in the LASSO model. The number of genes (n = 31) corresponding to the lowest point of the curve was
the most suitable for AD diagnosis. B) LASSO regression obtained 23 genes which were most suitable for MI diagnosis. C) Venn diagram
shows the hub gene, RGS1, which was identified from the intersection of genes in AD and MI using LASSO model and PPI network. D)
GSEA of RGS1 in AD dataset. E) GSEA of RGS1 in MI dataset. PPI, protein-protein interaction; AD, Alzheimer’s disease; MI, myocardial
infarction.

Clusters 3, 4, 7–15, 18, 20 were identified as exci-
tatory neurons; 6, 21 as inhibitory neurons; 0, 2
as oligodendrocytes; 1, 16, 19 as astrocytes; 5 as
microglia; and 17 as endothelial cells. The expres-
sions of markers for cell types in each cell cluster are
shown in a heatmap (Fig. 6F). We selected SYNPR,
ZNF385D, and CBLN2 as markers for excitatory
neurons; LHFPL3, PCDH15 as markers for inhibitory
neurons; PLP1, ST18 as markers for oligodendro-
cytes; SLC1A2, ADGRV1, GLIS3 as markers for
astrocytes; RUNX1, LRMDA, DOCK8 as markers
for microglia; ABCB1, EBF1, FLT1 as markers for
endothelial cells. In the heatmap, red is upregulated

and blue is downregulated, and markers of various
cells were mainly highly expressed in their respective
cell populations.

Expression of hub gene and pseudotime analysis

The Feature Plot shows the expression of RGS1
in CA and AD, and the ochre dots represent cells
expressing RGS1 (Fig. 7A, Fig. 8A). In CA, RGS1
expressed mainly in macrophages, B cells, and T cells
(Fig. 7A), while in AD, the cell cluster expressing
RGS1 was almost exclusively microglia (Fig. 8A).
After that, we scored the expression of RGS1 in
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Fig. 4. Quality control, cell clustering, and annotation of CA single-cell data. A) Violin plot shows cell characteristics after quality control.
B) Elbow plot for the single cell data. The top 30 PCs were shown. C) Batch effect between AC and PA data eliminated by harmony. D) Cells
in dataset were classified into 22 clusters. E) Cells were annotated by the “singleR” package reference Human Primary Cell Atlas Data. CA,
carotid atherosclerosis; AC, atherosclerotic core; PA, proximal adjacent.

macrophages and microglia in the disease and con-
trol groups, respectively. In both types of cells, the
expression of RGS1 was higher in the disease group
than in the control group (Figs. 7B, 8B). We obtained
the same trend in the bulk RNA-seq datasets of MI
and AD (Supplementary Figure 2).

With the “monocle” package we have performed
pseudotime analysis of macrophages and microglia.
The “monocle” package simulates the possible tra-

jectories of cellular differentiation based on changes
in gene expression levels in the cells, with color
shades representing chronological order. As shown
in Fig. 7C, the color of the trajectory becomes
lighter from left to right, representing the direction of
macrophage differentiation. Macrophages in the AC
group were more distributed in a branch in the second
half of the trajectory (Fig. 7D). We speculated that
this branch was pro-inflammatory M1 macrophages.
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Fig. 5. A) Manual annotation of cell clusters in CA with reference to previous studies. B) The heatmap shows good specificity of the cellular
marker genes. C) The bars depict the percentage of each cell type in each group and patient. D) Biomarkers screening in the LASSO model.
The number of genes (n = 16) corresponding to the lowest point of the curve was the most suitable for MI diagnosis. E) The violin plot
demonstrates the expression of DEGs between CA and MI in each cell cluster. CA, carotid atherosclerosis; MI, myocardial infarction.
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Fig. 6. Quality control, cell clustering, and annotation of AD snRNA-seq data. A) Violin diagram shows cell characteristics after quality
control. B) Elbow plot for the single cell data. The top 30 PCs were shown. C) Batch effect between AC and PA data eliminated by harmony.
D) Cells in dataset was classified into 22 clusters. E) Manual annotation of cell clusters in AD with reference to previous studies. F) The
heatmap shows good specificity of the cellular marker genes. AD, Alzheimer’s disease.
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Fig. 7. A) Feature plot shows the expression of RGS1 in different cell clusters of CA. The ochre dots indicate the expression of RGS1 in
this cell cluster. B) There was a difference in the expression of RGS1 in macrophages in the two groups, and the difference was statistically
significant. ****p < 0.0001. C–E) Pseudotime analysis of macrophages in GSE159677. C) Timing differences in cell differentiation. Darker
blue represents an earlier stage of differentiation, while lighter blue indicates a later stage of differentiation. D) Differentiation of AC
macrophages from PA macrophages. E) Timing differences in the expression of RGS1 in different groups. It was upregulated in the AC
group and downregulated over time in the PA group. CA, carotid atherosclerosis; AC, atherosclerotic core; PA, proximal adjacent.

The temporal order of the trajectories of microglia
was from right to left (Fig. 8C). Microglia in the AD
group were mainly distributed in the latter half of the
trajectories (Fig. 8D).

We used curves to show the changes in the expres-
sion level of RGS1 in the obtained trajectories
(Figs. 7E, 8E). The x-axis of the curves indicates
the chronological order and the y-axis presents the
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Fig. 8. A) Feature plot shows the expression of RGS1 in different cell clusters of AD. The ochre dots demonstrate that RGS1 expressed
almost exclusively in microglia. B) There was a difference in the expression of RGS1 in microglia in the two groups, and the difference
was statistically significant. ****p < 0.0001. C–E) Analysis of pseudotime in GSE159677. C) Timing differences in cell differentiation.
Darker blue represents an earlier stage of differentiation, while lighter blue indicates a later stage of differentiation. D) Differentiation of
AD microglia from NC microglia. E) Timing differences in the expression of RGS1 in different groups. It was upregulated in the AD group
and downregulated in the NC group. AD, Alzheimer’s disease; NC, normal control.

expression level. Because of the large difference in
the distribution of cells from two groups in the trajec-
tory, we suggested that the elevated expression level

of RGS1 may promote the pro-inflammatory dif-
ferentiation of macrophages and microglia and thus
participate in the development of the disease.



W. Xue et al. / Exploring Shared Biomarkers of Myocardial Infarction and AD 717

Fig. 9. A) Sankey diagram shows the flow among TFs, genes, and immune cells. The TF–gene interaction was obtained from Networkanalysis.
B) The sequence features obtained from motif enrichment analysis. The high and low bases in the graph indicate the likelihood of the
occurrence of that base in the motif sequence. C) Regulatory network of RelA and genes.

Construction of Sankey diagram and prediction
of key TF

We obtained 16 TFs that may regulate the expres-
sion of RGS1 through the online platform [49]. A
Sankey diagram was then constructed to show the
relationship between TFs, RGS1, and immune cells
(Fig. 9A). The 26 common DEGs of MI and AD
were included in the motif enrichment analysis, by
which RelA (NES = 6.12, Supplementary Table 11)
was obtained as a possible key TF. The binding site
of RelA is shown in Fig. 9B. Figure 9C demonstrates
the regulatory network of RelA with genes.

DISCUSSION

Both MI and AD are high-mortality diseases and
patients may have suffered irreversible damage at
the time of diagnosis. A study showed that patients
with MI had elevated odds of co-occurring vascular
dementia, which was not associated with other causes
of dementia [52]. However, limitations on the accu-
racy of the diagnosis of AD and the mean follow-up
time may have an impact on the final results, as the
symptoms of AD may appear much later than the
pathological changes. In addition, it has been shown
that in patients with dementia vascular lesions and
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pathological manifestations of AD are often con-
comitant [53, 54]. We suggest that the effects of
coronary artery disease on the cerebral vasculature
and the inflammatory response after MI are associ-
ated with the development of AD, complicating the
pathological changes in patients with dementia after
MI. Exploration of biomarkers related to both dis-
eases and possible mechanisms may be useful for
early diagnosis and treatment.

In enrichment analysis, common DEGs in MI and
AD were mainly associated with some inflammatory
pathways. Inflammation in both diseases has been
investigated in several studies [23, 24, 29], which
is identified as myocardial inflammation after MI or
neuroinflammation in AD. Macrophages are one of
the main immune cells involved in the post-infarction
inflammatory response. After MI, monocytes in
the peripheral circulation are recruited and dif-
ferentiated into macrophages, which are involved
in the destruction of necrotic cardiomyocytes [55,
56]. In vitro, macrophages were induced to polar-
ize into pro-inflammatory M1 subpopulations and
inflammation-inhibiting M2 subpopulations [57]. AS
is a common pathological mechanism in MI and CA.
Studies have shown that macrophages are involved
in the formation of AS by causing vascular inflam-
mation [58, 59]. In our results, the expression of 16
common DEGs between MI and CA was higher in
macrophages than in other cell populations, which
is consistent with the findings that macrophages are
involved in AS [60, 61].

Microglia is a type of macrophage unique to the
CNS [62], involved in neuronal demyelination and
regeneration in the CNS [63], and engulfs dying
neurons to maintain brain homeostasis [64]. Sim-
ilarly, microglia can differentiate into neurotoxic
and neuroprotective states [65]. Activated microglia
are involved in a variety of neurodegenerative and
neuroinflammatory diseases, including AD [66]. In
AD, amyloid-� degeneration and tau protein pro-
mote microglia activation to clear lesions, but a large
number of lesions would leave the CNS in a long-
term chronic inflammatory state [5]. The triggering
receptor expressed on myeloid cell 2 (TREM2) is a
transmembrane glycoprotein on microglia, a study
has shown that soluble TREM2 (the cleavage product
of TREM2, sTREM2) level is elevated in both cere-
brospinal fluid and peripheral blood among patients
with AD compared to normal [67]. Another study
has shown that the expression of both microglia and
peripheral monocytes can be regulated by PILRB
and LRRK2 [68]. As two types of cells with sim-

ilar origins, macrophages and microglia may have
synergistic effects in the inflammatory response to
both diseases. To explore the role of our key genes
in regulating both cells, we conducted a follow-up
study.

We screened for the possible hub gene regula-
tor of G-protein signaling 1 (RGS1) by LASSO
regression and PPI network. RGS1 is a member
of the RGS family that functions by binding to G
protein-coupled receptor/G protein complexes and is
associated with various diseases such as atheroscle-
rosis, depression, and schizophrenia [69]. Our results
showed that the expression of RGS1 was upregu-
lated in both MI and AD patients, especially in the
patients’ macrophages and microglia. In a mouse
model of arthritis, inhibition of RGS1 expression
with short hairpin RNA (shRNA) inactivated the
Toll-like receptors (TLR) signaling pathway which
suppressed inflammatory responses and angiogene-
sis [70]. An animal experiment has shown that RGS1
can inhibit the chemotaxis of macrophages, making
macrophages more likely to accumulate at sites of
inflammation during chronic inflammation, thereby
promoting atherosclerosis formation [71]. A study
demonstrated that the expression of RGS1 was upreg-
ulated during macrophage M1 polarization [71],
which was consistent with the results of our pseu-
dotime analysis. In our study, RGS1 was enriched in
the p53 pathway in MI patients. It has been shown
that the p53 pathway may increase cardiac fibrosis in
rats with MI [72], and p53 acetylation has also been
proven to promote macrophage M1 polarization [73].
RGS1 was also found to be a possible marker of AD
in the periphery in a previous study, but the exact
mechanism is unclear [74]. The JAK-STAT pathway,
enriched in AD patients in our study, was shown to
be associated with neuroinflammation in AD [75]
and overactivation of microglia [57]. Recent studies
have identified this pathway as a potential therapeu-
tic target for AD [76, 77]. Microglia as a type of
leukocyte also express multiple chemokine recep-
tors [78], which are G protein-coupled receptors. We
suggest that RGS1 has a macrophage-like regulatory
mechanism on microglia, which causes microglia
to accumulate locally by desensitizing chemokine
receptors, resulting in chronic neuroinflammation.

We found in the single-cell analysis of CA that
the expression of RGS1 was also associated with B
cells and T cells. Various subsets of B cells and T
cells have been shown to have both promotional and
inhibitory effects on atherosclerosis [79–81]. Regula-
tory T cells (Tregs) can inhibit inflammatory cytokine
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production after MI [82], whereas acute suppression
of T cell infiltration after MI has also been shown
to alleviate infarct wall thinning and improve car-
diac function [83]. B1 cells secreting IgM inhibited
lipid uptake by macrophages and release of inflamma-
tory cytokines to limit inflammation [84]. While the
transfer of B2 cells to B cells lacking ApoE -/- mice
revealed a significant increase in atherosclerosis [81].
A study has shown an accelerated return of B cells to
lymph nodes in RGS1-/- mice compared to wild-type
B cells [85], resulting in less B cell retention at the
site of inflammation. In contrast, high expression of
RGS1 was found in intestinal T cells from patients
with colitis [86]. All these findings may be related to
the homing of lymphocytes which affected by RGS1
desensitization of chemokine receptors. However, an
animal experiment [71] showed that the phenotypic
regulation of T and B cells by RGS1 in atheroscle-
rosis was not significant, and that B cells and T
cells may not play a major role in inflammation after
MI.

TFs are proteins that attach to specific genes and
regulate the rate of transcription of genetic infor-
mation [87]. According to the results, RGS1 was
regulated by a total of 16 TFs. Referring to the motif
enrichment analysis of 26 DEGs between MI and AD,
RelA may be the most important TF in both diseases.
RelA/p65, which is involved in constituting NF-κB
[88], has been shown to be associated with AS by
promoting the proliferation and migration of vascu-
lar smooth muscle cells [89]. Saikosaponin inhibits
NF-κB-mediated inflammatory signaling pathways
by reducing the mRNA transcriptional activity of
RelA/p65 thereby reducing neuroinflammation [90].
RelA may be involved in the progression of MI and
AD through the regulation of RGS1, but it needs more
relevant research to explore the mechanism.

Our study identified RGS1 as a potential therapeu-
tic target for MI and AD. The binding of RGS1 to G
proteins accelerates the termination of cellular signal-
ing and exacerbates disease by causing macrophages
and microglia to aggregate. RGS1 inhibitors may
be able to competitively bind RGS1 to ameliorate
chronic inflammation in both diseases. A previous
study on the structure of RGS1 and G� proteins has
made this idea feasible [91]. However, the selectiv-
ity of the inhibitor is dependent on specific cysteine
residues [92] and dynamics [93] of the RGS protein,
which remains a challenge.

There are still limitations in this study due to the
lack of validation in clinical or animal studies. Future
research will combine molecular biology and patho-

physiology to validate the predicted potential key
targets and pathways.

Conclusion

Our study shows that macrophages and microglia
are involved in the inflammatory response in MI and
AD, respectively. RGS1, which is regulated by RelA,
may be an important target to intervene in this patho-
logical process.
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