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Abstract.14

Background: Late-onset Alzheimer’s disease (LOAD) is the most common type of dementia, but its pathogenesis remains
unclear, and there is a lack of simple and convenient early diagnostic markers to predict the occurrence.
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Objective: Our study aimed to identify diagnostic candidate genes to predict LOAD by machine learning methods.17

Methods: Three publicly available datasets from the Gene Expression Omnibus (GEO) database containing peripheral
blood gene expression data for LOAD, mild cognitive impairment (MCI), and controls (CN) were downloaded. Differential
expression analysis, the least absolute shrinkage and selection operator (LASSO), and support vector machine recursive
feature elimination (SVM-RFE) were used to identify LOAD diagnostic candidate genes. These candidate genes were then
validated in the dataset validation group and clinical samples, and a LOAD prediction model was established.
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Results: LASSO and SVM-RFE analyses identified 3 mitochondria-related genes (MRGs) as candidate genes, including
NDUFA1, NDUFS5, and NDUFB3. In the verification of 3 MRGs, the AUC values showed that NDUFA1, NDUFS5 had
better predictability. We also verified the candidate MRGs in MCI groups, the AUC values showed a good performance.
We then used NDUFA1, NDUFS5 and age to build a LOAD diagnostic model and AUC was 0.723. Results of qRT-PCR
experiments showed that the three candidate genes were expressed significantly lower in the LOAD and MCI groups when
compared to CN.
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Conclusion: Two mitochondrial-related candidate genes, NDUFA1 and NDUFS5, were identified as diagnostic markers for
LOAD and MCI. Combining these two candidate genes with age, a LOAD diagnostic prediction model was successfully
constructed.
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INTRODUCTION29

Alzheimer’s disease (AD), the most common form30

of dementia, is characterized by memory loss and31

cognitive impairment. Most cases occur after the age32

of 65, constituting late-onset AD (LOAD), while less33

than 5% of all cases occur earlier than age 65, which34

is termed early onset AD (EOAD) [1]. The current35

leading hypotheses, the amyloid and tau propagation36

hypotheses, state that pathological tau and amyloid-37

� (A�) deposits are involved in triggering cascade38

reactions that occur in the cerebral cortex of patients39

with AD [2–4]. However, the underlying mechanism40

remains unclear, and many failures in clinical tri-41

als based on A� plaques or tau tangles have led to42

doubt on the hypotheses [5]. In addition to these two43

mainstream hypotheses, other hypotheses such as the44

cholinergic [6], mitochondrial cascade and related45

hypotheses [7–10], synaptic degeneration [11], and46

inflammatory [12, 13] hypotheses are also important47

possible explanations for the mechanisms underlying48

AD.49

The onset of AD is insidious [2, 14], and many50

pathological changes occur before reaching clini-51

cal diagnostic criteria [15, 16]. Early detection and52

treatment of the disease are of great significance for53

delaying the development of dementia and improv-54

ing its prognosis. Mild cognitive impairment (MCI)55

is an important component of predementia. People56

with MCI have subtle symptoms, such as problems57

with memory, language, and thinking, and these prob-58

lems may not interfere with their ability to carry59

out everyday activities [14]. The cumulative demen-60

tia incidence in individuals with MCI older than 6561

years who are monitored for two years is 14.9% [17].62

Early screening and intervention for MCI is of great63

significance in the progression of dementia.64

The current biological staging model for AD is65

based on the A�-tau-neurodegeneration (ATN) clas-66

sification system, which assesses three biomarkers:67

A�, tau pathology, and neurodegeneration or neu-68

ronal injury [18]. Blood-based markers have emerged69

as a promising tool for the diagnosis of AD and70

for improving the design of clinical trials. The71

A�42/A�40 ratio and phosphorylated tau have shown 72

potential as blood-based AD biomarkers [19]. How- 73

ever, detecting plasma A� and tau presents several 74

challenges, including the expense and slow detection 75

methods such as mass spectrometry and immunoas- 76

say, and potential inaccuracies in measurement due to 77

pre-analytical processing and analytical performance 78

[20]. 79

Genetic and genomic analyses are becom- 80

ing increasingly important in biomedical research 81

because they can reveal the potential modes of action 82

and mechanisms of diseases at the molecular level 83

[21]. At present, there have been some bioinformatics 84

studies on differential gene expression in peripheral 85

blood cells of patients [22–25], including ferroptosis 86

[23] and immune factors [24]. However, most stud- 87

ies have not specifically analyzed gene expression in 88

LOAD, the main subtype of AD. 89

To explore and identify potential biomarkers of 90

LOAD, public datasets GSE63060, GSE63061, and 91

GSE140829 from the National Center for Biotechnol- 92

ogy Information (NCBI) Gene Expression Omnibus 93

(GEO) database were used. Using differential expres- 94

sion analysis, least absolute shrinkage selection 95

operator (LASSO), and support vector machine 96

recursive feature elimination (SVM-RFE) analysis, 97

two candidate mitochondria-related genes (MRGs) 98

were identified and used to establish a LOAD pre- 99

diction model. Gene Ontology (GO) and Kyoto 100

Encyclopedia of Genes and Genomes (KEGG) anal- 101

yses were used to further investigate biological 102

processes and pathways. Then, the cell-type iden- 103

tification by estimating relative subsets of RNA 104

transcripts (CIBERSORT) algorithm was applied to 105

calculate the immune infiltration of LOAD samples. 106

The workflow of this study is shown in Fig. 1. 107

MATERIALS AND METHODS 108

Data acquisition 109

The peripheral blood gene expression data used 110

in this study were obtained from the NCBI GEO 111
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Fig. 1. The workflow of the analysis, including data extraction, processing, and analysis.

database [26]. As LOAD typically occurs after the112

age of 65, samples from individuals ≤65 years of113

age were excluded from the analysis. Ultimately,114

we used three data series for analysis: GSE63060115

annotated by GPL6947, which included 134 LOAD116

samples, 80 MCI samples, and 94 cognitively normal117

(CN) samples; GSE63061 annotated by GPL10558,118

which included 133 AD samples, 104 MCI samples,119

and 131 CN samples; and GSE140829 annotated by120

GPL15988, which included 168 AD samples, 116121

MCI samples, and 229 CN samples. All samples were122

obtained from individuals over 65 years of age. To123

perform our analysis, we randomly split the LOAD124

and CN samples in each data series into 3 : 1 as train-125

ing and validation groups, respectively. We assigned126

all 300 MCI samples to the MCI validation group.127

The studies involving human participants were128

reviewed and approved by the Ethics Committee of129

the Ruijin Hospital affiliated to the Shanghai Jiao130

Tong University School of Medicine (2018-No.204).131

Differential expression analysis132

Differential expression analysis of LOAD and133

CN samples was performed using the “limma” R134

package [27]. Differentially expressed genes (DEGs)135

(p adjust < 0.01) were obtained, volcano plots of the 136

DEGs were created using the “pheatmap” [28] and 137

“ggplot2” R packages. 138

Bio-functional analysis 139

To investigate which biological pathways the 140

DEGs in LOAD play key roles, we conducted 141

functional enrichment analyses. Using R package 142

“clusterProfile” [29] and “enrichplot” [30] R pack- 143

ages, GO analysis which focuses on three levels 144

including cell component (CC), biological process 145

(BP), and molecular function (MF), and KEGG anal- 146

ysis which is mainly used for pathway enrichment 147

analysis were performed on the DEGs. 148

LASSO and SVM-RFE analysis 149

To further identify the candidate genes that can 150

be used as diagnostic candidate genes for LOAD 151

from these DEGs, we performed the following two 152

machine learning methods for further screening. 153

LASSO regression analysis was fitted using the “glm- 154

net” package [31], set the “family” parameter as 155

“binomial” and the “alpha” as 1, the cross-validation 156

parameter “nfolds” was adjusted to 10. SVM-FRE is 157
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a sequential backward selection algorithm based on158

the maximum interval principle of SVM. It trains the159

sample through the model, then sorts the score of each160

feature, removes the feature with the minimum score,161

and then trains the model again with the remaining162

features until selects the required number of features.163

The SVM-RFE classifiers from R packages “e1071”164

[32], “kernlab” [33], and “caret” were adopted for the165

classification analysis of the selected candidate genes166

in the diagnosis of AD.167

Identification of MRG candidates168

In this study, MRGs refer to the genes that169

encode proteins located in any part of the mitochon-170

dria including the mitochondrial membrane, stroma,171

cristae, and mitochondria-associated endoplasmic172

reticulum. The MitoCarta 3.0 database included173

1,136 human mitochondria-located genes [34, 35],174

and the MRGs list was downloaded for subsequent175

analysis (Supplementary Table 1).176

Immune infiltration and immune-related factors177

To evaluate the immune infiltration of LOAD178

peripheral blood, we applied the CIBERSORT algo-179

rithm. CIBERSORT [36] performed deconvolution180

analysis based on the principle of linear support vec-181

tor regression, and there were 22 types of immune182

cells provided, including plasma cell, B cell, T cell,183

and myeloid cell subpopulations. We used this algo-184

rithm to analyze the gene expression data of the185

training set and calculate the relative proportions of186

each type of immune cells in each sample. Spearman187

correlation analysis was used to analyze the correla-188

tion between candidate genes and immune cells.189

Model construction and evaluation190

To assess the ability of candidate genes to191

distinguish disease states, the receiver operating char-192

acteristic curve (ROC) was plotted by “pROC” [37].193

ROC could reflect the trend of sensitivity (FPR) and194

accuracy (TPR) of the model when different thresh-195

olds were selected, and the value of the area under the196

curve (AUC) can be used as an evaluation index. We197

tested the AUC of candidate genes on the training set198

data, and subsequently tested them on the MCI and199

LOAD validation set data. In order to improve the200

accuracy of disease diagnosis, we combined the two201

candidate genes with the highest accuracy and age202

to construct a multi-factor disease prediction model,203

which was assessed in 3 ways. In addition to the ROC 204

method, calibration curve was plotted to present how 205

close the actual incidence is to the predicted incidence 206

calculated by LOAD prediction nomogram. Consid- 207

ering the impact of false positives and false negatives 208

on patients, the concepts of threshold probability and 209

net benefit are introduced in decision curve analy- 210

sis (DCA), which was used to assess the benefit of 211

patients using our predictive model in the clinic. 212

qRT-PCR validation of the candidate genes 213

Peripheral blood samples of 8 participants who 214

were CN, 8 patients with LOAD, and 10 patients 215

with MCI were acquired for qRT-PCR to verify the 216

expression of candidate genes. Diagnosis was based 217

on NIA-AA Research Framework [14]. Participants 218

were over 65 years old and underwent neuropsy- 219

chological assessments, including Mini-Mental State 220

Examination (MMSE), Montreal Cognitive Assess- 221

ment (MoCA), and Clinical Dementia Rating Scale 222

(CDR). Brain magnetic resonance imaging and 223

PET-CT in LOAD and MCI were performed to 224

help diagnose. This study was approved by the 225

Ethics Committee of the Ruijin Hospital affiliated 226

to the Shanghai Jiao Tong University School of 227

Medicine (2018-No.204). The RNAprep Pure Hi- 228

Blood Kit (DP443, TIANGEN) was used to extract 229

total RNA, RNA quality was determined by TGem 230

Plus full-wavelength spectrophotometer (OSE-260- 231

02, TIANGEN), A260/280, A260/230 absorbance 232

ratios of purified RNA between 2.0–2.2, 1.8–2.2 233

respectively for subsequent experiments. RNA was 234

then reverse-transcribed to cDNA and qRT-PCR was 235

performed with the 2×Hieff® PCR Master Mix 236

(10102ES08; Yeasen). GAPDH was used as an inter- 237

nal reference and the primers used are listed in 238

Table 3. Relative mRNA expression was calculated 239

using the ��Ct method. 240

Statistical analyses 241

The chi-square test was adopted for categorical 242

data (expressed as a percentage), and measure- 243

ment data were analyzed by t-test (represented by 244

a mean±SEM). A logistic regression algorithm and 245

SVM-RFE were used to construct the prediction 246

model. All statistical analyses were performed using 247

R language software (version 4.2.1) and Graph- 248

Pad Prism 9. Statistical significance was defined as 249

p < 0.05. 250
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RESULTS251

The DEGs in load were related to mitochondria252

To identify DEGs related to LOAD, we down-253

loaded the GSE63060, GSE63061, and GSE140829254

datasets from the NCBI GEO public database,255

selected samples > 65 years old to match the age256

of onset of LOAD, and then split each data series257

into 3 : 1 random training and validation groups. In258

total, there were 353 people who were CN and 322259

patients with LOAD in the training group, and 101260

people who were CN and 113 patients with LOAD261

in the validation group. To explore the biomarkers of262

LOAD, we first obtained DEGs from training group263

(p adjust < 0.01), 78 DEGs were obtained (Supple-264

mentary Table 2), and a volcano plot of these DEGs265

is shown in Fig. 2A. Most of the genes with altered266

expression were downregulated (blue dots), and inter-267

estingly, 40% of the TOP 10 downregulated genes268

were related to mitochondria (green dots), which sug-269

gested that mitochondria-related genes (MRGs) were270

associated with LOAD.271

Pathway enrichment of DEGs was associated272

with mitochondrial function273

To determine the potential biological roles of the274

selected DEGs, we performed enrichment analy-275

sis. Figure 2B shows the top 15 KEGG pathways276

(ribosome-related pathways were excluded due to277

low specificity), in which oxidative phosphorylation278

pathways changed significantly (q-value<0.0025).279

The selected DEGs are also involved in disease280

such as AD, Parkinson’s disease, prion diseases,281

and multiple neurodegenerative diseases. GO anal-282

ysis showed that the top 10 pathways changed283

significantly, and after excluding the ribosome-284

related pathways, the remaining altered pathways all285

involved the mitochondria (Fig. 2 C). Target genes286

were associated with the aerobic electron trans-287

port chain (ETC), adenosine triphosphate (ATP)288

synthesis coupled electron transport in BPs, respi-289

ratory chain complex, mitochondrial respirasome,290

respirasome, and inner mitochondrial membrane291

protein complex in CCs. In addition, DEGs were292

involved in MFs such as electron transfer activ-293

ity and nicotinamide adenine dinucleotide (NADH)294

dehydrogenase (ubiquinone) activity. Interestingly,295

the two pathway enrichment analyses both pointed296

to mitochondrial function changes in LOAD, which297

indicated that mitochondrial dysfunction played an298

important role in molecular biological processes of 299

LOAD. 300

Two MRGs were identified as candidate genes 301

for LOAD and MCI 302

To screen for the most significant genes that can be 303

used as candidate genes for the diagnosis of LOAD 304

in the selected DEGs, machine learning methods, 305

including feature screening through LASSO regres- 306

sion and SVM-RFE, were performed. The results of 307

the LASSO analysis are shown in Fig. 3, which high- 308

lights that the model had minimal cross-validation 309

error when �= 21, and 21 genes were identified 310

as signature genes in LOAD by LASSO analysis 311

(Fig. 3A, B). Simultaneously, we used the SVM-RFE 312

algorithm to evaluate the characteristic genes, which 313

showed that the model incorporating 31 genes had 314

the best accuracy (Fig. 3 C). Thus, SVM-RFE yielded 315

31 candidate genes. In addition, 40% of the TOP 10 316

downregulated genes were related to mitochondria, 317

and two pathway enrichment analyses were involved 318

in mitochondrial function, indicating that there were 319

significant changes in MRGs in LOAD. Based on 320

previous DEGs and enrichment analyses, we decided 321

to focus on MRGs. To define the MRGs from 322

our previous results, 1,136 mitochondria-located 323

genes were downloaded from MitoCarta3.0. We then 324

selected common genes from the LASSO analy- 325

sis, SVM-RFE analysis, and MRGs. Finally, the 326

common three MRGs, including NDUFA1 (NADH: 327

ubiquinone oxidoreductase subunit A1), NDUFS5 328

(NADH dehydrogenase (ubiquinone) Fe-S protein 329

5), and NDUFB3(NADH: ubiquinone oxidoreduc- 330

tase subunit B3) were regarded as candidate genes 331

for the ongoing study (Fig. 3D). The results showed 332

that the LOAD predictive accuracies (AUC values) 333

of the three candidate genes were 0.703 (NDUFA1, 334

Fig. 4A), 0.701 (NDUFS5, Fig. 4B), and 0.594 335

(NDUFB3, Fig. 4 C) in the training group. NDUFA1 336

and NDUFS5 had better predictability, but NDUFB3 337

was not effective. Next, we used the data from the 338

validation group to verify the AUC of the two better- 339

performing candidate genes, the expression of both 340

genes was reduced in LOAD (Fig. 5A, B), and the 341

AUC of NDUFA1 and NDUFS5 were 0.687 and 0.682 342

(Fig. 5 C), respectively. 343

We were curious whether these candidate genes 344

were altered in the MCI stage, which is the pre- 345

AD stage. Therefore, we collected samples from 346

all patients with MCI over 65 years old in the 347

GSE63060, GSE63061, and GSE140829 datasets to 348
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Fig. 2. Differentially expressed analysis. A) The volcano shows the top 10 genes significantly changed in LOAD groups, red dots and blue dots
represent upregulated and downregulated genes in the LOAD group respectively, while green dots represent downregulated mitochondria-
related genes in the LOAD group. LOAD, late-onset Alzheimer’s disease. B) TOP 15 enriched KEGG pathways among LOAD DEGs.
KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes. C) TOP 15 enriched GO pathways among
LOAD DEGs. Ribosome-related pathways were removed due to low disease specificity. GO, Gene Ontology; BP, biological process, CC,
cellular component; MF, molecular function.

test our hypothesis. In the analysis, 300 MCI sam-349

ples were included. Similar to the results of LOAD,350

both genes were downregulated in MCI (Fig. 5A,351

B), and the AUC of NDUFA1 and NDUFS5 were352

0.668 and 0.652 (Fig. 5D), respectively. The num-353

ber of participants and the AUC in each group were354

summarized in Tables 1 and 2. The above results355

indicated that the two candidate MRGs had high accu-356

racies as single factors to predict both LOAD and 357

MCI. 358

Immune infiltration and immune-related factors 359

changed in LOAD 360

Studies have shown that the pathogenesis of AD 361

may be related to the infiltration, interaction, and 362
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Fig. 3. Selection of diagnostic biomarkers and identification of candidate genes. A, B) The 21 genes that met the diagnostic criteria were
determined by LASSO analysis. A) The horizontal axis represents the log value of the gene lambda, and the vertical axis represents the
independent gene’s coefficient. LASSO, least absolute shrinkage and selection operator. B) CIs with different values of lambda. C) 31
characteristic genes were identified by SVM-RFE algorithm. The horizontal axis represents the number of genes included, and the vertical
axis represents the error of cross validation. SVM-RFE, Support Vector Machine Recursive Feature Elimination. D) Venn diagram of MRGs
extracted from LASSO and SVM-RFE methods. MRG, mitochondria-related gene.

Fig. 4. ROC curves and corresponding AUC values for the training groups. The ROC curves of NDUFA1 (A), NDUFS5 (B), and NDUFB3
(C), AUC was 0.703, 0.701, and 0.594 respectively.

dysfunction of immune cells [38, 39]. Studying the363

characteristics of immune cell infiltration in LOAD364

and the relationship between the candidate genes and365

immune cells will help increase our understanding of366

the importance of immunity in LOAD and identify 367

potential diagnostic and therapeutic targets. 368

In this study, the CIBERSORT algorithm was used 369

to analyze 22 immune cell components in 322 LOAD 370
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Fig. 5. Expression and corresponding AUC value of candidate genes in the CN, LOAD, and MCI groups in validation groups. The expression
of NDUFA1 (A) and NDUFS5 (B) was significantly lower in LOAD and MCI. The ROC curves showed that the AUCs of NDUFA1 and
NDUFS5 were 0.687 and 0.682 in the LOAD validation groups (C), and the AUCs of NDUFA1 and NDUFS5 were 0.668 and 0.652 in the
MCI validation groups (D).

Table 1
The number of participants in each group

CN LOAD MCI

Training Group 353 322
Validation Group 101 113 300

samples and 353 CN samples, the results are shown371

in the histogram (Fig. 6A). Immune cells with sig-372

nificant differences between groups were presented373

in a violin plot (Fig. 6B), which showed that the374

LOAD group had significantly higher proportions375

of regulatory T cells (Tregs) (p = 0.010) and gamma376

delta T cells (p < 0.001), and lower proportions of377

Table 2
The AUC in each group

Training Validation Validation
on LOAD on MCI

NDUFA1 0.703 0.687 0.668
NDUFS5 0.701 0.682 0.652
NDUFB3 0.594

naüve B cells (p < 0.001) and resting CD4 memory T 378

cells (p < 0.001). The proportion of immune cells in 379

peripheral blood is altered in LOAD. 380

To further explore the relationship between the 381

candidate MRGs and immune cells, we performed 382
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Table 3
Primer information

Primers Sequence

NDUFA1 F ATGTGGTTCGAGATTCTCCCC
R CCTGTGGATGTACGCAGTAGC

NDUFS5 F TGCACATGGAATCGGTTATACTC
R CCGAAGCAAACACTCTACGAAAT

NDUFB3 F TGCTGTCAGGCAGAAGAACAG
R CTTAGCCCTTTTGCAGCCAG

GAPDH F CTGGCCAAGGTCATCCATGAC
R CTTGCCCACAGCCTTGGCAG

correlation analysis and found that NDUFA1 was pos-383

itively correlated with gamma delta T cells, resting384

CD4 memory T cells, activated natural killer (NK)385

cells, and monocytes, and negatively correlated with386

Tregs, M0 macrophages, resting NK cells, activated387

mast cells, and naüve CD4 T cells (Fig. 6 C). The388

relevance between NDUFS5 and immune cells was389

almost the same as NDUFA1, except that NDUFS5390

not positively correlated with monocytes but was neg-391

atively correlated with neutrophils (Fig. 7D). The392

above results suggested that both candidate MRGs393

were closely related to immune cell types.394

Prediction model was successfully constructed395

Age is an important risk factor for the onset of396

AD. According to U.S. statistical data, the incidence397

of AD increases sharply with age: 5.0% for peo-398

ple aged 65 to 74 years, 13.1% of people aged 75399

to 84, and 33.2% of people aged 85 or older [5].400

To further improve the disease prediction accuracy,401

independent predictors, including age, NDUFA1, and402

NDUFS5, were selected to construct the LOAD pre-403

diction model, which is presented as a nomogram404

(Fig. 7A). The AUC of the prediction nomogram was405

0.723 with all three factors and 0.708 without age406

(Fig. 7B). The calibration curve of the LOAD nomo-407

gram showed that the overall predicted probability408

matched the actual probability very well (Fig. 7 C).409

The DCA for the LOAD nomogram presented that410

if the threshold probability were over 0.04, using411

this LOAD nomogram to predict LOAD would bring412

more benefits than risks for patients (Fig. 7D). Pre-413

diction model was successfully constructed and the414

evaluation indicators were good.415

Differential expression of MRGs was verified by416

QRT-PCR417

To further verify the differential expression of the418

candidate MRGs in LOAD, MCI, and CN, peripheral419

blood samples were collected from Ruijin Hospital 420

for validation by qRT-PCR. We recruited 9 partic- 421

ipants who were CN, 8 patients with LOAD, and 422

10 patients with MCI. Patient information is shown 423

in Table 4, and all participants were over 65 years 424

old. Their blood samples were collected, and the 425

expression of the three candidate genes was veri- 426

fied by qRT-PCR. The results showed that all three 427

genes, NDUFA1 (Fig. 8A), NDUFB3 (Fig. 8B), and 428

NDUFS5 (Fig. 8 C) had lower expression in patients 429

with LOAD than CN. In addition, NDUFA1 and 430

NDUFB3 were significantly decreased in patients 431

with MCI when compared to CN, confirming our 432

conclusions from the public database. The results 433

supported three candidate genes as potential diagnos- 434

tic markers for LOAD and MCI in individuals over 435

65 years of age. 436

DISCUSSION 437

In this study, we found that the differential expres- 438

sion of two MRGs, NDUFA1 and NDUFS5, in 439

peripheral blood can be used as diagnostic mark- 440

ers for patients with LOAD and MCI over 65 years 441

of age. A LOAD diagnosis model was successfully 442

constructed by combining the two candidate MRGs 443

with age. At the same time, changes were found in 444

the mitochondria-related pathways and immune cell 445

composition in the peripheral blood of patients with 446

LOAD. 447

The pathological mechanisms and etiology of AD 448

remain unclear, and there is a lack of convenient 449

and quick indicators for early screening and diag- 450

nosis. Although the main pathological changes of 451

AD occur in the brain, obtaining brain tissue for 452

research purposes is difficult while patients are alive, 453

and few patients with LOAD donate their bodies 454

for scientific research. Therefore, using brain tis- 455

sue sample indicators as biomarkers for early AD 456

diagnosis is not feasible. Instead, blood-based mark- 457

ers offer a promising, minimally invasive approach 458

for diagnostic purposes. The A�42/A�40 ratio and 459

phosphorylated tau have shown potential as blood- 460

based biomarkers for AD [19]. Plasma A�42/A�40 461

levels have been demonstrated to predict the status 462

of A� deposition in PET-CT. However, the utility 463

of these biomarkers is subject to the variability in 464

detection methods and cohort studies, resulting in 465

varying AUCs ranging from 0.64 to 0.87, mostly 466

between 0.7–0.8 [40–43]. Two large-scale cohort 467

studies reported AUCs of 0.89 versus 0.72 [44] and 468
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Fig. 6. Immune infiltration between LOAD and CN. A) Relative proportion of peripheral blood infiltrates of 22 distinct subtypes of immune
cells in LOAD patients. B) Comparison of 22 immune cell types between CN and LOAD. Green represents normal and red represents LOAD.
C, D) The correlation of NDUFA1 (C) and NDUFS5 (D) with immune cells.
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Fig. 7. Model construction and evaluation. A) The LOAD nomogram was established for age and expression of NDUFA1 and NDUFS5 in
the cohort. B) ROC curve and corresponding AUC value. C) Calibration curves of the prediction nomogram in the cohort. D) Decision curve
analysis for the prediction nomogram.

Table 4
Patients information

CN MCI LOAD p
N 9 10 8

Age (y, mean ± SD) 72.8 ± 6.6 72.2 ± 4.1 73.4 ± 7.2 0.8189
MMSE score (mean ± SD) 29.8 ± 0.4 27.3 ± 1.8 20.5 ± 3.2 <0.0001
MoCA score (mean ± SD) 28.9 ± 0.9 22.5 ± 3.5 15.83 ± 2.3 <0.0001

MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; SD, standard
deviation.

0.83 versus 0.76 [45] for p-tau217 and p-tau181,469

respectively, in distinguishing between AD versus470

non-AD. Our approach, based on transcriptome anal-471

ysis, has an AUC of 0.72 for distinguishing between472

CN and LOAD, which is comparable to the two473

classic plasma biomarkers mentioned above. While474

the detection of plasma A� and tau is expensive475

and subject to measurement variations caused by476

pre-analytical processing and analytical performance477

[20], our method offers a simple, practical, and cost-478

effective alternative that can be applied on a large 479

scale in clinical settings. 480

Several studies have been conducted to screen 481

DEGs as biomarkers for AD, some of which directly 482

screened DEGs [25, 46], and some focused on the 483

specific fields related to the possible etiology and 484

pathology of AD, such as the immune microenviron- 485

ment [24], iron metabolism [23], and concomitant 486

diseases [22]. However, most studies did not dis- 487

tinguish between LOAD and EOAD. Compared to 488
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Fig. 8. qRT-PCR validation results. qRT-PCR was used to verify the expression of NDUFA1 (A), NDUFB3 (B), and NDUFS5 (C) in
CN, LOAD, and MCI. The experiments were performed in triplicate, and the data were expressed as mean ± SEM (*p < 0.05, **p < 0.01,
***p < 0.001; ns, no significance).

LOAD, EOAD has heterogeneous clinical mani-489

festations [47], an aggressive clinical course [48],490

different pathogenic mechanisms, and different gene491

changes [49], which may have a confounding effect492

on research results. At the same time, due to the493

inclusion of EOAD, there were also some younger494

individuals in the control group, which could not495

accurately reflect differences due to LOAD. There-496

fore, we believe that there is a need for more precise497

biomarker exploration in the LOAD subgroup. In498

studies of genetic diagnostic markers for AD, blood499

and brain tissue samples are often used. There is an500

interaction between immune cells in the blood and501

central nervous system [50–52], and numerous stud-502

ies on neurodegenerative diseases have found that503

changes in the peripheral blood can indicate the state504

of the disease to a certain extent [38, 53]. Considering505

the practicability, simplicity, cost, and availability of506

the samples, we chose blood samples for this study.507

We used bioinformatic analyses to identify gene508

expression changes in LOAD. Seventy-eight DEGs509

were identified in the peripheral blood of patients with510

LOAD. SVM–REF and LASSO algorithms were511

performed to determine three candidate MRGs as512

potential biomarkers for LOAD. After validation,513

NDUFA1 and NDUFS5 were selected as the candi-514

date genes for additional analyses. NDUFA1 is one515

of the “accessory proteins” identified in complex I516

[54]. Mitochondrial complex I is the primary entry517

point for electrons in the electron transport chain and518

is composed of core proteins and accessory proteins519

that perform bioenergetic functions [55]. Accessory520

proteins are not directly involved in catalysis but 521

mainly maintain the structural stability of the com- 522

plex and play a protective role in the response to 523

oxidative damage [56]. The loss of the NDUFA1- 524

encoded protein can cause complex-I deficiency, 525

inhibit caspase activation and apoptosis, and enhance 526

cell death induction [57]. Mutations in NDUFA1 may 527

play a role in early-onset dementia [58]. NDUFS5 528

is also an accessory subunit of mitochondrial com- 529

plex I [59]. The ND2-module is one of the seven core 530

mtDNA-encoded subunits in mitochondrial complex 531

I [60–63]. ND2 is critical for complex I assembly, 532

the presence of core ND2-module subunits is a nec- 533

essary condition for the stability of the complex [60]. 534

Once the accessory subunits cannot enter the com- 535

plex properly, the cell energy loss will increase and a 536

large number of assembly factors will be required 537

to maintain the biological function of complex 1 538

[64]. The latest assembly stages of the ND2-module 539

of complex I involve the incorporation of subunits 540

NDUFA1, NDUFA10, and NDUFS5 [61]. Changes in 541

the expression of NDUFA1 and NDUFS5 may affect 542

the assembly of the ND2-module, and thus, the struc- 543

ture and function of mitochondrial complex I. 544

Our findings on MRGs with decreased expres- 545

sion in LOAD and MCI are practical for clinical 546

application and advance the understanding of LOAD 547

pathogenesis, diagnosis, and prevention. The cause 548

of AD is not clear at present, but like other chronic 549

degenerative diseases, it may be caused by a vari- 550

ety of complex factors [5]. There are many different 551

theories about the pathogenesis of AD, including 552
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the mitochondrial cascade hypothesis, an important553

theory considering that mitochondrial dysfunction554

causes energetic and metabolic dysfunction and also555

drives the pathogenesis of AD, including A� plaque556

formation and tau deposition [65]. Evidence demon-557

strates both metabolic defects and oxidative damage558

in occur in AD. Further, a mitochondrial complex559

I inhibitor restored synaptic activity and cognitive560

function in 3xTg-AD mice and significantly reduced561

the levels of pTau [66]. In another study, the mito-562

chondrial function of peripheral blood mononuclear563

cells and platelets were measured, and the bioener-564

getic parameters, in descending order, were MCI,565

CN, and AD. They also found that respiration was566

positively associated with hippocampal volume, and567

systemic mitochondrial dysfunction was associated568

with cognitive decline [67]. It would be intriguing569

to investigate whether the three markers we identi-570

fied also contribute to the pathological mechanisms571

of LOAD in the brain.572

The interaction between immune signaling and573

the intrinsic cellular metabolic program determines574

the functional state of T lymphocytes [68]. Both575

mitochondrial oxidative phosphorylation (OXPHOS)576

and glycolysis are important metabolic pathways577

that promote T-cell proliferation [69]. In terms of578

biological energy, resting T cells are character-579

ized by low metabolic requirements, dependence on580

OXPHOS-derived ATP, and inhibition of glycolysis581

[70]. Mitochondrial ATP production is essential for582

T cell activation, and their proliferation is associ-583

ated with significant glucose uptake and glycolysis,584

which are the main sources of ATP. Mitochondrial585

respiration is enhanced by T-cell activation [53, 71].586

The expression changes of MRGs in LOAD, such as587

NDUFA1, NUDFS5, and NDUFB3, may be related588

to changes in the immune cells in AD peripheral589

blood, the specific biological processes affected will590

be explored in our following studies. Our study591

showed that the LOAD group had significantly higher592

proportions of Tregs and gamma delta T cells, and593

lower proportions of resting CD4 memory T cells594

and naüve B cells. Among the proportion of changed595

cells, three candidate genes were positively correlated596

with gamma delta T cells and resting CD4 memory597

T cells, and negatively correlated with Tregs. Studies598

on Tregs in AD have been inconsistent. Some studies599

have revealed that the frequency of Tregs increases600

with age and is accompanied by intensified suppres-601

sive activity of Tregs in patients with AD [39, 72,602

73], which is consistent with our results. However,603

a recent study found that the proportion of circulat-604

ing Tregs in descending order was MCI, CN, and 605

AD [74], which is inconsistent with our analysis. 606

Differences in results are probably due to different 607

research methods and samples. The CDR3 region of 608

T-cell receptor � genes in AD brain tissue and periph- 609

eral blood is unique. AD brain hydrophilic residues 610

increased, as well as clones with larger volumes [75], 611

which may be related to the inflammatory process 612

of AD. As for the relationship between resting CD4 613

memory T cells and AD, one study found six kinds 614

of inflammatory cells infiltrating 13 brain regions, 615

and resting CD4 memory T cells had the highest pro- 616

portion [76]. Some studies suggest that resting CD4 617

memory T cells may be involved in the AD process 618

[77, 78]. It has also been reported that there is a sig- 619

nificant reduction in naüve B cells in the peripheral 620

blood of patients with AD [79, 80]. 621

The changes in peripheral blood mitochondrial 622

function found by our enrichment analysis may 623

reflect the dysfunction of brain mitochondria in 624

patients with LOAD to a certain extent, and the spe- 625

cific correlation and mechanism need to be further 626

explored. Peripheral circulating immune cells may 627

crosstalk with the central nervous system (CNS). 628

Immune cells in the peripheral blood also exist in the 629

CNS, and immune surveillance through the selected 630

peripheral white blood cells provides a maintenance 631

mechanism that is essential for brain function [81]. 632

Episodes in neurodegenerative diseases occur when 633

the presence of pathological mediators in the CNS 634

overrides this capacity for immune surveillance [82]. 635

Along the gut-brain axis, Tregs interact with a vari- 636

ety of resident cells in the CNS, including immune, 637

epithelial, and neuronal cells, to produce a powerful 638

neuroprotective effect in neuronal diseases [50, 51]. 639

It has also been shown that Chlamydia pneumoniae 640

infection may lead to dysregulation of key path- 641

ways involved in AD pathogenesis after intranasal 642

inoculation [83]. Moreover, circulating blood cells 643

are exposed to paracrine factors that regulate mito- 644

chondrial function throughout the body, possessing 645

high ETC activity and metabolic flexibility [84], and 646

have long been considered as a potential sensitive 647

marker of mitochondrial dysfunction [85]. Blood cell 648

bioenergetics can indicate the bioenergetics of high 649

metabolically active tissues such as brain [86]. 650

AD is a neurodegenerative disease with insidi- 651

ous onset and gradual development [2]. Pathological 652

changes such as tau protein deposition occur before 653

clinical symptoms [15], and mitochondrial dysfunc- 654

tion in the brain can be detected in the MCI stage 655

[87]. We were curious whether the MRG alterations 656
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identified in this study were altered in the earlier MCI657

stage, so we validated them on the gene datasets and658

collected clinical peripheral blood samples. Dataset659

analysis showed that NDUFA1 and NDUFS5 were660

significantly decreased in patients with MCI com-661

pared to the CN group, and both had good prediction662

accuracy for MCI. The two candidate genes we iden-663

tified can predict LOAD earlier and provide help for664

early detection and intervention of LOAD.665

We performed qRT-PCR validation on clinical666

peripheral blood samples, and found that NDUFA1,667

NDUFS5, and NDUFB3 were significantly decreased668

in LOAD compared to CN. NDUFA1 and NDUFB3,669

but not NDUFS5, were significantly decreased in670

patients with MCI compared to CN. LOAD exhib-671

ited more significant changes in MRGs. This may be672

related to the different sources and scales of patients673

between the clinical samples and datasets, and the674

reason needs to be further explored.675

Although we identified some MRGs that can serve676

as candidate genes for LOAD and MCI using bioin-677

formatics methods and qRT-PCR experiments, our678

study still has limitations. First, the clinical valida-679

tion samples in this study were small and came from680

a single center, therefore, the conclusion may lack the681

universality of other regions and populations. In the682

future, more samples should be collected to verify the683

correlation between MRGs and LOAD. Second, the684

experiments in this study did not classify peripheral685

blood leukocytes; subsequent studies could classify686

leukocytes to explore specific groups with significant687

changes in MRGs expression. Third, the molecu-688

lar biological mechanisms between down-regulated689

MRGs and LOAD needs to be further explored, which690

will be shown in our following work.691

Conclusion692

Using the GEO public database and machine learn-693

ing methods, including LASSO and SVM-RFE, we694

identified two MRGs, NDUFA1 and NDUFS5, which695

can be used as candidate genes of MCI and LOAD,696

and we constructed a disease prediction model.697

The results were verified by qRT-PCR of clinical698

blood samples. Biological function analysis showed699

that the expression of mitochondria-related pathways700

was significantly changed. This study also reported701

changes in LOAD peripheral circulating immune702

cells, and Tregs and resting CD4 memory T cells703

were closely related to changes in candidate genes;704

the specific mechanism will be further explored.705
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