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Abstract. High dietary intake of saturated fatty acids is a suspected risk factor for neurodegenerative diseases, including
Alzheimer’s disease (AD). To decipher the causal link behind these associations, high-fat diets (HFD) have been repeatedly
investigated in animal models. Preclinical studies allow full control over dietary composition, avoiding ethical concerns in
clinical trials. The goal of the present article is to provide a narrative review of reports on HFD in animal models of AD.
Eligibility criteria included mouse models of AD fed a HFD defined as > 35% of fat/weight and western diets containing
> 1% cholesterol or > 15% sugar. MEDLINE and Embase databases were searched from 1946 to August 2022, and 32
preclinical studies were included in the review. HFD-induced obesity and metabolic disturbances such as insulin resistance
and glucose intolerance have been replicated in most studies, but with methodological variability. Most studies have found
an aggravating effect of HFD on brain A� pathology, whereas tau pathology has been much less studied, and results are more
equivocal. While most reports show HFD-induced impairment on cognitive behavior, confounding factors may blur their
interpretation. In summary, despite conflicting results, exposing rodents to diets highly enriched in saturated fat induces not
only metabolic defects, but also cognitive impairment often accompanied by aggravated neuropathological markers, most
notably A� burden. Although there are important variations between methods, particularly the lack of diet characterization,
these studies collectively suggest that excessive intake of saturated fat should be avoided in order to lower the incidence of
AD.
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INTRODUCTION

Alzheimer’s disease (AD) remains the most preva-
lent cause of dementia, affecting over 40 million
people worldwide [1–4]. From a neuropathological
standpoint, two main hallmarks drive AD pathology:
extracellular accumulation of amyloid peptides (A�)
that form toxic senile plaques and the aggregation of
neurofibrillary tangles (NFTs) made of hyperphos-
phorylated tau (ptau). Both A� and ptau are central
for the diagnosis of AD [1, 4–7]. While these neu-
ropathological markers are essential for a correct
post-mortem diagnosis, their role on the etiopatho-
physiology of the disease is unclear. Decades of
research has exposed the multifactorial nature of AD,
which has led to a shift from targeting classical AD
hallmarks separately to considering other risk factors
that alter the progression of the pathology, includ-
ing metabolic and cardiovascular deficits [6, 8–14].
Indeed, many clinical investigations now focus on
improving brain metabolism by the implementation
of insulin modulators or diets [15–18]. Though such
investigations provide room for optimism, none has
secured approval by health agencies.

In the last two decades, nutrition has risen to the
forefront of research on neurodegenerative diseases
(NDDs). Epidemiological and preclinical endeav-
ors have provided solid evidence that an adequate
nutrition may benefit cognition, at least in some pop-
ulation or experimental settings [19–21]. Dietary fats
have received particular attention given the extent by
which they are found in different human diets and
because brain lipid concentrations, particularly fatty
acids, can be altered by the composition of diet [20,
22–25]. In this sense, studies generally point to diets
rich in poly- and monounsaturated fatty acids (PUFA,
MUFA) to be associated with a lower incidence of
NDDs. By contrast, diets rich in saturated fatty acids
(SFA) are commonly deemed detrimental for cogni-
tion [26–28]. The link between brain function, lipid
content, and diet composition has thus led to the
hypothesis that dietary interventions may be used to
prevent or modify disease progression in NDDs [2,
29–36].

Understanding the implications of nutritional fac-
tors on NDDs implies evaluating diets that can be
preventive as well as those classically deemed detri-
mental for neurodegeneration. Whereas randomized
controlled trials (RCTs) are essential to issue health
recommendations and epidemiological studies are
useful to detect associations, they remain silent on
possible causal relationships. DHA for example, has

been studied in RCTs of cognitive decline [29, 30,
37] and high MUFA/DHA diets are now routinely
incorporated into multidomain clinical trials [2, 20,
31–33]. However, other types of fats cannot be inves-
tigated in clinical trials due to practical and ethical
reasons. Dietary lipids such as SFA and trans-fatty
acids cannot form part of RCTs given their possible
detrimental effects on human health. In this sense,
studies in animal models of NDDs offer a valuable
opportunity to directly assess the impact of diets on
mechanistic endpoints.

Data tell us that HFD have been extensively used to
induce obesity and metabolic disease to model type
2 diabetes mellitus (T2DM) in preclinical models of
AD (Table 1) [38]. However, the effect of HFD on
AD related outcomes is still debatable, with a previ-
ous review already highlighting some inconsistency
in the results published [39]. The present work seeks
to provide a detailed overview of the HFD studies car-
ried out in the last 30 years in animal models of AD,
highlighting the consistent and less consistent results
obtained. A focus will be set on cognitive endpoints
and on the classical neuropathological markers of
AD, but other AD-relevant outcomes will also briefly
be discussed. We will emphasize the importance of
detailing the nutritional content of experimental diets
to generate reproducible data. Overall, this study
responds to a need created by the multitude of studies
published, with sometimes apparently contradictory
results, carried out using a variety of methodological
approaches.

ASSOCIATIONS BETWEEN DIETARY
FATS AND THE INCIDENCE OF
NEURODEGENERATIVE DISEASES

Saturated fatty acids

SFA are carbon chains containing a methyl group
on one end of its structure and a carboxyl group
at the other end. SFA, by definition, do not present
double bonds in their structure and can be classified
into two broad categories: long-chain saturated fatty
acids (LCFA) and short-chain fatty acids (SCFA),
although this is not a standardized definition [40,
41]. LCFA are typically found in dairy and red meat,
but food sources contain a mixture of different fatty
acids, which can influence their different physiolog-
ical effects [40].

The health implications of high SFA intake have
been studied mostly in respect to cardiovascular dis-
ease. Dietary saturated fats have been considered



J.Valentin-E
scalera

etal./H
igh-fatD

iets
in

A
D

M
odels

979

Table 1
Summary of rodent’s studies and one human study investigating the effect of HFD on AD-related outcomes

HFD Diet comp. AD model Metabolism Cognition /
behavior

Neuropathology Synaptic /
Neuroinflamm.

Ref.

APOE Knock in mouse models

WD (45% cal fat, 17%
sugar) for 13 weeks

No APOE �3- and
�4-FAD
females

↓ Glucose
tolerance (�3FAD)
↑ Adiposity (�3-
and �4FAD)
↑ Leptin
(�4 > �3FAD)

↓ Memory
(�3FAD)

↑ A� pathology
(�3FAD only) pTau:
ND

No change in
microglia

[285]

WD (45% kcal fat,
17% sucrose) for 12
weeks

No APOE �3- and
�4-FAD males

Metabolic
impairment

ND ↑ A� pathology
(�4FAD only) pTau:
ND

↑ Glial cells in
�4FAD-WD

[286]

HFD (60% kcal fat)
for 32 weeks

No APOE-KO,
APOE �3- and
�4-trangenic
males

Metabolic
impairment

ND A� pathol-
ogy: No change ↓pTau
(pSer396,pSer202/Thr205pThr23)

ND [254]

Mice carrying human APP mutations

Atherogenic diet
(15.75% fat, 1.25%
chol. and 0.5%
Na-cholate) for 4
months

No Tg2576 ↑Chol. (High
LDL/Low HDL)

↓ Learning ↑ A� pathology pTau:
ND

ND [240]

HFD (60% kcal fat)
for 5 months

No Tg2576 Metabolic
impairment

↓ Learning ↑ A�40/42 pTau: ND ND [193]

HFHC (1.25% Chol.,
0.5% cholic acid and
15% fat) 7–10 months

No TgAPPsw
females

↑Chol. (VLDL)
↑APOE and
APOEB

ND ↑ A� pathology pTau:
ND

↑ Microglia activation [277]

4 diets including HFD
(60% kcal fat) for 14
weeks

Yes TgCRND8 Metabolic
impairment

ND ↑ A� pathology pTau:
ND

ND [239]

HFD (60% kcal fat)
for 20 weeks

No APP/PS1 Metabolic
impairment
↑ Chol., HDL-c

↓ Memory ↑A� pathology pTau:
ND

ND [189, 190]

HFD (56.7% kcal fat)
for 2 months

Yes APP/PS1 Metabolic
impairment
↑ Chol.

↓ Memory A� pathology: no
change pTau: ND

↑ Microglia activation [191]

(Continued)
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Table 1
Summary of rodent’s studies and one human study investigating the effect of HFD on AD-related outcomes

HFD Diet comp. AD model Metabolism Cognition /
behavior

Neuropathology Synaptic /
Neuroinflamm.

Ref.

HFD (60% kcal fat)
for 23 weeks

No APP/PS1 Metabolic
impairment
↑ Chol.

↓ Learning ↑ A� pathology
↑ pTau: No change

No change in synaptic
markers ↑ Microglia
activation

[242]

HFD (45% kcal fat)
for 5 months

No APP/PS1
males

Metabolic
impairment
↑ Triglycerides

↓ Memory ↑ A� pathology
↑ pTau (only in
NonTg)

ND [248]

HFD (45% kcal fat)
for 3 months

No APP/PS1 Metabolic
impairment
↑ Triglycerides

↓ Memory ↑ A� pathology pTau:
no change

No change [279]

WD (42% kcal fat,
34% sugar) for 4
months

No APP/PS1
males

Metabolic
impairment

↓ Memory ↑ A� pathology
(microvessels) pTau:
ND

ND [278]

HFD (60% kcal fat)
7.5–10 months

Yes APP/PS1 Metabolic
impairment

↓ Memory/
locomotion

↑ A� pathology pTau:
no change

↑ GFAP and TNF-� [192]

HFD (42% kcal fat)
15–17 months

No APP/PS1 ND No change ↑ A� pathology pTau:
ND

↑ Microglial
activation

[222]

HFD (60% kcal fat)
for 10 weeks

No 5xFAD Metabolic
impairment (only
in NonTg mice)

↓ Memory ↑ A� pathology pTau:
ND

ND [283]

WD (16.4% kcal fat,
57.6% sugars) for 8
months

Yes APP/PS1 ↑ Fasting glucose
(only in females)

ND ↑ A� pathology pTau:
ND

↑ Astrocytes and
microglia (GFAP and
IBA1)

[284]

HFD (40% kcal fat)
for 12 months

No APPNL−F/NL−F

males
Metabolic
impairment

↓ Spatial
memory

↑ A� pathology pTau:
no change

↑ Microglial
activation ↓ PSD95

[241]

HFD (60% kcal fat)
for 3.5 months then
HFD (45% kcal fat)
with various ω6/ω3
ratios (1 : 1, 5 : 1 or
16 : 1)

Yes APP/PS1
males

Metabolic
impairment
↑ Serum TC,
LDL-c, and
HDL-c

No change ↑ Soluble A�40/42
and ↓ Aggregated
A�40/42 pTau: ND

↑ NF-kB P65 [226]
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Mice developing tauopathies

HFD (59% kcal fat)
for 20 weeks

Non THY-Tau22
males

Metabolic
impairment

↓ Spatial
learning

↑ pTau
(Ser214,Ser404,Ser422only)
A�: ND

No change in
spinophilin or syp.

[217]

HFD (15.3% fat) for
8.5 months

Yes PS19 females Metabolic
impairment
↑ Triglycerides,
leptin

ND ↑ pTau
(insolublepSer202/Thr205)
A�: ND

↓ Syntaxin
↑ Microglia activation

[249]

5 diets including WD
(45% kcal fat, 15%
kcal fructose in water)
and HFD (45% kcal
fat) for 6 months

Yes hTau Obesity No
change in glucose/
insulin

ND pTau: no change A�:
ND

ND [218]

HFD (35% wt/ fat, 5%
wt sucrose) for 5
months

No Tg601 females Metabolic
impairment

↓ Spatial
learning and
memory

↑ pTau (pSer214) A�:
ND

ND [251]

Mice carrying mutations on both human APP and MAPT (tau)

HFD (60% kcal fat)
for 3 months

No APPSwe-Tau
females

Metabolic
impairment
↑ Triglycerides
↓ Adiponectin

No change A�: ND pTau: no
change

ND [253]

3 diets: HF/low ω3: ω

6 ratio (35% wt/ fat)
for 9 months

Yes 3xTg-AD Metabolic
impairment
↓ DHA levels in
the brain

↓ Memory ↑ A� pathology
↑pTau (totaltau)

↑ GFAP ↓ Drebrin
(unchanged syp.,
SNAP25 and
syntaxin-3)

[250]

HFD (60% kcal fat)
for 4 months

Yes 3xTg-AD Metabolic
impairment
(males)
↑ Adiposity
(males)

↓ Exploration
(males),
↓ Alterations

↑ A� pathology pTau:
no change

ND [120]

HFD (60% kcal fat)
for 9 months

Yes 3xTg-AD
females

Metabolic
impairment
↑ Adiposity

↓ Memory (no
change in
anxiety/
locomotion)

↑ A� pathology pTau:
no change

No change in drebrin,
SNAP25 or syp.

[178]

(Continued)



982
J.Valentin-E

scalera
etal./H

igh-fatD
iets

in
A

D
M

odels

Table 1
Summary of rodent’s studies and one human study investigating the effect of HFD on AD-related outcomes

HFD Diet comp. AD model Metabolism Cognition /
behavior

Neuropathology Synaptic /
Neuroinflamm.

Ref.

HFD (60% kcal fat),
starts 2 months of age
until 3–4/7–8/11–12
or 15–16 months

No 3xTg-AD
males

Metabolic
impairment

↓ Learning
with aging

A�: no change pTau:
no change

↑ Microglial
activation

[195]

HFD (60% kcal fat)
for 16 weeks

No 3xTg-AD
females

ND ↓ Memory A�: no change pTau:
no change

ND [223]

HFD (58% kcal fat)
for 6–12 months

No 3xTg-AD
males

Metabolic
impairment
↓ Leptin

↓ Memory ND ND [224]

HFD (60% kcal fat)
for 4 months

No 3xTg-AD
MxD

Metabolic
impairment

↓ Spatial
learning/
memory
(females)

A�: no change pTau:
no change

No change [252]

HFHC (20% kcal fat,
1.25% chol.) for 60
days

Yes 3xTg-AD Obesity, ↑ chol. ↑ Locomotion
unchanged
memory

A�: ND pTau: ND ND [225]

Human study

HFD (45% kcal fat)
for 6 weeks

No Healthy twins
(n = 92),
31D±14)
years old

ND ↓ Memory
(AVLT in AA
carriers)

ND ND [305]

Most studies in rodents have investigated the effect of HFD on metabolic endpoints, behavior, and brain amyloid-� load. Some have studied the effect on tau pathology, synaptic and/or
neuroinflammatory markers. Diets were various but most included ≥ 40% kcal from fat. Diet composition enabling replication was available in about 33% of studies. Metabolic impairments were
confirmed in a majority of studies, with assessment of weight and deficits in peripheral glucose/insulin metabolism. AA, Homozygous carriers of the rs9472159 polymorphism in SLC2A1 gene;
A�, amyloid-beta; AVLT, Auditory verbal learning task; Chol., Cholesterol; Comp., Composition; GFAP, Glial fibrillary acidic protein; HDL, High density lipoprotein cholesterol; HF/HC, High
Fat+High Cholesterol; HFD, High Fat Diet; IBA-1, Ionized calcium-binding adapter molecule 1; LDL, Low-density lipoprotein cholesterol; LFD, Low Fat Diet; ND, Non-determined; pTau,
phosphorylated tau; Neuroinflamm., Neuroinflammation; Syp, synaptophysin; TC, total cholesterol; VLDL, Very low density lipoprotein cholesterol. Mouse models cited: Tg2576 and TgAPPSwe:
mice overexpressing a mutant form of APP (APPSwedish); TgCRND8: mice overexpressing 3 human mutations in the APP gene (K670M/N671 L and V171F); APP/PS1: double transgenic mice
expressing a chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9); THY-Tau 22: model of tauopathy with Tau 2 mutations (G272 V
and P301 S); PS19: model of tauopathy with hMAPT mutation on P301 S; hTau: mice lack endogenous murine microtubule-associated protein tau (Mapt) gene expression, and express all six
isoforms (including both 3 R and 4 R forms) of hMAPT; APPSwe-Tau: Tg2576/Tau(P301 L) generated by crossing Tg2576 mice, which have the transgene for human APP (isoform 695) carrying
the Swedish mutation with JNPL3 mice expressing human MAPT (4 repeat) with the P301 L mutation.; 3xTg-AD: Triple transgenic mice expressing 3 human mutations APPswe, PSIMI46 V on
APP and tauP301 L hMAPT to generate A� and tau pathologies; MxD: Carotid artery occlusion model.
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atherogenic, in part, due to their action on blood
cholesterol [42, 43]. While recommendations to limit
saturated fat intake have been widely accepted, recent
studies conclude that saturated fats have no signifi-
cant effect on cardiovascular or total mortality [40,
44]. This is particularly the case for high SFA foods
such as dairy, unprocessed meat, and chocolate [40,
44]. Studies in animals also suggest that the actual
processing of lipids is important for their health
effects. For example, highly processed coconut oil
raises serum cholesterol while virgin coconut oil does
not [45, 46]. Thus, the physiological response to high
SFA intake goes beyond a “black and white” sce-
nario where different factors such as food source and
processing must be considered.

Variation in the dietary uptake of fatty acids
have also been implicated in risk of dementia [47–
50]. Clinical cohorts, including the Chicago Health
and Aging Project (CHAP), the Cardiovascular Risk
Factors, Aging and Dementia (CAIDE), and the
Three-City study, associate multi-nutrient diets low
in PUFA and high in SFA with increased risk of
dementia and cognitive deficits [47, 49, 51–53]. Fur-
ther associations between multi-nutrient diets low in
SFA and high in fruit, vegetables, olive oil, and fish
strengthen the link between low SFA intake and better
cognitive health [25, 54–64]). Albeit some excep-
tions [65, 66], circulating lipids including LCFA and
PUFA also appear to be modulated in dementia and
have been regarded as possible biomarkers of cogni-
tive status [67–72]. Thus, lipid metabolism, including
that of SFA, remains a critical aspect of dementia that
should be taken into account in new interventions for
neurodegenerative diseases.

Mono- and poly-unsaturated fatty acids

Contrary to SFA, monounsaturated fatty acids
(MUFA) and polyunsaturated fatty acids (PUFA)
have one or more carbon-carbon double bonds in
their structures. Both MUFA, such as oleic acid
(18 : 1), and n-3 PUFA, such as DHA and EPA, have
received increasing attention in dementia research as
they play fundamental roles in brain structure and
function [73–75]. Associative studies consistently
report a healthier lifestyle and high PUFA intake
with lower risks of dementia [20, 23, 25, 27, 69, 76].
These observations have been studied in registered
RCTs where results have been less conclusive [21,
33, 77–80]. Still, multi-domain interventions aiming
at preventing dementia via modification of lifestyle
factors include high ratios of MUFA and PUFA as

part of their dietary patterns and have shown some
benefits on cognitive scores [2, 31, 73, 81]. Alto-
gether, while preventive measures based on dietary
patterns including PUFA and MUFA, combined with
changes in other lifestyle habits, attract a growing
interest as a mode of intervention in dementia [2,
9, 10, 20, 23, 25, 27, 31, 64, 76, 81–86], there
are many gaps in our understanding of their causal
association with brain function that deserve further
study.

ANIMAL MODELS USED IN AD RESEARCH

Animal models constitute a critical part of AD
research that serve as the basis to decipher patholog-
ical mechanisms and test therapeutic targets. Thus,
preclinical models that accurately modulate AD
pathology are needed [87–90]. Of these, mice are
the most commonly used given their relative ease
of breeding and genetic manipulation [90, 91]. They
also allow the control of study variables to an extent
that is not possible in humans. For example, induc-
ing obesity through HFD to determine its impact on
AD pathology in humans would be unethical. Mouse
models thus, provide an essential tool to bridge the
gap in translating preclinical to clinical outcomes in
AD research [88, 92]. That being said, one must keep
in mind that, because of their short lifespans, mouse
models cannot emulate the aging process as it occurs
in elderly humans and thus cannot fully incorpo-
rate the main risk factor of AD, namely old age. As
AD-like pathology does not spontaneously develop
in mice, these transgenic mice are rather models of
living brains exposed to the progressive build up of
molecular hallmarks of AD. The objective behind the
use of these models is not to discover what is the initi-
ating culprit that triggers the development of AD (i.e.,
etiology), but rather to study how an experimental
intervention impacts the classical features of AD, in
a fully controlled setting. In this perspective, risk fac-
tors associated with AD are anticipated to exacerbate
AD-related pathologies. Conversely, potential treat-
ments are expected to either mitigate this pathology
or delay its onset.

WHAT CONSTITUTES A GOOD MODEL
FOR AD?

AD models should display neuropathological hall-
marks that are central for diagnosis; that is A�
pathology and ptau, with ideally some degree of
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synaptic and neuronal damage [91]. So far, no model
fully achieves every feature, most recapitulating only
one or a limited set of pathological hallmarks [93,
94]. Nonetheless, a milestone in the development of
rodent models of AD came with the implementation
of transgenic technology in the early 1990 s. Since
murine A� and tau are not as prone to form insolu-
ble deposits as human A� and tau, the introduction
of human transgenes becomes necessary to generate
mouse models of AD neuropathology. This made it
possible to study in vivo genetic mutations known to
cause AD in humans, giving rise to transgenic mod-
els bearing one or several phenotypes of the disease.
These models have been valuable tools in supporting
the launching of clinical trials. The database Alzfo-
rum reports 162 mouse models of AD, summarizing
the numerous options available and reflecting the pro-
gression of new technologies in this area. Defining a
good model for AD depends much on the hypothe-
sis investigated. Some models are characterized by a
fast induction of AD neuropathology (e.g., intracere-
bral infusion of A�) [95] while in other models this
happens more progressively (e.g., chronic transgene
expression) [96–98]. The following section briefly
covers some of the most prominent mouse models
that have been used to investigate HFD, but more
extensive reviews can be found elsewhere [90–92,
99–101].

TRANSGENIC MODELS FOR AD

Transgenic models expressing human APP
mutations

One of the earliest models of transgenic mice har-
boring a human APP mutation is the PDAPP mouse
model [102, 103]. PDAPP mice exhibit cognitive
deficits in spatial and recognition memory from a
young age (at 4 and 6 months) [104, 105] and a 10-
fold increase in APP, extracellular plaque formation,
gliosis, and synaptic deficits [104]. The generation
of the Tg2576 model followed PDAPP and is consid-
ered one of the most well characterized mouse models
of AD [96]. This model overexpresses human APP
containing the Swedish mutations (K670 N, M671 L)
and develops age-associated cognitive deficits, A�
plaques and vascular amyloid by 11-13 months [106].
However, a limitation associated with these trans-
genic models is the lack of extensive neuronal loss
and brain atrophy that is seen in AD patients [106].

Efforts to induce a more severe neuropathologi-
cal phenotype resulted in mice expressing multiple

mutations of the familial form of AD (FAD). The J20
model carries two FAD mutations in the APP gene
(Swedish and Indiana) and expresses high levels of
A� [107] while 5xFAD mice harbors five mutations
in the APP and PSEN1, showing an aggressive form
of the pathology as early as 2 months of age [93].
Mice expressing FAD mutations can partially induce
AD-pathology and are useful to study A� plaque
formation and cognitive deficits. However, a com-
plete recapitulation of AD still lacks in these models
given the limited neurodegeneration observed and the
absence of tau pathology [108, 109].

Transgenic models with tau pathology

Contrary to FAD mutations in the APP gene,
genetic mutations for tau protein have not been
described in AD thus far. Instead, models express-
ing mutations associated with frontotemporal lobar
degeneration (FTLD) in the MAPT gene are used
to mimic tau pathology observed in AD [110]. The
JNPL3 mouse is the first model reported in this cate-
gory and harbors the P301 L mutation, developing
motor and behavioral deficits with age-dependent
accumulation of NFTs [111]. In general, tau trans-
genic mice exhibit NFT-like pathology, neuronal and
synaptic loss and cognitive impairment in an age-
dependent manner [110]. However, the phenotype
induced in these models is not entirely representative
of that in human AD since NFT development in these
mice requires FTLD mutations, which are not found
in AD [112]. An exception is the hTau mouse, which
expresses only non-mutated human tau isoforms in
the absence of the murine orthologs but nonetheless
develops tangles and cognitive deficits [113].

Transgenic models with both Aβ and tau
pathologies

A more representative way to study AD pathol-
ogy is through preclinical models that express both
A� and NFT pathology. Achieving such a task
relies on the simultaneous expression of mutated
APP, microtubule-associated protein tau (MAPT) and
sometimes PSEN1 or PSEN2. The 3xTg-AD model
combines familial mutations for AD (APP Swedish,
and PSEN1 M146 V) and FTLD (MAPT P301 L) and
is one of the most used transgenic models of AD
[90, 109, 114, 115]. These mice develop progressive
accumulation of A� and NFTs in the cortex and hip-
pocampus, as well as deficits in learning and memory
by 6 months [98, 116]. In addition, several sexual
dimorphisms have been noted in the 3xTg-AD model
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as female mice tend to exhibit more pronounced A�
pathology and age-dependent deterioration in glu-
cose metabolism [115, 117–121]. Altogether, this
transgenic model offers the opportunity to study AD
in a context of both A� and tau pathologies while also
considering a degree of metabolic dysfunction.

Knock-in models

Most of the above cited models depend not only
on APP mutations to generate A� pathology but also
in overexpression of APP driven by an exogenous
promoter. Since the transgene can be integrated at
random locations and in multiple copies, an artifi-
cial phenotype of AD can be induced [89, 90, 109,
122]. To overcome setbacks of APP overexpres-
sion, knock-in models were developed to produce
pathogenic A�42 [88, 89, 92, 122–125]. In such
models, A� is humanized by changing the three
amino acids that differ between mice and humans
(G676 R, F681Y, H684 R) and two FAD muta-
tions are introduced into the App murine gene
[108]. The pathology is generally less aggressive
than in previous transgenic models and the timing
of pathology depends on the mutation expressed
(https://www.model-ad.org/resources/). These mice
may represent a step towards a more physiologically
accurate model of AD in mice, but defining appropri-
ate controls in knock-in models is complicated [88].
In other words, models with overexpressed genes can
be compared with their wildtype controls while it is
likely that the human KI gene does not behave like
its endogenous murine counterpart [126].

Other rodent models

Mouse models that introduce genetic risk factors
for sporadic AD, such as the �4 allele of APOE
have also been developed, but many of them have
not been exposed to HFD protocols yet [127, 128].
Transgenic mice expressing either human APOE �3,
or �4 under the regulation of different promoters,
including the neuro-specific enolase (NSE) and glial
fibrillary acidic protein (GFAP) have been used for
more than a decade [129, 130]. APOE �4 mice have
shown age and sex-dependent deficits in learning
and high phosphorylation of tau in neurons [99,
131, 132]. The development of mice with differ-
ent mutations related to AD (APP, PS1, MAPT, and
APOE) has also allowed for the creation of dou-
ble mutant mouse lines. Models like the 5xFAD
mice and TgCRND8x, for example, harbor muta-
tions on APP+PS1, and APP+APOE, respectively

[93, 133]. Other models have made it possible to study
neurovascular dynamics. Transgenic mouse strains
with tamoxifen-inducible deletion of Lrp 1 (Slco1c1-
CreERT2 Lrp1fl/fl mice) in brain endothelial cells
have been used to study the role of LRP1 in AD
pathology [134, 135]. In addition to transgenic and
knock-in models, cognitive deficits can be induced
in mice using A� peptides, streptozotocin (STZ),
okadaic acid, ibotenic acid, and quinolinic acid. Of
these, intracerebroventricular (ICV) injection of A�
peptides remains the most representative, showing
neuronal loss and cognitive deficits similar to AD
[136]. Though these mouse models continue to be
used, the development of transgenic models have
progressively replaced their use in AD research as
they mimic more closely the slow progression of
AD pathology [100]. Of note, rat and rabbit models
have also been developed, at greater cost but with the
advantage of allowing for more in-depth behavioral
evaluations [137–139]. Finally, many research teams
have tried to identify spontaneous models of AD with
relatively limited success, particularly because of
their short lifespan [90, 140, 141]. When the research
in progress will bear fruit, we will develop a better
understanding of the impact of HFD on these promis-
ing new models.

WHICH FAT MAKES A HFD?

The typical American or European diet contains
36–40% fat by calories [142]. A human HFD contains
somewhere between 50% and 60% of fats relative to
total caloric intake [143] and may include other nutri-
ents such as cholesterol, sugars, and sodium [144].
HFD in preclinical research aim to replicate as close
as possible a human diet enriched in fat and a variety
of HFD have been used with differences in fat per-
centage, fatty acid composition and fat sources [145].
In the scope of this review, mouse diets include a
range between 35–60% kcal from fat (Table 1). Fatty
acid composition in such diets can also vary in terms
of saturation percentage and fat source. Altogether,
the common consensus of the definition of a HFD is
limited to an elevated percentage of kcal in fat, leav-
ing a gap for variability in terms of fat sources and
other macro- and micronutrients.

RELEVANCE OF HFD IN ANIMAL
MODELS OF AD

Obesity and T2DM are major health problems
that result from high consumption of fat and calo-
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ries along with a sedentary lifestyle [146]. Besides
affecting peripheral organs, both obesity and T2DM
have been associated with higher risks of AD [147–
153]. Indeed, mid-life obesity has been associated
with nearly a three-fold higher risk of develop-
ing dementia and with a decreased hippocampal
volume [147, 154]. Metabolic dysfunctions in glu-
cose metabolism, insulin signaling, and inflammation
resulting from T2DM have also been proposed to
contribute to AD pathology while metabolic determi-
nants are considered potential therapeutic targets in
AD [8, 155–159]. Causative relations and mechanis-
tic processes, however, are more elusive. Therefore,
testing HFD in animal models of AD adds the oppor-
tunity to decipher overlapping mechanisms linking
obesity, T2DM, and AD. Moreover, long-term HFD,
which can be proinflammatory, may also enhance
“inflammaging”, a pathway correlating aging and
age-related disease with chronic inflammation that
is hypothesized to be an initiator of AD [160–165].
Of note, differences regarding the way HFD modu-
late metabolic indices and AD-like pathology have
been linked to biological sex. Male rodents fed a
HFD have shown worse glucose metabolism, inflam-
mation, anxiogenic and cognitive deficits [120, 166,
167]. On the other hand, higher inflammation and
learning deficits have also been reported in female
mice on a HFD [168, 169]. All in all, it is important
to consider sex-specific mechanisms when imple-
menting dietary protocols as they may be affected
differently by HFD. The following section summa-
rizes evidence from HFD studies in mouse models of
AD with outcomes focused on glucose metabolism,
insulin sensitivity, A� and tau pathology, cognition,
and behavior.

EFFECTS OF HFD ON THE METABOLIC
PROFILE IN THE MOUSE: RELEVANCE
TO AD

Glucose metabolism

Defects of brain glucose uptake is one of the
most replicated observations in AD patients and one
of the most key information brought by positron
emission tomography (PET) over the last decades
[170–173]. Relative to its size, the energy required
by the brain is high. It is estimated that 20% of
energy uptake, mostly in the form of glucose, is des-
tined for this organ [18]. Thus, any disruption of
glucose homeostasis may consequently impact brain

function. Deficits in normal glucose metabolism may
result from the normal aging process but are more
pronounced in people with dementia [18, 174–176].
Glucose intolerance and hyperglycemia are prevalent
conditions among AD patients and correlate with AD
pathology, even without the development of diabetes
[177–180].

In mice, metabolic deficits are typically assessed
through the glucose tolerance test (GTT), which
involves measuring blood glucose concentration at
15-min intervals for 2 h after the administration
of a bolus of glucose (1 g/kg, i.p.) to fasted mice
[117, 178, 181–184]. The AUC (area under the
curve) is then determined and compared between
groups. Overall, these tests give an indication of
the metabolized glucose during the 2 h period and
serve as a tool to evaluate changes in glucose
metabolism in AD mice fed a HFD. Imaging
techniques such as the 18FDG-PET, and mag-
netic resonance imaging (MRI), including chemical
exchange saturation transfer (CEST)-MRI, have
been used in mouse models to assess 2D-glucose
uptake, and should be further explored to assess
the impact of dietary lipids in glucose metabolism
[185–188].

HFD typically induces deficits in peripheral
glucose metabolism such as hyperglycemia and
aggravated glucose tolerance across distinct AD mod-
els (Table 1) [189–194]. In addition, abnormal A�
peptide metabolism in the brain and periphery of
AD mice may also contribute to metabolic dis-
turbances. For example, the genetic induction of
AD-like pathology in the brain has been shown to lead
to age-dependent deterioration of peripheral glucose
tolerance in female 3xTgAD mice at 14 months in
comparison to NonTg mice [117, 178, 195], reflect-
ing an overlap between glucose dysmetabolism and
AD pathology.

Insulin

While the main role of insulin in peripheral tissues
is that of facilitating glucose uptake, its physio-
logical role in the CNS goes beyond maintaining
metabolic homeostasis. Insulin receptors in the hip-
pocampus may modulate central pathways involved
in neuronal plasticity, learning and memory [196].
Both central and systemic deficits in insulin signaling
have been suggested to contribute to AD pathol-
ogy with therapeutic efforts focusing on improving
insulin metabolism in the brain [197–202]. In addi-
tion, preclinical and clinical trials show that insulin
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may improve cognitive functions [159, 178, 197,
203–206], making it an important target linking
metabolism and cognition.

Different techniques may be utilized to evaluate
insulin sensitivity in animal models. The “gold-
standard” to carefully evaluate insulin sensitivity is
the hyperinsulinemic-euglycemic (HIE) clamp [207].
When combined with radioactive hexose tracers, the
HIE clamp allows to assess whole-body hepatic and
peripheral insulin sensitivity in awake mice [208].
This is the only technique that allows the simulta-
neous determination of both hepatic and peripheral
insulin sensitivity in vivo [209]. However, such
methodology is invasive and requires specialized
technical skills, limiting its implementation in animal
models of AD, which require aging [210].

The insulin tolerance test (ITT) and the homeo-
static model assessment-IR (HOMA-IR) are simpler
alternatives to evaluate insulin action in mice. ITT
measures the rate of fall of glucose every 15 min dur-
ing 1 h after an i.p. injection of an insulin bolus (1
U/kg) [210]. The drop in glucose levels reflects the
action of insulin in peripheral tissues, indicating an
index of insulin sensitivity [211]. Furthermore, the
HOMA-IR assesses �-cell function and insulin resis-
tance from basal glucose and insulin or C-peptide
concentrations [212]. Both insulin and C-peptide are
produced in equimolar concentrations by pancreatic
�-cells and can thus inform on insulin production
[213]. However, reproducible results rely on care-
ful manipulation of mice to avoid causing stress and
anxiety as well as having exact experimental condi-
tions. Age and sexual dimorphisms have also been
reported and it is thus recommended to use age- and
sex-matched mice in these tests [211, 214].

Besides deficits in glucose metabolism, high fat
intake typically induces deficits in insulin metabolism
(hyperinsulinemia and insulin resistance) across
mouse models of AD (Table 1) [178, 195, 215,
216]. However, this is less frequently seen in mice
expressing tau pathology [217, 218]. Of note, it has
been reported that tau can modulate both brain and
peripheral insulin metabolism [219, 220], suggest-
ing common pathophysiological pathways between
T2DM and tau pathology.

EFFECTS ON BEHAVIOR AND
COGNITION

The effect on cognitive behavior is more chal-
lenging to detect in animal models that are already

impaired due to a threshold effect and is further
complicated by the weight gained after HFD. Obese
mice may perform differently in tests requiring move-
ment and exploration such as the Morris Water Maze
or the open field test, imposing an “obesity” bias
[221]. Thus, the aggravating effects of HFD on cog-
nition and behavior can be hard to demonstrate. For
instance, transgenic APP/PS1 mice show impairment
in short-term memory, irrespective of diet, while HFD
seems to drive impaired memory in wild-type ani-
mals [222]. Memory deficits caused by HFD are
more pronounced in 3xTg-AD mice, as shown by
higher escape latency in comparison to other groups
[223]. In addition, the strongly decreased scores in
various behavioral tests, such as the Y-maze, Novel
Object Recognition, Morris Water Maze, and Barnes
maze, observed in 3xTg-AD mice with aging [195],
were worsened by a HFD [178, 223, 224]. In some
occasions, these changes happened without aggravat-
ing A� or tau pathology [195, 223]. Overall, albeit
some exceptions [222, 225, 226], most studies listed
in Table 1 report some sort of additional cogni-
tive and behavioral impairment, but results should
be interpreted carefully when working with obese
mice.

EFFECTS OF A HFD ON AD
NEUROPATHOLOGY

Amyloid-β

Genetic data provide a strong support for the
hypothesis that accumulation of A� peptides is one of
the initiators of AD pathology [227–232]. Increased
production and reduced clearance of A� result in
toxic aggregates of A�42 and A�40 and may pro-
mote the onset of the disease [233–236]. Other data
point to A� accumulation as the consequence from
a complex interplay between neurons, astrocytes,
microglia, and vasculature that drives neurodegener-
ation [6, 237]. From a neuropathological perspective,
the extent of neuritic plaques and A� aggregates
in the brain remain the cornerstone of AD diagno-
sis, which make A� levels an inescapable parameter
when assessing AD pathology [1, 238].

Perhaps the most consistently reported impact of
a HFD is an aggravation of A� pathology in the
brain (Table 1). Soluble and insoluble forms of A�42,
A�40, the A�42/40 ratio, and plaques increased in the
hippocampus or cortex after high-fat consumption
[239–242]. Still, as shown in Table 1, HFD may not
always induce such changes. Impairments in learning
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and memory were reported in AD-HFD mice with-
out significant changes on A� proteins [191, 195,
223]. Data in animal models support an aggravating
effect of HFD on several forms of A� but its dele-
terious impact on cognitive function may also stem
from additional mechanisms that are not limited to
A� pathology.

Hyperphosphorylated tau

Tau is a microtubule associated protein with high
susceptibility to post-translational modifications, one
of which is phosphorylation [243–245]. Accumula-
tion of tau aggregates that include ptau and NFTs is a
classical feature observed in AD brains and strongly
correlated with cognitive function [232, 243, 246,
247]. Results on the effect of HFD on tau pathol-
ogy in mice are more equivocal than with A�. As
seen in Table 1, some studies report increased forms
of ptau in HFD-fed mice, notably in mice expressing
transgenes-induced tau pathologies [217, 248–250].
HFD also leads to slight increases limited to specific
forms of tau, like cortical ptau, [242], certain tau epi-
topes [217, 251], and insoluble [249] or total human
tau [250]. Additional studies in models carrying both
APP and tau mutations show that tau phosphorylation
is not markedly affected by HFD consumption or is
even decreased (Table 1) [120, 178, 195, 223, 252–
254]. Overall, given the dynamic nature of tau, data
on tau pathology is highly variable with differences
in genotypes, protein forms and anatomical regions.
Further studies, with more controlled settings, are
thus necessary.

Synaptic markers

Synaptic dysfunction is a common pathological
feature in AD that correlates with cognitive decline
[232, 243, 255–257]. Synaptophysin, drebrin, PSD-
95, SNAP25, and syntaxin are often reported to
be downregulated in the AD brain, with synapto-
physin distinguishing mild cognitive impairment and
AD cases from controls [243, 258, 259]. Prominent
decreases in postsynaptic drebrin and PSD-95 have
also been reported in the cortex of AD patients [258,
260] while biomarkers of synapse dysfunction have
surged as promising measures of cognitive status
[255, 261–263]. There is also some evidence linking
pathological A� and tau to synaptic loss [264–266],
further making synaptic dysfunction a key aspect of
AD physiopathology.

When reported, high fat intake does not consis-
tently induce significant changes on synaptic proteins
(Table 1) [178, 217, 242, 250]. Still, reduced lev-
els of drebrin, synaptophysin, or syntaxin have been
reported after high fat consumption [249, 250, 260,
267]. Of note, drebrin is also markedly reduced
after n-3 PUFA deprivation [258] and upregulated
by dietary DHA in the hippocampus [268] and the
cortex [258], perhaps revealing a susceptibility of
this protein to specific dietary fats. Though synaptic
dysfunction is not routinely included as an endpoint
in the studies reviewed, data suggest a tendency
for individual synaptic markers to be more strongly
affected by the type of fat in diets. It is important
to consider that HFD have different ratios of n-3
PUFA that, although found in low levels, can mod-
ulate synaptic markers. Thus, it is the proportion
of each fatty acid in a diet, rather than their total
amount, that appears to exert an influence on synaptic
proteins.

Neuroinflammatory markers and oxidative
damage

Neuroinflammation and oxidative damage are
important features in NDD [269–271]. In the AD
brain, microglia bind to misfolded proteins that
trigger neuroinflammatory responses, resulting in
elevated biomarkers of lipid peroxidation in post-
mortem brain tissues of AD patients [272, 273].
Obesity and metabolic syndrome are associated with
higher markers of inflammation in the periphery
while the opposite seems to be true for diets low
in fat or carbohydrate [274, 275]. This is consistent
with mice fed HFD where inflammatory responses
are activated, both in the brain and in peripheral
organs (Table 1). APP/PS1 mice fed a HFD have
a greater increase in hippocampal microglial acti-
vation than transgenic mice fed a normal diet or
non-transgenics fed a HFD [191, 192]. Other stud-
ies have also reported elevated inflammatory markers
in the cortex or hippocampus of mice as a response
to HFD and irrespective of genotype [195, 242,
249, 250, 276–278]. Oxidative damage is also aggra-
vated in different organs following a HFD, including
the microvasculature [278], cortex [223], and liver
[192, 279]. In essence, inflammatory, and oxida-
tive responses in HFD-fed mice remain underlying
mechanisms linking nutrition, metabolic dysfunction
and AD pathology, but that can be hard to pinpoint
methodologically.
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HFD WITH SUGAR OR SODIUM

A distinction should be made between diets with
a high content of saturated fat only and those that
include other nutrients such as salt or sugar. Indeed,
besides being high in saturated fat, westernized diets
(WD) are associated with overprocessed foods and
may incorporate a high content of certain types of
proteins, trans fats, refined grains, sugar, alcohol,
salt, and high-fructose syrup with a reduction in
fruits and vegetables [280]. To recapitulate a more
accurate version of a WD in humans, HFD used
in animals sometimes include elevated quantities
of sugar or sodium [184, 218, 281, 282]. How-
ever, the incorporation of these two nutrients may
inevitably impose an additional variable for the out-
comes seen on AD mice. For example, in 5xFAD
mice, a WD led to higher A� deposits in hippocam-
pal microvessels with no difference in parenchymal
A� pathology [283]. Meanwhile, a WD containing
57% kcal in sugars increased hippocampal A�42 in
APP/PS1 mice [284]. Genotype and sex differences
may also be present as WD-fed E3FAD female mice
showed higher hippocampal A� load whereas no
alterations in A� pathology were seen in E4FAD
mice [285]. The opposite seems to be true for males
where a worsening effect of A� burden by WD is
seen in E4FAD versus the E3FAD genotype [286].
Altogether, when comparing the effect of various
HFD on AD endpoints, it is important to consider
the inclusion of other nutrients frequently found
in WD.

HOW CAN SFA CONTRIBUTE TO AD
PATHOLOGY?

Direct effect on the brain

Fifty-five percent (dry weight) of the human brain
is composed of lipids. In mammals, PUFA accounts
for 30% of brain fatty acids, at least half from DHA,
while SFA and MUFA make up the rest (70%) [287–
291]. Although the composition in PUFA in the brain
was repeatedly shown to be altered by dietary shifts
in fatty acids, brain SFA composition is more stable
and less dependent on the relative dietary intake [19,
292–295]. Still, specific dietary manipulations high in
SFA have shown to increase SFA levels in the cortex
and hippocampus [250, 296, 297], showing a degree
of susceptibility of brain SFA to dietary manipula-
tions. However, it is not clear yet whether such small
changes in membrane SFA can influence physiologi-

cal properties of neurons, such as those observed with
PUFA and MUFA [73, 298–303]. Evidence gathered
over the years suggest that HFD may impact the
endothelium of brain microvessels, cerebral blood
flow, and neuroinflammation while disrupting the
equilibrium between the uptake of nutrients versus
clearance of toxic proteins. As the brain’s energy
requirement is relatively high compared to other
organs, any defects in energy uptake would also com-
promise brain functionality [18]. It has been shown
that HFD can downregulate cerebrovascular levels
of the glucose transporter-1 (GLUT-1) and decrease
insulin degrading enzyme (IDE), resulting in blunted
brain glucose uptake and accumulation of toxic A�
aggregates [155, 304–306]. HFD may also promote
central insulin resistance, which is detected in the
brain itself in AD, particularly at the vascular level
[157, 159, 202] and negatively affect neurovascu-
lar coupling and cerebrovascular function even in
the absence of dyslipidemia [307]. These metabolic
abnormalities would then induce alterations in neu-
ronal morphology and physiology that translate in
decreased long-term potentiation and reduced mark-
ers of synaptic plasticity [41]. Several lines of studies
also suggest that HFD generate a proinflammatory
environment, which may further favor A� deposi-
tion and tau phosphorylation and negatively affect
synaptic plasticity [41, 155, 308–312]. Increased
lipid peroxidation and reduced autophagy have also
been reported in the brain of obese mice while mito-
chondrial regulators including SIRT3 and PGC1�
are reduced by saturated fats and cholesterol con-
sumption, which may promote the accumulation of
neurotoxic proteins and lead to neuronal death [313–
316]. Furthermore, serotonergic and dopaminergic
pathways are susceptible to the excess of fat and sugar
intake which can induce in depressive-like behaviors
[317–319]. Alterations in insulin metabolism [318]
and neuroinflammatory responses in the hypotha-
lamus and hippocampus have been described as
likely mechanisms [320–324]. Altogether, changes
in the brain lipid profile and downstream metabo-
lites, alterations in central glucose metabolism, and
neuroinflammatory responses, all caused by high fat
intake, can form part of a pathological loop link-
ing fatty acid consumption and neurodegeneration
in AD (Fig. 1).

Indirect effect via the periphery

HFD can also impact the brain indirectly through
its effect on the periphery [319]. As evidenced
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Fig. 1. High-fat diets (HFD) have significant metabolic effects and can contribute to Alzheimer’s disease (AD) pathology. Possible mech-
anisms by which HFD can modulate AD pathology are shown, whether directly in the brain or indirectly in the periphery. Data suggest
that HFD may promote insulin resistance and decrease GLUT-1 and IDE at the cerebrovascular level while also triggering an inflamma-
tory response in the brain. In the periphery, the alteration of insulin metabolism, adipokines and gut microbiota can indirectly affect brain
processes. Finally, the majority of reports indicate that a prolonged exposure to a HFD increases brain A� levels, whether its effects in tau
pathology is less clear. A�, amyloid peptides; BBB, blood-brain barrier; GLUT1, glucose transporter 1; IDE, insulin degrading enzyme;
INSR, insulin receptor; SFA, saturated fatty acids.

by Table 1, when correctly assessed, insulin resis-
tance is often detected in HFD-fed animal models
of AD (Table 1). Notably, insulin administra-
tion reversed HFD-induced metabolic and cognitive
deficits in 3xTg-AD mice while age-dependent
deficits in insulin and glucose metabolism have
been reported in the 3xTgAD mice, suggesting a
vicious cycle between insulin metabolism and AD
pathology [117, 178]. The altered metabolism of
other adipokines including adiponectin and leptin
also stand as key pathways linking T2DM and AD
pathology (reviewed elsewhere: [325–327]). Further-
more, specific nutrients have the potential to change
gut microbiota and influence CNS diseases upward
through the gut-brain axis [328–334]. For example,
SFA metabolism has been reported to increase intesti-
nal permeability by affecting tight junction proteins
and inducing dysbiosis of gut microbiota, processes
that have been implicated in the pathology of AD
[335–342]. Therefore, it is likely that exaggerated
intake of HFD disrupts energy-regulating processes
in the periphery that potentiate the detrimental effects
on metabolic, cognitive, and neuropathological dys-
function in AD [8, 18, 73, 178, 197, 343–345].

VARIATIONS IN HFD COMPOSITION AS
COFOUNDING FACTORS IN
PRECLINICAL STUDIES

The present review highlights some inconsistency
in results regarding the effect of HFD on AD-relevant
endpoints in animal models (Table 1). An important
factor to consider when comparing preclinical studies
is the difference between HFD in terms of fat percent-
age and fat composition. Fat content in HFD can vary
from 45% fat kcal to 60% fat kcal [120, 218]. As the
definition of HFD is limited to a fat content between
40–60% kcal in fat, using different percentages of
fat in diets may inevitably induce different degrees
of metabolic deficits in mice, which could affect
cognitive, behavioral, and neuropathological markers
differently. We have found that complete characteri-
zation of the HFD used is reported in a little less than
half of published papers, making comparisons even
more difficult.

Fat source and composition are also important to
consider when comparing HFD studies. HFD are typ-
ically made up of a combination of SFA, MUFA,
and PUFA, which often varies between diets. For
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instance, Bracko et al. report a SFA:MUFA:PUFA
proportion of 62%: 27%: 4.7%, respectively [222],
whereas another HFD rather comprises 22%: 66%:
10.4% of each FA species [191]. Fat source in HFD
further contributes to this variability [40]. Such vari-
ability in the proportion of fatty acids is critical when
using HFD in AD models as PUFA intake, such as
DHA, is typically associated with beneficial effects
on cognition [20, 23, 25, 27, 76] and MUFA could
play a similar role [300, 346]. Thus, a HFD composed
mostly of high SFA will yield different results than a
HFD based on elevated MUFA or PUFA. Lastly, the
impact of dietary treatment on actual fatty acid con-
tent in the brain is rarely disclosed in studies. HFD can
change the lipid profile in the brain [250, 293, 294,
296, 297, 347], which remains an essential informa-
tion to draw mechanistic conclusions at the molecular
level. Overall, to fully benefit from the advantages of
preclinical studies, a complete characterization of the
fatty acid profiles both in the diet and in target tissues
is necessary and should always be recommended.

LIMITATIONS

The present study provides an overview of the
impact of HFD in animal models of AD, but is lim-
ited first by the information available in published
papers. Although studies that included only female or
only male mice were detailed in Table 1, the effects
reported did not account for sex-specific effects in
many instances. When a study does not report sex-
specific interactions, it is difficult to know if they were
non-existent or because male and females were not
separated in the analysis. However, considerations
were made in the text regarding sex-specific effects.
Secondly, while we report the duration of diet in
Table 1, the age of mice when starting diet consump-
tion was not included, making comparisons between
age groups more challenging. Lastly, our focus was
on studies in the mouse, but we are aware that there
might be HFD studies in other mammals, such as rats,
or smaller organisms that were outside the scope of
this review. Future studies that aim to fill these gaps
would be valuable.

CONCLUSIONS, IMPLICATIONS FOR
THE HUMAN CONDITION AND FUTURE
STUDIES

Nutrition has become an important factor to con-
sider when developing therapeutic strategies in AD.

Diets have the potential to play a protective role, alter
positively or negatively disease progression or inter-
act with treatment. Consumption of high amounts
of SFA and other energy-dense nutrients is highly
prevalent in our society, and this has contributed
to higher incidence of not only obesity and T2DM,
but also neurodegenerative diseases. Controlled, RCT
would be essential to issue recommendations regard-
ing mono- and poly-unsaturated fatty acids. However,
testing the effect of HFD in humans would not only be
unethical, but would also be plagued by many con-
founding variables. On the other hand, these diets
can be investigated in animal models in fully con-
trolled settings in a shorter timeframe. There are
over 30 reports of HFD in animal models of AD
that can be found on PubMed since 2002. In rodent
models, the intake of a HFD generally aggravates
cognitive performance, but most study paradigms
can be biased by the weight gain inevitably asso-
ciated with it. The majority of studies have found
an aggravating effect of a HFD intake on brain A�
pathology. Tau has been much less studied, and
results are more equivocal due to the complexity
of post-transcriptional changes, while other key AD
markers have been even less consistently reported.
Discrepancies between studies can be explained by
differences in the diet composition, the age and dura-
tion of exposure, the exact model used and endpoints
assessed, among other variables discussed above. We
have found that more than half of reports do not
even fully disclose the diets used. Future studies
should consider that distinct fatty acids, despite small
chemical differences, may modulate pathophysio-
logical pathways very differently. More specifically,
when considering HFD protocols, forthcoming stud-
ies need to document percentages, sources, and
types of fatty acids; aspects that are not consistently
reported across laboratories. These are important
steps towards harmonizing data regarding the effect
of HFD on the different animals in AD, which is
pivotal to issue sound conclusions, and to generate
evidence that can be compared and replicated, serv-
ing as a basis for the launching of clinical trials and
discovery of new preventive strategies and therapies
in AD.
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Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi
A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus
Q, Schneider LS, Selbæk G, Teri L, Mukadam N (2020)
Dementia prevention, intervention, and care: 2020 report
of the Lancet Commission. Lancet 396, 413-446.

[82] Anastasiou CA, Yannakoulia M, Kontogianni MD, Kos-
midis MH, Mamalaki E, Dardiotis E, Hadjigeorgiou G,
Sakka P, Tsapanou A, Lykou A, Scarmeas N (2018)
Mediterranean lifestyle in relation to cognitive health:
Results from the HELIAD Study. Nutrients 10, 1557.

[83] Angeloni C, Businaro R, Vauzour D (2020) The role of
diet in preventing and reducing cognitive decline. Curr
Opin Psychiatry 33, 432-438.

[84] Andrieu S, Guyonnet S, Coley N, Cantet C, Bonnefoy
M, Bordes S, Bories L, Cufi M-N, Dantoine T, Dartigues
J-F, Desclaux F, Gabelle A, Gasnier Y, Pesce A, Sudres
K, Touchon J, Robert P, Rouaud O, Legrand P, Payoux
P, Caubere J-P, Weiner M, Carrié I, Ousset P-J, Vellas B,
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