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Abstract.

Background: Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are common in Veterans and linked to
behavioral disturbances, increased risk of cognitive decline, and Alzheimer’s disease.

Objective: We studied the synergistic effects of PTSD and TBI on behavioral, cognitive, and neuroimaging measures in
Vietnam war Veterans.

Methods: Data were acquired at baseline and after about one-year from male Veterans categorized into: PTSD, TBI,
PTSD+TBI, and Veteran controls without PTSD or TBI. We applied manual tractography to examine white matter microstruc-
ture of three fiber tracts: uncinate fasciculus (N=91), cingulum (N=87), and inferior longitudinal fasciculus (N=95).
ANCOVAs were used to compare Veterans’ baseline behavioral and cognitive functioning (N =285), white matter microstruc-
ture, amyloid-B (N=230), and tau PET (N=120). Additional ANCOVAs examined scores’ differences from baseline to
follow-up.
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Results: Veterans with PTSD and PTSD+TBI, but not Veterans with TBI only, exhibited poorer behavioral and cognitive
functioning at baseline than controls. The groups did not differ in baseline white matter, amyloid-f3, or tau, nor in behavioral
and cognitive functioning, and tau accumulation change. Progression of white matter abnormalities of the uncinate fasciculus
in Veterans with PTSD compared to controls was observed; analyses in TBI and PTSD+TBI were not run due to insufficient
sample size.

Conclusions: PTSD and PTSD+TBI negatively affect behavioral and cognitive functioning, while TBI does not contribute
independently. Whether progressive decline in uncinate fasciculus microstructure in Veterans with PTSD might account for
cognitive decline should be further studied. Findings did not support an association between PTSD, TBI, and Alzheimer’s
disease pathology based on amyloid and tau PET.

Keywords: Alzheimer’s disease, Alzheimer’s Disease Neuroimaging Initiative, amyloid-$3, diffusion magnetic resonance

imaging, follow-up studies, risk factors

INTRODUCTION

Posttraumatic stress disorder (PTSD) and trau-
matic brain injury (TBI) are highly prevalent among
military Veterans [1, 2] and are associated with short-
and long-term behavioral disturbances and cognitive
decline [3-5]. Interestingly, many long-term symp-
toms related to PTSD and TBI can also be observed in
individuals with Alzheimer’s disease (AD). Overlap-
ping symptoms include cognitive decline in attention,
memory, and language performance [6, 7], neuropsy-
chiatric symptoms such as depression, apathy, or
agitation [8, 9], and impairment in activities of daily
living [6].

Researchers have speculated that common under-
lying neuropathologies can explain the symptomatic
overlap between PTSD, TBI, and AD [10-14].
Specifically, the accumulation of amyloid-B (AB)
plaques and tau neurofibrillary tangles have been sug-
gested as two of the mechanisms underlying PTSD,
TBI, and AD [15, 16]. Neuritic A plaques and tau
deposits are indeed hallmarks of AD pathology [17,
18]. Animal research showed that psychological and
physiological stress leads to A3 genesis, proposing a
potential link between A plaques, PTSD, and TBI
[19-22]. PTSD studies in humans, however, are lim-
ited and do not support the idea of an accumulation of
A plaques or tau in PTSD [23-26]. In vivo studies
in TBI presented mixed results, with some amyloid
and tau positron emission tomography (amyloid-PET
and tau-PET) studies reporting increased A3 and tau
after TBI [27, 28]. Nevertheless, others did not find
A plaques and tau accumulation in individuals who
experienced a TBI, implying that the effect might
depend on individual risk factors such as genetic or
medical conditions and the type of exposure and tim-
ing of TBI [25, 29]. A recent study also found no

association between remote mild TBI and cortical A3
burden [30].

Recent studies also suggested that common white
matter pathologies might underly AD, PTSD, and
TBI. Diffusion magnetic resonance imaging (dMRI)
studies showed that white matter microstructural
abnormalities are present in early stages of AD, there-
fore models using dMRI may provide biomarkers of
white matter neurodegeneration in the earliest stages
of AD progression [31-33]. Notably, the same fiber
tracts related to AD development are also impaired in
individuals with PTSD or TBI [34-43]. While find-
ings are somehow inconsistent [44, 45], the uncinate
fasciculus (UF), the cingulum (CI), and the inferior
longitudinal fasciculus (ILF) have all been associ-
ated with cognitive decline and aging in PTSD, TBI,
and AD [34-36, 38, 40, 41, 46-49]. Additionally,
the UF and CI were found to be the most impor-
tant tracts in distinguishing groups with PTSD and
trauma-exposed controls [50]. The UF connects the
anterior temporal lobe with the lateral orbitofrontal
cortex and is involved in emotion and memory regula-
tion [51, 52]. The CI stretches from the orbital frontal
cortex, along the corpus callosum, to the temporal
lobe and pole and is involved in executive control,
episodic memory, and emotion [53]. The ILF con-
nects the occipital and temporal lobes and is critical
for visual memory, perception, reading, and language
functions [51].

While PTSD, TBI, and AD share some neu-
ropathological and clinical features, it remains
elusive whether PTSD [13] and TBI [25, 29, 54] pre-
dispose to AD development. A recent meta-analysis
did not find a relationship between PTSD diagnosis
and subsequent dementia development [55]. Simi-
larly, prospective studies failed to detect associations
between TBI and autopsy-confirmed AD [29, 54].
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On the other hand, there is evidence showing that
Veterans who experience psychological and physi-
cal trauma are at increased risk of developing AD
[56, 57]. These findings demonstrate that we are far
from understanding the link between PTSD, TBI, and
vulnerability for AD, and further research is needed
considering the increasing number of aging individ-
uals in general and aging Veterans in particular.

The Department of Defense (DOD) funded
a project involving Vietnam war Veterans as
part of the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) to meet this critical need
(http://adni.loni.usc.edu). AD markers were mea-
sured in Veterans decades after trauma exposure
twice: at baseline and after a one-year follow-up
period [58]. A previous cross-sectional ADNI-DOD
study revealed lower cognitive functioning in Veter-
ans with PTSD, TBI, and PTSD+TBI compared to
Veteran controls; however, impairments in cognitive
functioning were not related to AP deposition [25].
In that study, when using a 1.11 cut-off for amyloid
positivity, the PTSD group had lower odds of amy-
loid positivity compared to controls, while the TBI
group did not [25]. Another recent study from the
ADNI-DOD group found no evidence of increased
A, tau, or neurodegeneration biomarkers in either
TBI or PTSD [59]. Nevertheless, other ADNI-DOD
studies reported a negative effect of PTSD and TBI
on white matter microstructure throughout the brain
and tau pathologies [60, 61].

The present study builds on previous work [25, 59]
to achieve two primary goals. First, we compare base-
line measures of behavioral functioning, cognition,
and neuroimaging markers that have previously been
related to AD between Veterans with PTSD, TBI,
PTSD+TBI, and Veteran controls. Next, we examine
longitudinal changes in measurements over the one-
year follow-up period to test for signs of progressive
aging in Veterans with PTSD, TBI, PTSD+TBI, and
Veteran controls. The current study extends previous
ADNI-DOD studies by analyzing dMRI data using
a methodology which allows a more sensitive recon-
struction of white matter tracts as well as reporting
on different neurobehavioral measures.

METHODS
Study design and the ADNI
The present study used cross-sectional data and

for a subset longitudinal data obtained from a mul-
ticenter trial of the ADNI database, launched by the

DOD in 2012 to study dementia risk factors in Vet-
erans. Data were downloaded in April 2020. All data
available in this study have been previously collected
by the ADNI-DOD group. Our contribution has been
in analyzing the diffusion-weighted images using a
new methodology as described in the Diffusion MRI
Image Processing section.

Vietnam War Veterans of age 60—80 years old were
identified and contacted through Veterans Affairs
records. They underwent an initial telephone screen-
ing, if eligible a clinical interview, and if still eligible
they underwent baseline and follow-up visits at one
of the DOD clinic sites. Study procedures, including
the recruitment process, have already been pub-
lished elsewhere (ADNI-DOD Procedures Manual,
http://www.adni-info.org). Assessments for cogni-
tive, behavioral, dMRI, and amyloid- and tau-PET
data have been conducted at baseline and for cogni-
tive, behavioral, dMRI, and tau-PET after a one-year
follow-up. The follow-up period varied among indi-
viduals and type of assessment. To reduce this
variability we removed extreme cases (correspond-
ing to the 3rd quartile + 3* interquartile range and
Ist quartile — 3* interquartile range), resulting in the
inclusion of participants with a time interval between
7.5 months and 1.6 years. The distribution of time
intervals for each measure is reported in the Results
section.

Farticipants

Three hundred and fifteen male Vietnam war Vet-
erans between 60-80 years of age were included
in the ADNI-DOD study. According to the ADNI-
DOD protocol, participants were excluded if they
reported a history of psychosis, bipolar disorder, a
history of alcohol or substance abuse within the past
five years (Diagnostic and Statistical Manual, Version
IV, Text Revision, DSM IV-TR criteria); neurolog-
ical disorders in the past five years and unstable
(< four months) somatic conditions (e.g., cardiovas-
cular diseases, hepatic, renal, pulmonary, metabolic
diseases, or cancer). Moreover, participants were
excluded when contraindications for PET (i.e., his-
tory of severe drug allergy or hypersensitivity) or
MRI (i.e., aneurysm clips, metal implants, claustro-
phobia) applied.

Group-specific inclusion and exclusion criteria are
described below:

1) PTSD participants had to meet the criteria for
current or lifetime PTSD according to the Struc-
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tured Clinical Interview 1 (SCID 1) of the DSM
IV-TR, a minimum current Clinician Admin-
istered PTSD Scale (CAPS) score of 50, and
symptoms related to the Vietnam war trauma,
which were identified and verified via medical
records and telephone assessments. Participants
of this group were excluded if they had a docu-
mented history of TBI defined as in group 2.

2) TBI participants were required to have a docu-
mented history of non-penetrating TBI acquired
during the military period in Vietnam. TBI his-
tory was identified from the DOD or Veterans
Affairs records. Considering that the Glas-
gow Coma Scale was not available during the
Vietnam war, the study coordinators used an
operational definition of TBI based on diagnos-
tic codes potentially related to TBI and available
in medical records of the time, such as brain
hemorrhage and traumatic brain disease (the
specific TBI-related diagnostic codes can be
found in Supplementary Table 1 of Weiner et
al. (2023) [59]). Their operational definition
also entailed non-penetrating head injury with
amnesia, and/or loss of consciousness for 5 min,
and/or alteration of mental state for >24 h (also
see ADNI-DOD protocol [62]). Participants of
this group were excluded if they met PTSD
diagnostic criteria (current or lifetime) defined
as for group 1.

3) Participants of the PTSD+TBI group had to
have both PTSD (diagnosed with SCID or
CAPS) and TBI (identified from DOD or Vet-
erans Affairs records) following the criteria for
PTSD and TBI described in groups 1 and 2.

4) Veteran control participants were required to
have neither a history of PTSD nor of TBI.

We excluded females (only 2 participants) and
everyone with no demographic data for the present
study. In addition, dMRI data were excluded if
acquired at sites where less than ten participants
had been scanned, leading to a smaller sample than
implied in the recruitment protocol. This approach
allowed us to more robustly correct for site dif-
ferences in the statistical analyses, since the usage
of different scanners and protocols has been previ-
ously shown to introduce significant variability in
results [63, 64]. Considering that the sample varies
for each analysis, we refer the reader to Fig. 1 which
shows the available data utilized in each analysis run
in the present study. Participants were classified by
the ADNI-DOD team (file “VAELG.csv”) into four

groups: 1) Veterans with PTSD, 2) Veterans with TBI,
3) Veterans with PTSD+TBI, and 4) Veterans without
a history of TBI or PTSD (Veteran controls).

Demographics and clinical measures

Sample characteristics, including age, education,
lifetime CAPS score, genotype, ethnicity, race, pri-
mary language, current work status, handedness,
marital status, and psychiatric medication use, were
assessed.

Cognitive and behavioral assessment

Trained psychometricians administered cognitive
tests and behavioral assessment tools following stan-
dardized procedures. Cognitive tests assessed the
domains of confrontation naming (Boston Nam-
ing Test, BNT [65]), executive functioning (Trails
Making Test B-A, TMT B-A [66]), and episodic
memory (30-minutes delay Auditory Verbal Learn-
ing Test, AVDEL30 [67]). The behavioral assessment
consisted of assessing neuropsychiatric disturbances
(delusions, hallucinations, agitation, dysphoria, anx-
iety, apathy, irritability, euphoria, disinhibition,
aberrant motor behavior, night-time behavior distur-
bances, appetite and eating abnormalities) measured
using the Neuropsychiatric Inventory (NPI) total
score (calculated adding up all domain scores which
were obtained multiplying frequency by severity)
[68] and functioning in activities of daily living eval-
uated with the Functional Assessment Questionnaire
(FAQ) [69]. Tests’ raw scores were used. Higher
scores on the BNT and AVDEL30 and lower scores on
the TMT B-A indicate better cognitive performance.
Higher scores on the NPI and FAQ indicate worse
behavioral functioning.

PET and MRI neuroimaging

PET acquisition

Amyloid-PET images were acquired using the
['8F]-AV45 radiotracer (florbetapir) and tau-PET
using ['8F]-AV1451 (flortaucipir). Injection (dosage
of 370 MBq, 10mCi= 10% bolus) was followed
by a resting-uptake phase of 50 min for ['3F]-AV45
and 75min for [!8F]-AV1451. Participants then
entered the tomograph, and four emission frames
of S5min each were acquired for amyloid-PET.
For tau-PET, six frames of 5-min duration were
performed. Amyloid-PET images were 3D recon-
structed using Iterative (fully 3D Iteration; four
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Fig. 1. Flow Diagram of Available Data Used in the Current Study (Cognitive and Behavioral Data, Axial DTI, Amyloid-PET, Tau-PET at
Baseline and Follow-up). Axial DTI, Axial Diffusion Tensor Imaging (as named in the ADNI data repository); CI, cingulum ILF, inferior
longitudinal fasciculus; UF, uncinate fasciculus; PET, positron emission tomography. The limited sample of Amyloid-PET data at follow-up
is due to budget restrictions that did not allow the ADNI-DOD team to repeat the florbetapir examinations as reported in their protocol
(https://adni.loni.usc.edu/wp-content/uploads/2013/09/DOD-ADNI-IRB-Approved-Final-protocol-08072012.pdf, page 39).

iterations; 20 subsets) with a grid of 128 x 128, FOV: florbetapir mean in lateral temporal regions,

256256 mm, slice thickness: 3.27 mm [70]. This
study used the amyloid and tau PET data previously
analyzed by the Jagust laboratory at the University
of California Berkeley. For amyloid-PET we used
the file “UCBERKELEYAV45_20190808” available
on the ADNI database. For all statistical analyses
the following areas were selected to measure
brain AB: frontal (weighted florbetapir mean in
frontal regions, “FRONTAL_SUVR”), cingulate
(weighted florbetapir mean in anterior/posterior
cingulate regions, “CINGULATE_SUVR”), pari-
etal (Weighted florbetapir mean in lateral parietal
regions, “PARIETAL_SUVR?”), temporal (Weighted

“TEMPORAL_SUVR”), and composite florbetapir
cortical standardized uptake value ratio, SUVR
(“COMPOSITE_SUVR, Summary florbetapir cor-
tical SUVR. Weighted florbetapir mean in frontal,
cingulate, parietal, and temporal regions, defined
by Freesurfer”). For tau-PET, we used a summary
measure of the temporal region from the file
“UCBERKELEYAV1451_MRIFREE_20210506”

(temporal flortaucipir standardized uptake value
ratio, “METATEMPORAL_SUVR”,  weighted
AV1451 mean of temporal summary region, with
regions defined by neuromorphometrics and listed
elsewhere [71]). The PET data available on the ADNI
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database is already intensity normalized; although
Jagust’s laboratory recommends to normalize again
the SUVRs with a reference region, as explained in
details elsewhere [73]. In Supplementary Table 3,
we provide results also for composite AP and tau
SUVR relative to a reference region.

MRI acquisition

MRI data were obtained using 3 Tesla scanners
with standardized procedures across different
ADNI sites (N=24, this number corresponds to
the institutions where the MRI acquisition took
place and not to the clinical ADNI site). The
current study used axial diffusion tensor imaging
(“Axial DTT”) scans. Data was obtained using axial
spin-echo sequence (TR/TE=9050 ms/minimum,
matrix =256 x256x59, resolution=1.37x1.37x2.7
mm35, and b-value=5xb0+41 directions with
b=1000 s/mm?). Further information on MRI acqui-
sition is available in the DOD ADNI procedures
manual (Version 3.0 Augustus 28, 2017) [72].

Diffusion MRI image processing

Pre-processing

Pre-processing steps were performed using an in-
house pre-processing pipeline [73], correcting for
head motion, eddy current distortion, and generat-
ing brain masks. Image quality was visually checked
for artifacts using 3D Slicer [74], leading to the
exclusion of fourteen participants (five controls, three
PTSD+TBI, three TBI, and three PTSD). Brain
masks were visually inspected and manually cor-
rected where necessary using 3D Slicer.

Whole brain tractography

We reconstructed fiber pathways utilizing whole-
brain unscented Kalman Filter (UKF) tractography
[75]. This method reconstructs multiple fiber orien-
tations within a voxel and is robust to noise [76,
77]. Moreover, UKF tractography can support multi-
ple dMRI models, including single and multi-tensor
models, free water (FW) imaging, or neurite ori-
entation dispersion and density imaging (NODDI).
For this study, we used a 2-tensor plus free water
model (2 tensor+free water model, 1 seed per voxel,
minimum seed fractional anisotropy (FA)=0.18, ter-
minating FA =0.15, terminating mean signal =0.10),
which has been shown to provide accurate fiber
tracking [77, 78]. This approach was chosen since
UKEF tractography has been shown to be one of
the most accurate tractography techniques especially

compared to single-tensor methods [77, 79, 80]. In
short, the orientation of a local fiber is traced using
the estimation at the previous position to direct the
estimation at the current position. Kalman filter pro-
vides a recursive estimation which greatly improves
the accuracy of fiber orientations [74].

Fiber bundle extraction

The UF, CI, and ILF of both hemispheres were
selected as tracts of interest. A description of the three
tracts and their function is reported in Table 1. The
tracts were manually extracted following procedures
outlined elsewhere [81, 82]. Briefly, individual fibers
from full-brain tractograms were identified as part of
a tract of interest if they traverse manually defined
inclusionary regions but do not traverse exclusionary
regions. The rationale for choosing manual tracts of
interest estimation was that automated tract identifi-
cation is often anatomically inaccurate in populations
with significant damage to connections [83]. While
manual approaches can be impractical with large
cohorts and rely on human expertise, manual fiber
bundle identification results in low values of true neg-
atives [82] and has commonly been used with patient
populations [84—86].

FA and color-by-orientation maps were calculated
from the pre-processed dMRI data and used for the
manual delineation of inclusionary and exclusionary
areas according to Catani & de Schotten’s (2008)
rules [81]. Specifically, for the UF, two inclusion
areas (external capsule and temporal areas) and three
exclusion areas (in the mid-sagittal, mid-coronal, and
mid-axial slice) were drawn (Fig. 2, first row). For
the CI, one inclusion region of interest (ROI) and two
exclusion areas (in the axial and sagittal slice) (Fig. 2,
second row). For the ILF, two inclusion ROIs (occip-
ital and temporal areas) and two exclusion areas (in
the mid-sagittal and axial slice) were drawn (Fig. 2,
third row). Following the manual drawings, fiber bun-
dles were extracted using the “Tractography ROI
Selection” function in 3D Slicer with the whole-brain
tractography as input and the manual drawings as
label map. To establish the reliability of the proce-
dure, three raters independently performed manual
drawing delineation on four study cases.

dMRI measure extraction

The UKF tractography algorithm estimates param-
eters describing the the 2 tensor+free water model
for each point along each fiber tract. FW-corrected
FA is a more accurate measure compared to tradi-
tional FA, especially when modeling tissue structure
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Table 1

Extracted Tracts and Relative Function

Tract

Location and function

Uncinate Fasciculus

Cingulate

The UF is a ventral associative bundle that connects the anterior
temporal lobe with the lateral orbitofrontal cortex [146, 147]. It
is considered (i) part of the limbic system [146], (ii) involved in
emotion and memory [51], and (iii) object and face naming [52].
The CI is a medial associative bundle that runs from the orbital
frontal cortex, along the corpus callosum, to the temporal lobe

and pole [146]. It is part of the limbic system and involved in
executive control, episodic memory, emotion, and pain [53].

Inferior Longitudinal
Fasciculus

The ILF is a longitudinal bundle connecting the occipital and
temporal lobes [146]. It is involved in face recognition [148],

visual perception [149], reading [150], visual memory [151],
and other language functions [51].

Fig. 2. Extracted Tracts. The first images on the left column partially represent the manual drawings of the inclusion and exclusion areas;
1%t row) Uncinate Fasciculus: blue (temporal area) and yellow (external capsule) inclusion, green and red exclusion; 2™ row) Cingulate:
yellow inclusion, red and green exclusion; 3™ row) Inferior Longitudinal Fasciculus: yellow inclusion (temporal area; occipital not shown
in the picture), green and red exclusion. The images on the second and third columns represent the extracted tracts shown over the FA and

color-by-orientation maps, respectively.

in aging populations [87], where atrophy and thus
partial volume effects are more prevalent [78, 88—90].

We extracted the mean FA values of the primary
tensor of each fiber bundle using the “Tractography
Measurements” module of 3D Slicer and averaged
left and right hemisphere measures. FA is the most
widely used diffusion measure and is considered
sensitive to microstructural changes, such as myelin-
ization and axonal density.

Fiber bundle extraction reliability

We measured the reliability of the manual tracts of
interest definition procedure by having the primary
rater and two additional raters perform tract of interest
tracing in four study cases. Inter-rater reliability for
the three tracts was calculated using a two-ways inter-
class correlation (ICC) with absolute agreement. The
guidelines by Koo & Li (2016) were used to define
the agreement, with ICC <0.50 meaning poor agree-
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ment, 0.50-0.75 moderate, 0.75-0.90 good, >0.90
excellent. Inter-rater reliability resulted to be good
or excellent for FA (UF: ICC =0.80, CI: ICC=0.82,
ILF: ICC =0.95).

Statistical analysis

Statistical analyses were performed using the Sta-
tistical Package for Social Sciences (SPSS) Version
27 [91]. Means, standard deviations, and one-way
analyses of variance (ANOVA) were computed for
continuous variables; percentages and chi-square
tests for categorical variables.

Group comparisons: cognitive, behavioral, and
neuroimaging measures

To test for group differences (PTSD versus TBI
versus PTSD+TBI versus Veteran controls) in cog-
nitive functioning (BNT, TMT B-A, AVDEL30) and
neuroimaging measures (white matter: UF, CI, and
ILF FA; amyloid and tau PET: composite florbe-
tapir cortical SUVR and flortaucipir temporal SUVR)
twelve analyses of covariance (ANCOVAs) were con-
ducted. For differences in behavioral functioning
(NPI, FAQ), two Kruskall-Wallis tests were con-
ducted to account for the skewness of the data
(skewness was respectively 3.20 and 2.11); for all
other analyses skewness lied between —2 and+2 [92]
Lower scores on the BNT and AVDEL30, higher
scores on the TMT B-A, NPI, and FAQ, decreased
white matter FA, and higher composite florbetapir
cortical SUVR and flortaucipir temporal SUVR were
expected in Veterans with PTSD and/or TBI groups
compared to the Veteran controls.

Group comparisons: cognitive, behavioral, and
neuroimaging differences (follow-up -bBaseline)

To test for group comparisons in score differ-
ences between baseline and follow-up in cognitive
functioning (BNT, TMT B-A, AVDEL30), behav-
ioral functioning (NPI, FAQ), and UF, CI, and
ILF white matter FA, eight ANCOVA models were
implemented. White matter measures were com-
pared only between Veterans with PTSD and Veteran
controls due to the small sample size in the TBI
and PTSD+TBI groups. Moreover, we did not com-
pare composite florbetapir cortical SUVR difference
scores between groups since follow-up measures
were only available for nine participants due to budget
restrictions as noted in Fig. 1. Scores’ raw differences
were calculated (follow-up — baseline); scatterplots
displaying the association between score differences

and time interval are reported in Supplementary Fig-
ures 2 and 3. A negative score difference was expected
in Veterans with PTSD and/or TBI for all dependent
variables, except for a positive difference in TMT B-
A, NPI, FAQ, and flortaucipir temporal SUVR, as
compared to Veteran controls.

An overview of the statistical approach can be
found in Supplementary Figure 1 and Supplementary
Table 1. Note that analyses may have different sample
sizes due to missing data. All ANCOVA models were
corrected for age, education, and scanner site. Groups
did not differ in other demographics (ethnicity, racial
category, APOE &4+) accordingly, these variables
were not included as covariates. All models were
corrected for multiple comparisons, setting a false
discovery rate at 5% using the Benjamini-Hochberg
method and considering a corrected p <0.05 as sig-
nificant.

RESULTS
Demographic and sample characteristics

A summary of the sample characteristics is dis-
played in Table 2. The one-way ANOVAs revealed
statistically significant between-group differences
in age (Veteran controls significantly older than
PTSD), education (PTSD significantly lower educa-
tion compared to Veterans with TBI and controls, and
Veteran controls significantly higher than Veterans
with PTSD+TBI), and CAPS score (PTSD having the
highest score). Chi-square tests showed the lowest use
of psychiatric medications among Veteran controls
and the highest among Veterans with PTSD.

Of the sample with complete cognitive data at base-
line, 236 participants were cognitively normal, 49 had
adiagnosis of MCI (15 PTSD, 9 TBI, 23 PTSD+TBI,
and 2 controls), and none had dementia. At month
twelve, 178 were cognitively normal and 37 had MCI
(11 PTSD, 9 TBI, 16 PTSD+TBI, and 1 control). Of
the sample with available DTI data (considering the
ILF sample), 90 were cognitively normal, 5 had a
diagnosis of MCI (2 PTSD, 3 TBI, 1 PTSD+TBI,
0 controls), and none had dementia (this data was
retrieved from the “DXSUM” spreadsheet).

Group differences in cognitive and behavioral
functioning

The ANCOVAs revealed significant differences
between the groups for the BNT test (F(3,
278)=3.046, p=0.043, np2=0.040). Specifically,



Table 2

Sample characteristics at baseline

PTSD TBI TBI+PTSD Control Total P
n Mean £+ SD Mean £+ SD n Mean + SD n Mean + SD n Mean + SD p
Age (years) 78  68.10+£3.32 70.37+542 93  69.83+£296 71 71.40+579 285 69.84+449  <0.001*
Education (years) 14.54 £2.36 16.05 +£2.30 14.84 +£2.48 16.06 £2.13 15.24+2.41 <0.001*
Life CAPS 74.25+18.02 14.56 £9.69 59.70 £ 18.87 5.95+£8.15 442043250 <0.001*
% % % % % P
Genotype APOE g4+ 23.4% 32.5% 25.0% 27.1% 26.2% 0.745
Ethnicity Hispanic 12.8% 4.7% 6.5% 5.6% 7.7% 0.476
Caucasian 85.9% 93.0% 92.5% 94.4% 91.2%
Unknown 1.3% 2.3% 1.1% 0% 1.1%
Race American Indian 1.3% 0% 2.2% 1.4% 1.4% 0.550
Asian 0% 0% 0% 4.2% 1.1%
African American 7.7% 9.3% 8.6% 5.6% 7.7%
White 84.6% 86.0% 81.7% 85.9% 84.2%
More than one race 5.1% 4.7% 6.5% 1.4% 4.6%
Unknown 1.3% 0% 1.1% 1.4% 1.1%
Language English 97.4% 100% 97.8% 97.2% 97.9% 0.810
Spanish 2.6% 0% 1.1% 1.4% 1.4%
Other 0% 0% 1.1% 1.4% 0.7%
Work Status Working 10.3% 18.6% 8.6% 19.7% 13.3% 0.113
Retired 89.7% 81.4% 91.4% 80.3% 86.7%
Handedness Right 88.5% 86.0% 91.4% 90.1% 89.5% 0.796
Left 11.5% 14.0% 8.6% 9.9% 10.5%
Marital Status Married 82.1% 86.0% 68.8% 85.9% 79.3% 0.168
Widowed 3.8% 0% 8.6% 4.2% 4.9%
Divorced 7.7% 11.6% 15.1% 5.6% 10.2%
Never married 6.4% 2.3% 7.5% 4.2% 5.6%
Medication usage ~ No psychiatric med 43.5% 85.7% 69.1% 93.0% 71.5% <0.001*
Donezepil 0% 2.4% 0% 0% 0.4%
Galantamine 1.4% 2.4% 0% 0% 0.8%
Anti-depressants 44.9% 7.1% 28.4% 5.6% 23.2%
Other psychiatric med 10.1% 2.4% 2.5% 1.4% 4.2%

CAPS, Clinician Administered PTSD Scale; GD, geriatric depression; med, medication; PTSD, posttraumatic stress disorder; SD, standard deviation; TBI, traumatic brain
injury. *Significant differences in the one-way ANOVA (continuous variables) or Chi-square test (categorical variables).
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Table 3
Cognitive, behavioral, and neuroimaging data at baseline

Analyses Dependent PTSD TBI PTSD+TBI Control TOTAL P FDR Post hoc Post hoc Post hoc Post hoc Post hoc Post hoc

variables corrected p  PTSD-TBI PTSD- PTSD- TBI- TBI- Control-
Control PTSD+ PTSD+ Control PTSD+TBI

TBI TBI

ANCOVA n  MeantSD n  MeantSD n  MeantSD n  Mean£SD n Mean+SD P pt pt pt pt pt pt pt

BNT 78 27504212 42 28.05+1.70 93 27.82+2.11 71 2854+1.66 284 27.94+198 0.03* 0.04* 1.00 0.02* 1.00 1.00 0.99 0.27

TMT B-A 75 63.35+£42.56 43 5423+£29.80 93 69.06+£4526 71 52.775+£3549 282 61.174+40.51 0.03* 0.04* 0.87 0.21 0.32 0.316 1.00 0.04*

AVDEL30 78 6.12+£348 43 6.05+£381 93 519+£372 71 632+£394 285 5254378 034  0.34

Kruskal Wallis n  MeanRank n MeanRank n MeanRank »n MeanRank »n p pt pt pt pt pt pt pt

NPI 41 77.43 22 64.66 43 73.15 25 38.46 131 <0.00* 0.00* 1.00 0.00* 1.00 1.00 0.10 0.00*

FAQ 41 74.74 22 57.32 43 71.02 25 50.66 131 0.01%  0.02* 0.30 0.03* 1.00 0.72 1.00 0.09

ANCOVA n Mean+SD n Mean+SD n Mean+SD n Mean+SD n Mean+SD P

UF FA 31 058+£034 8 574.05 23 574.04 29 .56 +.04 91 .56 +.04 31

CIFA 30 051+£048 8 554.05 23 S14.04 26 53+.04 87 524.05 22

ILF FA 29 0.67+£0.04 10 .68+ .04 23 .66+ .04 33 .66 +.04 95 .66 +.04 .36

Florbetapir frontal' 70 1214+.16 32 1.23+£.26 61 1.284.25 67 1.28+£.23 230 125+.22 40

Florbetapir cingulate' 70 1344+.18 32 135427 6l 141+£25 67 141+.25 230 1.38+.23 34

Florbetapir parietal' 70 1244+.14 32 1.264+30 61 1.30+£.23 67 1.30£.25 230 128+.23 .60

Florbetapir temporal' 70 1.154+.14 32 1.18+.25 61 1.21+.21 67 1.224£.22 230 1.19+.20 .66

Florbetapir composite 70 1.24+.15 32 1.26+.26 6l 1.30+£.23 67 130+.23 230 1.27+£.22 .57

cortical'

Flortaucipir temporal! 38 L15£.09 18 1L18+£.08 37 L14+£.12 27 115£.08 120 1.15%.10 .68

AVDEL30, Auditory Verbal Learning Test 30 Minutes Delayed; BNT, Boston Naming Test; CI FA, cingulate fractional anisotropy; FAQ, Functional Assessment Questionnaire; FDR, false
discovery rate; ILF FA  inferior longitudinal fasciculus fractional anisotropy; NPI, Neuropsychiatric Inventory; PTSD, posttraumatic stress disorder; SD, standard deviation; SUVR, standardized
uptake value ratio; TBI, traumatic brain injury; TMT B-A, Trail Making Test B-A; UF FA, uncinate fasciculus fractional anisotropy.*Significant differences in the Kruskal-Wallis tests; p + FDR
corrected; 'SUVR. Data for BNT, TMT B-A, AVDEL30 is reported from models correcting for age and education. Sample for the TMT B-A and BNT differs since three subjects miss the TMT
B score and one the BNT score. Data for the neuroimaging measures from models correcting for age, education, and scanner id.
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Fig. 3. Group Differences in Cognitive and Behavioral Functioning. BN, Boston Naming Test, Naming Abilities; FAQ, Functional Assess-
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Veterans with PTSD had significantly worse
(»=0.020) confrontation naming abilities than Vet-
eran controls. Moreover, the groups differed on
the TMT B-A (F(3,275)=3.125, p=0.040, ny>=
0.033), revealing lower performance of executive
functioning in Veterans with PTSD+TBI com-
pared to Veteran controls (p=0.040). No group
effect was seen for the AVDEL30 (p>0.05),
measuring delayed memory performance. The
Kruskal-Wallis test showed group differences in the
NPI (H(3)=17.888, [H]=0.12, p=0.001) and FAQ
(H(3)=9.965, [H]=0.06, p=0.020). Specifically,
Veterans with PTSD and PTSD+TBI showed more
neuropsychiatric disturbances than Veteran controls
(»<0.001), and Veterans with PTSD displayed higher
FAQ scores than Veteran controls (p =0.030), reflect-
ing worse functioning in activities of daily living. The
results are reported in Table 3 and Fig. 3, and detailed
sample sizes are reported in Table 3.

Group differences in neuroimaging measures

Differences in all sample characteristics among
groups with and without available or analyzed DTI

data were examined; groups did not differ in any
demographic characteristics (p > 0.05), although par-
ticipants without available or analyzed DTI data had
higher lifetime CAPS, worse scores in the AVDEL30
test, had more PTSD+TBI and less control partic-
ipants, and more participants with MCI diagnosis
compared to participants with available or analyzed
DTI data (results are reported in Supplementary
Table 2). The ANCOVA analyses showed no signif-
icant differences in baseline FA for the three tracts
(UF, CI, ILF) between Veterans with PTSD (n=31),
PTSD+TBI (n=23), and Veteran controls (n=29)
[the group of Veterans with TBI only (n =8) was not
included due to the small sample size]. Moreover,
no differences were shown in any of the florbetapir
SUVR regions (frontal, cingulate, parietal, temporal,
and composite cortical) nor in baseline flortaucipir
temporal SUVR for all four groups (p > 0.05, Table 3).

Group differences in cognitive, behavioral, and
neuroimaging score differences (follow-up —
baseline)

ANCOVAs were performed to test for between-
group differences in the cognitive and neuroimaging
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score differences from baseline to follow-up. After
the removal of extreme cases, the time interval
between the two assessments was of 1.07 (0.16) years
for the cognitive and behavioral assessments ranging
from 0.79 to 1.6 years; of 1.13 (0.12) for the diffu-
sion MRI assessments ranging from to 1.02 to 1.44
years, and of 1.13 (0.22) ranging from 0.75 to 1.72
for the tau PET assessment. No significant group
differences for score changes of the BNT, TMT B-
A, AVDEL30, NPI, FAQ, and flortaucipir temporal
SUVR were shown (p > 0.05).

There was a significant difference between Vet-
erans with PTSD compared to Veteran controls in
score changes (follow-up — baseline) of the UF FA
(F(1,27)=10.27, p=0.001, 7, =0.28). Veterans with
PTSD had a negative mean change of -0.018 +0.031
(-2.79% difference) while Veteran controls had a pos-
itive mean change of .013 &£ .020 (+2.05% difference)
(Table 4, Fig. 4). No differences were revealed for FA
of the ILF and CI (p > 0.05).

DISCUSSION

The present study analyzed cognitive, behavioral,
and neuroimaging data of a cohort of Vietnam war
Veterans from the ADNI-DOD study. We showed
that decades after trauma, 1) a diagnosis of PTSD
or PTSD+TBI was associated with worse behav-
ioral and cognitive functioning; 2) groups did not
differ in white matter microstructure, AB and tau
accumulation at baseline; 3) Veterans with PTSD
showed a progressive decline in the UF microstruc-
tural integrity compared to Veteran controls over one
year.

Baseline differences in cognitive and behavioral
functioning

Consistent with our hypothesis, Veterans with
PTSD+TBI showed worse executive functioning and
Veterans with PTSD showed worse confrontation
naming abilities compared to Veteran controls. It
has been suggested that Veterans with PTSD may
have decreased cognitive reserve—the ability to cope
with the harmful effects of pathology on cognitive
functioning [93]. Poorer cognitive performance and
lower cognitive reserve may then increase the risk for
a manifestation of cognitive impairments. The pre-
dementia stage is characterized by deficits in various
cognitive domains but intact daily function [94], and
a study indicated decreased language abilities among
the most discriminant indicator of cognitive decline

[95]. Lower general cognition was also found in a
study using the ADNI-DOD sample in the PTSD
and PTSD+TBI groups compared to Veteran controls
[59]. In addition to deficits in cognitive functioning,
our study also showed worse daily functioning among
Veterans with PTSD and more neuropsychiatric dis-
turbances in both PTSD and PTSD+TBI compared to
Veteran controls. These findings align with previous
studies [96, 97], and impairments in behavioral func-
tioning have also been linked to an increased risk of
AD development [98—101]. Therefore, cognitive and
behavioral functioning should be closely monitored
in Veterans with PTSD.

Contrary to our hypothesis, Veterans with TBI did
not differ from Veterans with PTSD, PTSD+TBI,
or Veteran controls in cognitive or behavioral
functioning. Moreover, no differences were found
between Veterans with PTSD or TBI and those with
PTSD+TBI. It can be argued that PTSD and the
pathological sequelae of TBI may play a role in the
pathogenesis of cognitive decline rather than being a
necessary or sufficient condition to develop demen-
tia [13]. Furthermore, in the present study, Veterans
belonging to the four cohorts were exposed to sub-
stantial distress and likely under-reported TBI events
during deployment, making it difficult to discriminate
between groups.

Some of the differences among groups might have
been evened out due to all subjects having had combat
exposure. Additionally, a previous meta-analysis has
reported that significant heterogeneity was present
among studies comparing samples of Veterans with
and without PTSD [102]. Despite this limitation,
comparing four groups of Veterans with different
diagnoses allows one to specifically study patterns of
cognitive reserve and different vulnerability among
combats.

No baseline differences in neuroimaging measures

In contrast to our hypothesis, we did not find sig-
nificant differences in white matter measures, A3
and tau at baseline between groups of Veterans with
PTSD, TBI, and PTSD+TBI compared to Veteran
controls. The null results for AP and tau suggest that
the risk conferred by PTSD and TBI for cognitive
decline might not be related to underlying AD pathol-
ogy. While both PTSD [35, 36, 38, 39, 49, 103-116]
and TBI [37, 44, 117-119] have repeatedly been
linked to widespread abnormalities in white matter,
some studies did not report significant differences
between individuals with PTSD+TBI and controls



Table 4
Cognitive, behavioral, and neuroimaging changes (Follow-up — Baseline)

Analysis Dependent PTSD TBI PTSD+TBI Control TOTAL p FDR corrected p
variables

ANCOVA

Follow-up - baseline N Mean+SD n Mean+SD n Mean+SD n Mean+SD n Mean+SD p pr
BNT 58 0.05+1.76 36 0.39+1.57 57 0.26£1.51 55 0.16 £1.23 206 0.20£1.52 0.56 0.56
TMT B-A 55 -0.67+3383 36 -523+2661 57 8.054+4750 55 7.81%+35.11 203 3.22+37.60 0.13 0.20
AVDEL30 58 -0.40+3.01 36 0.86+3.51 57 0.65+3.42 55 1.01 +£3.18 206 0.49+3.29 0.12 0.20
NPI 27 0.30£11.00 16 —-0.504+6.00 25 240576 21 0.14£9.77 89 -0.46+8.61 0.58 0.58
FAQ 27 -0.26+£2.10 16 -0.56 +0.96 25  -096+237 21 0.48£1.21 89 -0.34+1.90 0.08 0.16
UF FA 17 -0.02+0.03 4 / 4 / 15 0.01 £0.02 40 -0.00£0.03  0.00* 0.00*
CIFA 16 -0.014+0.03 4 / 4 / 13 -0.01+0.03 37 0.00£0.01 0.82 0.82
ILF FA 13 —-0.004+0.04 4 / 4 / 15 0.01 +£0.04 36 0.01 £0.04 0.47 0.71
Flortaucipir temporal! 19 —-0.0140.05 10 —-0.034+0.03 20 0.01 £0.04 13 0.01£0.03 62 -0.00+0.04 0.12 0.12

AVDEL30, Auditory Verbal Learning Test 30 Minutes Delayed; BNT, Boston Naming Test; CI FA, cingulate fractional anisotropy; FAQ, Functional Assessment Questionnaire;
ILF FA, inferior longitudinal fasciculus fractional anisotropy; NPI, Neuropsychiatric Inventory; PTSD, posttraumatic stress disorder; SD, standard deviation; TBI, traumatic
brain injury; TMT B-A, Trail Making Test B-A; UF FA, uncinate fasciculus fractional anisotropy.*Significant differences in the ANCOVA. p + FDR corrected. ISUVR. Data
for BNT, TMT B-A, AVDEL30, NPI, FAQ is reported from models correcting for age and education; data from FA corrected for age, education, and scanner id. Sample for the
TMT B-A differs since three subjects miss TMT B at baseline. No differences were calculated for amyloid PET since insufficient follow-up data was available, due to budget
restrictions as of protocol.
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[45, 120], consistent with our findings. Similarly,
some studies reported differences in A3 deposition
[28, 70], while others, two of which also using ADNI-
DOD data [25, 59], did not find any differences
between Veterans with TBI [25, 29, 30, 121, 122]
or PTSD [26] and Veteran controls. Our results on
AP and tau are in accordance with a recent ADNI-
DOD study that found no differences in A and tau, as
well as no differences in cerebrovascular disease mea-
sures [59]. Similarly, no differences were observed
among individuals with a single moderate to severe
TBI and controls in AP and tau burden years after the
injury [123]. Analyzing these four groups separately
allowed us to investigate whether PTSD or TBI as
a loading factor to either condition led to a higher
presence of AD biomarkers. This is particularly rel-
evant since previous literature has shown that white
matter abnormalities are exacerbated in PTSD+TBI
[41, 124], also longitudinally [125]. It is possible
that trauma-exposed Veteran controls present with an
equally compromised brain structure as those who
developed PTSD [126, 127]. Therefore, while our
results are relevant for the Veteran population, future
studies should investigate the impact of PTSD or TBI
as loading factors in non-Veterans samples. More-
over, a TBI may lead to various presentations of brain
abnormalities [6], which makes identifying a com-
mon pattern of imaging differences on a group level
difficult. While it is beyond the scope of the current
paper, considering mechanisms such as inflammation
[128] or synaptic dysfunction [129] may be of value
in future studies, given that AD onset comprises a
cascade of different pathological mechanisms [130],
not limited to AP deposition, tau accumulation, or
white matter abnormalities.

White matter microstructure change in PTSD
compared to controls

Monitoring longitudinal changes is critical when
assessing the impact of PTSD and TBI on cognitive
decline. We compared the differences in cognitive
and behavioral functioning and white matter change
from baseline to one-year follow-up between groups.
While Veterans with PTSD and PTSD+TBI showed
worsening in some of the cognitive and behavioral
functioning domains, the groups did not differ sig-
nificantly from each other, Veterans with TBI, or
Veteran controls. Therefore, the findings suggest no
accelerated decline of cognitive and behavioral func-
tioning in Veterans diagnosed with PTSD, TBI, or
PTSD+TBI for the studied age range and timespan.
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Fig. 4. UF FA Change Difference Between Veterans with PTSD
and Veteran Controls. PTSD, posttraumatic stress disorder; UF,
uncinate fasciculus; FA, fractional anisotropy.

Regarding neuroimaging measures, white matter
changes have been suggested as a biomarker for the
early identification of AD [131], and alterations in
the UF, CI, and ILF white matter microstructure have
previously been found in AD patients [131-133]. We
reported that white matter microstructure of the UF
decreased in Veterans with PTSD, while an improve-
ment was found for the control group. Although
an increase in white matter microstructure is not
expected at an older age, Veteran controls may still
be socially and cognitively active, potentially leading
to neural restructuring. Due to the small sample size
in these analyses, these preliminary findings should
be interpreted cautiously. Previous studies reported
abnormalities of the UF in individuals with PTSD
[43, 113], although no study has yet investigated this
longitudinally. Since the UF is involved in emotion
processing, memory, and language functions [81], it
is highly responsible for cognitive features commonly
impacted in AD [134]. For example, a decrease in the
number of fibers in the right UF has been associated
with memory loss in individuals with mild cognitive
impairments (MCI) [135]. Moreover, a relationship
between decreased UF FA and poor performance
on the Mini-Mental State Examination, a test for
cognitive functioning in the elderly, was shown in
individuals with probable AD [136]. Increased risk
of dementia with considerably low FA of the UF was
also found in individuals with amnestic MCI [137]
and semantic dementia [138]. Our preliminary find-
ing of a decrease in UF FA in Veterans with PTSD is
thus in line with previous research and may indicate
an early cognitive decline. Importantly, the UF find-
ing might not be specific to AD but related to other
neurodegenerative pathologies or to aging in general,
considering that previous literature has found abnor-
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malities in the UF also in frontotemporal dementia
[139, 140].

Previous studies have found an association
between cognitive reserve proxies and white matter
integrity, supporting the involvement of white matter
changes in processes of cognitive reserve. Cognitive
reserve might also affect white matter microstruc-
tural changes over time, and eventually predispose
veterans with PTSD to develop cognitive impairment
[141, 142]. In a recent study, associations between
cognitive reserve and white matter microstructure
measured over time were found to differ by age in
healthy older adults, suggesting that cognitive reserve
has a neuroprotective role in middle age and shifts to
a compensatory effect in older age [143].

No significant changes were observed from base-
line to after one year in ILF and CI microstructure
between Veterans with PTSD and Veteran controls.
In a recent study involving individuals with MCI, the
ILF was one of the tracts indicating the risk of con-
version to AD [144]. In the current study, the ILF
microstructure slightly decreased in the PTSD group
and increased in the Veteran control group without
reaching statistical significance, while a decrease in
CI microstructure was seen in Veterans with PTSD
and Veteran controls. Future research should investi-
gate these trends using larger sample sizes.

Limitations and future directions

We acknowledge several study limitations. Group
differences in white matter microstructural changes
of the TBI and PTSD+TBI groups were not investi-
gated, given the small sample sizes. The same applied
to follow-up amyloid-PET measures. In addition, we
did not control for exposures to psychological or brain
trauma or treatment during the follow-up year. Fur-
thermore, additional information on the trauma (i.e.,
time since trauma, severity, number of TBIs) would
have been beneficial for interpreting the findings. An
additional limitation is that results might have var-
ied depending on MCI diagnostic status. Although,
we were unable to perform these subgroup analy-
ses due to insufficient sample size within each PTSD
and/or TBI group. However, removing MCI subjects
would have led to biases in the selection of the sam-
ple, since individuals with TBI and PTSD might have
a greater incidence of cognitive impairment. A major
limitation of the present study is the small sample size
for the white matter longitudinal analysis, calling for
future studies validating these preliminary findings
with a larger sample. Nevertheless, the current study

provides meaningful insights into the longitudinal
effects of PTSD and TBI on cognitive and behavioral
functioning and brain structure that may indicate AD
development.

Additional follow-up analyses are needed to vali-
date the result of progressive white matter decline in
Veterans with PTSD. This would allow conclusions
on trajectories that cannot be reliably derived from
only two assessment time points. Studies repeating
assessments with a longer follow-up time are needed
to assess whether progressive changes in cognition
are seen after a longer period than one year. Although,
considering the mean age of our sample, changes
in AD markers can be expected after one year. Fur-
thermore, accompanying Veterans with interventions
to alleviate PTSD and TBI-related symptoms would
be highly meaningful when studying the potential
preventive effects of stress reduction and cognitive
training for dementia onset. Moreover, a healthy
control group of non-Veterans is needed to validate
our findings. Lastly, future studies should consider
assessing resilience predisposing factors (e.g., per-
ceived health, sex, trait self-enhancement [145]) and
investigate whether these influence the advent of cog-
nitive decline in the Veteran population.

Conclusion

PTSD and PTSD+TBI negatively impact behav-
ioral and cognitive functioning in the aging Veteran
population. Moreover, our findings suggest a
decrease in UF white matter microstructure in Veter-
ans with PTSD after one year. Differences in baseline
neuroimaging measures and behavioral and cognitive
change were not identified. Therefore, while PTSD
and PTSD+TBI confer risk for cognitive decline, our
results do not support a direct link with AD pathology
given a lack of difference in episodic memory, Ap,
and tau. Instead, longitudinal white matter changes
might account for the decline, but this preliminary
result should be further investigated. We conclude
that Veterans with PTSD and PTSD+TBI need to be
monitored and treated adequately to prevent behav-
ioral and cognitive decline.
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