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Abstract. Alzheimer’s disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors
responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when
amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular
amyloid-� deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a signif-
icant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately,
this “reactive” pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by
amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus
in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD
(EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via
neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD)
or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then,
tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron
transmission.
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INTRODUCTION

The amyloid hypothesis

The prevailing view in the field is that amyloid-
� peptide (A�) exhibits a “toxic gain-of-function”
when it forms oligomers and aggregates into
plaques, directly contributing to the pathogenesis
of Alzheimer’s disease (AD) [1, 2]. In particu-
lar, the amyloid hypothesis, the prevalent theory of
AD pathogenesis, suggests that the accumulation of
pathological forms of A� is the primary patholog-
ical process driven by an imbalance between A�
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production and A� clearance [3, 4]. In this path-
way, microtubule-associated protein tau pathology
with the formation of phospho-tau-immunoreactive
neurofibrillary tangles (NFTs) and subsequent neu-
ronal dysfunction and neurodegeneration, perhaps
mediated via inflammation, are thought to be the
downstream result [4]. The direct influence of A�
on tau pathogenesis is well documented. For exam-
ple, injection of A� fibrils [5] or A�-containing brain
extract [6] into mutant tau transgenic mice, crossed
between mutant tau and amyloid precursor protein
(APP) or 5x familial AD (FAD) transgenic mice,
results in exacerbated tau pathology [5–16]. More-
over, “in vitro” [17] and “in vivo” [16] studies have
demonstrated that A� exerts its detrimental actions
by activating a key kinase, glycogen synthase kinase
3� (GSK-3�) [17, 18], implicating this kinase as an
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important player in the amyloid cascade. Notably,
GSK-3� is the primary kinase that phosphorylates
tau [18, 19]. In agreement, increased GSK-3� activ-
ity has been observed in the brains of AD patients
[20]. These data confirm GSK-3� as a cornerstone
of AD pathogenesis and support the notion that this
kinase represents a crucial molecular link between
A� and tau [18, 19, 21–24]. Accordingly, human
A� oligomers induce hyperphosphorylation of tau at
AD-relevant epitopes and cause neuritic dystrophy in
cultured neurons [25].

The current view

In the current theory, I propose a shift in the
paradigm wherein aggregates of the two key play-
ers in AD pathogenesis, i.e., A� and tau peptide,
develop by two different and relatively independent
processes. In particular, the central hypothesis is
that tau pathogenesis is linked to adult neurogenesis
and migration. All elements predisposing to patho-
logical tau hyperphosphorylation are present in the
niches of adult neurogenesis. In contrast, as already
documented in the literature, metabolism plays a pri-
mary role in driving A� deposition [26–28]. Despite
the fact that the two processes driving A� and tau
pathogenesis are relatively independent, when A�
pathology is present, it acts as a strong driving
force for tau pathogenesis. Therefore, A� pathol-
ogy also plays a crucial role in AD pathogenesis in
the current theory. However, its detrimental effect is
explained in quite a different way from the classi-
cal amyloid hypothesis. In particular, A� not only
has a downstream effect on tau pathogenesis, espe-
cially when A� and tau colocalize, but also has
an early indirect effect by influencing the process
of adult neurogenesis and migration. In brief, the
current theory depicts the following scenario. Pro-
gressive accumulation of extracellular A� deposits
in the brain triggers a state of chronic inflammation
by microglia. Microglial activation has a significant
pro-neurogenic effect that fosters adult neurogene-
sis and supports neuronal migration. Unfortunately,
this “reactive” pro-neurogenic pathway ultimately
perturbs the delicate homeostatic equilibrium in the
neurogenic niches by amplifying tau pathogenesis in
AD. An imbalance between increased tau phospho-
rylation, already occurring at a high rate in neural
stem cells (NSCs), coupled with less efficient clear-
ance of the byproducts of tau hyperphosphorylation,
as well as further increases in hyperphosphorylation
during long migrations, could be the primary rea-

sons behind these detrimental effects. This scenario
involves NSCs in the subgranular zone (SGZ) of the
hippocampal dentate gyrus (DG) in late-onset AD
(LOAD) and NSCs in the ventricular-subventricular
zone (V-SVZ) along the lateral ventricles in early-
onset AD (EOAD), including familial AD (FAD).
Neuroblasts carrying the initial seed of tau pathol-
ogy travel throughout the brain by neuronal migration
driven by complex signals, bringing the disease from
the niches of adult neurogenesis to near (LOAD) or
distant (EOAD) brain regions. At these locations, or
in close proximity, a focus of degeneration begins
to develop. Then, tau pathology spreads from the
initial foci to large neuronal networks along neural
connections by neuron-to-neuron transmission.

Therefore, the new core statement of the current
theory is that AD starts in NSCs in the niches of
adult neurogenesis. Interestingly, recent findings sug-
gest that the current paradigm and the classic amyloid
hypothesis might not be incompatible. In particular,
some authors found clear evidence of intracellu-
lar oligomers of A� generated in NSCs within the
SGZ niche at a very early stage in a transgenic AD
mouse model [29]. In the current theory, this finding
could be interpreted as proof that A� pathology not
only indirectly influences tau pathogenesis by fos-
tering neurogenesis and migration but also directly
contributes to pathological tau hyperphosphorylation
within these niches, most likely by activating GSK-
3�. This view also reinforces the role of amyloid
pathology as a leading factor in the current model,
bridging the gap between the two theories.

In the first section of this manuscript, I propose the
core hypothesis of tau pathogenesis in AD as linked to
adult neurogenesis and migration. In the second sec-
tion, I present the indirect microglia-mediated A�-tau
interaction. In the third section, I consider the scaling
of molecular pathology to the macroscopic brain. In
the Discussion section, I put the new theory into con-
text and consider the potential merits and limitations
of the current proposal.

TAU PATHOGENESIS IS LINKED TO
ADULT NEUROGENESIS AND
MIGRATION

Tau isoform and phosphorylation during
postnatal and adult neurogenesis

The tau isoform featured by the presence of
three-repeat microtubule-binding domains (3R-tau)
predominates at early developmental stages [30, 31].
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The 3R-tau isoform exhibits a lower affinity for
microtubules than the mature brain tau isoform [32],
so it confers lower stability to the cytoskeleton and
allows the morphological differentiation and migra-
tion of developing neurons. In contrast, 4R-tau is the
predominant isoform at mature developmental stages
[30, 31]. It binds microtubules with a greater affin-
ity and displaces the previously bound 3R-tau from
microtubules [30], guaranteeing the stability of the
cytoskeleton required to maintain neuronal integrity.
In addition to the presence or absence of exon 10
shaping the 4R- or 3R-tau isoform, tau phosphoryla-
tion is developmentally regulated: it is higher in fetal
neurons and decreases with age during development
[33–35]. As phosphorylation decreases the affinity of
tau protein for microtubules [36], hyperphosphoryla-
tion of fetal tau [33, 37] contributes to maintaining a
dynamic microtubule network as required by the out-
growth of axons during embryogenic neurogenesis
[38].

In the adult human brain, both 3R- and 4R-tau are
present, although in newborn neurons in the niches
of adult neurogenesis, 3R-tau is the primary isoform
[32, 39]. In particular, it has been demonstrated that
3R-tau is transiently expressed during the maturation
of NSCs in the hippocampal SGZ [32, 38, 40, 41].
For instance, in rodents, individual new subgranu-
lar neurons exhibit the highest expression of 3R-tau
when cells are 2 weeks old [40], and expression of
this molecule is maintained until 4 weeks, a time
point at which 3R-tau is replaced by 4R-tau [32].
Moreover, high tau phosphorylation in fetal epitopes
is related to adult neurogenesis in both the V-SVZ
and SGZ [39, 42], although fetal tau phosphorylation
can be found in the adult brain in additional areas
[35]. Transient expression of the 3R-tau isoform and
fetal tau hyperphosphorylation in adult neurogene-
sis are not unexpected, considering that new neurons
require a high degree of plasticity to migrate, dif-
ferentiate, project axons, and integrate into the cell
layer, and both the 3R-tau isoform and high phospho-
rylation guarantee a dynamic microtubule network
[38, 39]. Furthermore, abnormally hyperphosphory-
lated tau in AD constitutes paired helical filaments
(PHFs) of NFTs [43–47]. Interestingly, the 3R-tau
isoform is said to facilitate PHFs, such as those
seen in classical AD NFTs [48]. Additionally, sev-
eral sites of hyperphosphorylation of the fetal 3R-tau
during development were the same as those in the
AD brain [33, 37, 49, 50]. Additionally, as already
reported, GSK-3� is the first identified tau kinase
[51, 52] that plays a key role in AD-like tau hyper-

phosphorylation [18, 19, 21, 53–55]. Interestingly,
during development, expression of GSK-3� reaches
its highest level in the late embryonic/early post-
natal period, markedly decreasing with maturation
into adulthood [56, 57]. More importantly, activated
GSK-3� is believed to be the primary tau kinase in
newborn neurons during adult neurogenesis [39, 58].

In summary, tau isoform and phosphorylation in
NSCs during postnatal, as well as adult, neurogenesis
seem equivalent to those predisposing to the typical
tau alterations observed in AD. In this regard, it is
worth noting that the primary cause of the tau func-
tional change and NFT formation in AD is believed
to be abnormal hyperphosphorylation [59–67]. In
addition, abnormal tau hyperphosphorylation seems
to reflect exaggerated physiological phosphorylation
rather than disorganized phosphorylation at random
sites [68, 69]. Therefore, tau pathogenesis in AD
seems to depend exclusively on the extent of phos-
phorylation and the combination of multiple specific
phosphorylation sites [38, 70, 71].

Differences between adult and postnatal
neurogenesis associated with tau pathogenesis

Interestingly, although 3R-tau is said to facilitate
PHFs, such as those seen in classical AD NFTs [48],
and several sites of high phosphorylation of the fetal
3R-tau are the same as those in the AD brain [33, 37,
49, 50], during development, fetal tau remains func-
tional and does not polymerize into NFTs. At this
point, I speculate that a further crucial factor respon-
sible for tau pathogenesis in AD could be found
among those aspects that distinguish adult and post-
natal neurogenesis. In this regard, it is worth noting
that although postnatal and adult neurogenesis share
some niches and signals, there are some important
differences between the two.

The primary difference is that the neurogenic
niches are surrounded by different environments. In
particular, in the large, evolutionarily developed brain
of adult mammals, neuroblasts originating in the neu-
rogenic niches must migrate long distances through
a complex and generally inhibitory environment [72]
made up of neuronal, glial, and vascular networks
to reach their destination [73]. Considering that tau
hyperphosphorylation in neuroblasts contributes to
maintaining a dynamic microtubule network that is
amenable to migration, demanding and long migra-
tion through the inhibitory environment of the adult
brain could have the detrimental effect of further
increasing tau hyperphosphorylation. I believe this
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factor could be crucial to tau pathogenesis, especially
in EOAD. Indeed, in the current theory, EOAD patho-
genesis is linked to adult neurogenesis, especially
in the V-SVZ. Here, migrating neuroblasts carrying
the seeds of tau pathology deviate from the conven-
tional rostral migration stream (RMS) to the olfactory
bulb (OB) and take different and long migration
paths toward various regions of the cortex, driven by
complex signals released, in particular, by activated
microglia.

I believe a further difference between adult and
postnatal neurogenesis relevant to the current the-
ory is related to clearance activity in the niches.
In this respect, rapidly accumulating data suggest
that autophagy fulfils some roles in NSC function
[74, 75]. Specifically, autophagy may serve both a
surveillance role by ensuring the quality of NSCs by
degrading and eliminating intracellular components
and aggregates and an elimination role by ensuring
the removal of defective or damaged NSCs through
its cell death promotion abilities [74, 75]. Conse-
quently, reduced autophagy during aging compared
to the postnatal period may contribute to the accu-
mulation of hyperphosphorylated tau aggregates in
NSCs. This event would be a crucial factor in AD
pathogenesis, especially in LOAD. Indeed, in the cur-
rent theory, LOAD is primarily linked to neurogenesis
in the hippocampal SGZ, where neural precursors
migrate very briefly to the granular layer of the DG.
Accordingly, an increase in tau hyperphosphorylation
through migration would be a less relevant factor in
LOAD pathogenesis than in EOAD pathogenesis.

In summary, in the niches of adult neurogene-
sis, all conditions predispose patients to pathological
tau hyperphosphorylation and accumulation of tau
aggregates. When microglia activated by A� depo-
sition foster neurogenesis in the niches and support
long migrations, the situation is taken to extremes.

THE MICROGLIA-MEDIATED A�-TAU
INTERACTION

According to the current theory, the slow pro-
gressive accumulation of A� deposits in the brain
provokes microglial activation. Activated microglia
foster the process of neurogenesis in niches and sup-
port neuronal migration. This “reactive” increase in
neurogenesis and migration amplifies tau pathogen-
esis in AD, and available data in the literature seem
to support this scenario.

Microglial activation in AD

Microglial activation in AD is well documented
[76]. In the early AD brain, microglia are found in
high densities surrounding A� plaques [77]. Both
postmortem [78, 79] and “in vivo” clinical studies
using PET ligands that bind to activated microglia
[80, 81] have consistently confirmed the finding
that microglia colocalize with amyloid plaques in
AD. In particular, senile plaques are infiltrated by
astrocytes and microglia in and around their central
amyloid core [82, 83]. From this evidence, it has been
proposed that A� plaques stimulate a chronic inflam-
matory reaction [84]. In other words, the activation
and increased proliferation of microglia in AD [85]
are thought to result from glial reactions to events
related to the ongoing deposition of A� [86, 87].
In this regard, the high density of microglia found
around A� plaques is consistent with their role in A�
clearance pathways and their activation by A� itself
[88]. Moreover, the finding that microglia possess
a range of pattern recognition receptors, including
Toll-like receptors, receptors for advanced glyca-
tion end products, and scavenger receptors, many of
which can recognize different A� species through
various interactions of differing affinities, support
their role in A� clearance [89–91]. Once activated,
microglia and astrocytes produce several proinflam-
matory signaling molecules, including cytokines,
growth factors, complement molecules, cell adhe-
sion molecules, and chemokines [84, 92, 93]. In
agreement with these findings, increased levels of
inflammatory cytokines and chemokines [78] as well
as upregulated chemokine receptors [94], have been
found in the AD brain.

Microglia and adult neurogenesis

At this point, it is relevant to the current theory to
disclose that microglia have been found to have a role
in adult neurogenesis.

Microglia modulates the production of new
neurons

In particular, microglia can modulate the produc-
tion of new neurons in the adult brain [88]. NSCs
have been found to depend on signals from their niche
to regulate their self-renewal, proliferation, and dif-
ferentiation [88]. In the absence of microglia, NSCs
progressively lose the capacity to undergo the dif-
ferentiation process required for neurogenesis [95].
The role of microglia in neurogenesis can be seen
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as instructive, with microglial-secreted factors, such
as IGF-1 and trypsinogen, having the capacity to
regulate adult NSC proliferation and differentiation,
promoting neurogenesis [96, 97]. Interestingly, both
acute and chronic microglial activation can mod-
ulate neurogenesis [88]. In particular, “in vitro”,
microglia acutely activated with lipopolysaccharide
(LPS) strongly expressing IL-1, IL-6, and TNF-�
have been found to reduce neural progenitor cell
survival [98]. The study of some neurological dis-
orders confirmed that overactive microglia might
inhibit adult hippocampal neurogenesis [99–101].
For instance, microglia-mediated neuroinflamma-
tion can disrupt neurogenic niches and undermine
the integrity of neuronal population replenishment
programs [102]. Conversely, “in vitro”, microglia
chronically activated by LPS with a secretory profile
dominated by IL-10 and prostaglandin E2 (PGE2)
are highly permissive to the neurogenic cascade [98].
The finding that microglia chronically activated with
a definite secretory profile can support adult neuro-
genesis is consistent with the current theory in which
A� plaques stimulate a chronic inflammatory reac-
tion by microglia. In addition, LPS, IL-10 and PGE2
are implicated in AD [103–111].

Microglia has phagocytic activity
Of note, microglia serve a further function in adult

neurogenesis. In young adult rats, approximately
9,000 new cells are generated in the SGZ each day, but
nearly half do not survive [112, 113], similar to what
occurs in the V-SVZ [113]. In particular, the major-
ity of newborn neural progenitors undergo apoptosis
1–4 days after they are generated in the SGZ, and
microglia phagocytose apoptotic debris from these
cells to help maintain the equilibrium of the neu-
rogenic niche [114]. Interestingly, this microglial
phagocytic activity is apparently unchanged by aging
or acute neuroinflammation, suggesting that it is a
mechanism that promotes a homeostatic neurogenic
niche in both healthy and disease states [114].

Microglia directs the migration of neuroblasts
Finally, microglia seem to have the capacity to

direct the migration of neuroblasts [115]. Interest-
ingly, some authors found in a transgenic mouse
strain that depletion of microglia in the V-SVZ
was linked to a marked reduction in neuroblasts
reaching the OB with a concomitant accumulation
of immature cells in the V-SVZ and RMS [116].
These findings suggest that microglia residing in
the V-SVZ/RMS regions are critical for neuroblast

survival and migration to the OB, possibly as a con-
sequence of their release of the cytokines IL-4, IL-6,
and IL-10 [116]. It is also important to note that
microglia-mediated phagocytosis of neuroblasts is
a rare phenomenon along the V-SVZ/RMS migra-
tory pathway, and accordingly, markers of activated
microglia, such as TREM2 and CD68, were unde-
tectable in these regions [116]. In contrast, within
the OB layers, where interneurons are continuously
replaced by V-SVZ-generated precursors, microglia
exhibit overt and robust phagocytosis. Therefore,
microglia in the neurogenic areas of the V-SVZ/RMS
are unique and specialized to support neural pre-
cursor proliferation and migration across significant
distances to their final destination [117–119]. Further
data supporting the role of microglia in sustaining
and driving the migration of neuroblasts come from
research on brain injury. In this regard, an invariant
feature of damage to the CNS is the migration of
microglial cells to the site of injury and their sub-
sequent activation [120, 121]. Interestingly, several
studies have shown that precursor cells preferen-
tially migrate to sites of inflammation in animal
models of multiple sclerosis and that these new
cells preferentially differentiate into oligodendro-
cytes [122–124]. In contrast, in experimental models
of more acute damage with neuronal loss, precur-
sor cells, both extrinsically provided and endogenous
precursor cells, migrated to the damaged area and dif-
ferentiated into neurons [125–130]. More recently,
some authors reported that precursor cells migrate
from the V-SVZ and RMS to the injured cortex after
traumatic brain injury (TBI) in mice and that proki-
neticin 2 (PROK2), a chemokine important for OB
neurogenesis, is expressed exclusively by cortical
microglia in the cortex as early as 24 h after injury
[131]. In addition, the same authors demonstrated
“in vitro” that cells expressing PROK2 directionally
attract V-SVZ cells [131].

The role of astrocytes

The role of astrocytes, in addition to that of
microglia, is in line with current theory, considering
that astrocytes are early involved in AD [132–134]
and have strong pro-neurogenic activity [135, 136].

Astrocytes in AD
Ramon y Cajal noticed reactive hypertrophic astro-

cytes surrounding senile plaques and blood vessels
with amyloid deposits in post-mortem AD patients
already in 1913 [137]. This observation has been
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replicated several times in AD patients’ brains
[138–141] and in AD mouse models [142–144].
Within the CNS, astrocytes play a key role in the
protection and repair of neuronal damage [145, 146].
Astrocytes respond to inflammatory substances and
undergo a process known as reactive astrogliosis
[147, 148] in various pathological conditions, includ-
ing acute injury and progressive disorders such as
tumors and AD [147]. Reactive astrocytes release
molecules such as cytokines, chemokines, growth
factors and gliotransmitters [149]. Notably, astro-
cytes release factors that promote axon growth, which
are essential for synaptic formation and maturation
in response to an injury [148, 150]. Moreover, astro-
cytes increase neuronal viability and mitochondrial
biogenesis, protecting neural cells from oxidative
stress and inflammation induced by amyloid peptides
[151]. At the same time, astrocytes may exert neu-
roprotection at different stages of AD. Indeed, both
astrogliosis and microgliosis, in response to amy-
loid, increase glial secretion of transforming growth
factor-� (TGF-�), which protects neurons from amy-
loid toxicity and increases amyloid clearance by
microglia [152, 153]. Furthermore, astrocytes sur-
rounding amyloid plaques show phagocytic activity
and are able to phagocytize neuritic dystrophies both
in mouse models and in AD patients’ brains [154].
Indeed, astrocytes are part of the brain’s glymphatic
system, a clearance system for proteins and soluble
solutes [133]. The astrocyte water channel aquaporin-
4, expressed at the ends of astrocytes, facilitates this
process and is important for A� clearance [155, 156]
and probably also for tau clearance [133].

Astrocytes and adult neurogenesis
Astrocyte is the main cell type in the hippocam-

pal niche of neurogenesis by number [135]. In the
molecular layer of the dentate gyrus and in the
SVZ [157], astrocytes are in close contact with
NSCs and contribute to the regulation of almost
all stages of adult neurogenesis, from the prolif-
eration of NSCs to the functional integration of
new neurons [135]. In particular, molecules secreted
by astrocytes increase the proliferation of adult
NSCs. For example, in vitro studies found that
the adenosine 50-triphosphate (ATP) through P2Y1-
PLC-phosphatidylinositol 3-kinase (PI3K) signaling
[158], the N-methyl-D-aspartate receptor co-agonist
(NMDAR) D-serine [159–161] and the fibroblast
growth factor-2 (FGF2) act as factors in the prolifer-
ative induction of adult NSCs [162, 163]. In addition,
several miRNAs expressed in astrocyte exosomes are

known to regulate adult neurogenesis [164]. In addi-
tion to affecting proliferation, molecules secreted by
astrocytes can also modulate other stages of adult
neurogenesis, such as the migration and differenti-
ation of progenitors into neurons, or the maturation,
synaptic integration, and survival of newborn neurons
[135]. For example, the first in vitro study examin-
ing the role of astrocytes in adult neurogenesis in
the hippocampus showed that astrocyte-conditioned
cell culture medium increases the differentiation of
NSCs into neurons [165]. Neuronal differentiation of
adult NSCs is also promoted in vitro through jux-
tacrine signaling by astrocyte secretion of ephrin-B2
and activation of EphB4 receptors on the stem cell
[166]. In addition, astrocyte-derived soluble factor
thrombospondin-1 (TSP1) is known for its antian-
giogenic activity and promotion of synaptogenesis
during brain development [167]; it also increases
adult NSC proliferation and neuronal differentia-
tion in vitro [167]. Consistently, adult TSP1-deficient
mice exhibit reduced proliferation of adult NSCs
[168]. Another secretory factor, neurogenesin-1,
increases the neuronal fate of newly formed hip-
pocampal cells [169], while IL-1b and IL-6 promote
neuronal differentiation of adult NSCs/progenitors
in vitro [170]. Finally, D-serine released from astro-
cytes has been shown to control dendritic maturation
and functional integration of newborn hippocampal
neurons [171].

Detrimental effects of glial cells in AD

The current theory focuses mainly on the neuro-
protective functions of microglia and astrocytes in
AD and their proneurogenic actions. However, it is
worth noting that both types of glial cells have been
found to contribute to the damaging effects in AD,
mainly through the promotion of innate immunity
and pro-inflammation and influencing the permeabil-
ity of the blood-brain barrier [172, 173]. Specifically,
both microglia and astrocytes interact with A�,
and A� in turn activates microglia and astrocytes
through TLRs to release neuroinflammatory medi-
ators that promote neurodegeneration [174, 175].
Pro-inflammatory cytokines decrease the phago-
cytic activity of microglia and probably transform
microglia into pro-inflammatory phenotypes [173].
In addition, pro-inflammatory microglia increase tau
phosphorylation and aggravate tau pathology [176].
At the same time, reactive astrocytes have been found
to release excessive amounts of GABA and gluta-
mate, resulting in memory impairment and synaptic
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loss in an animal model of AD [177, 178]. Moreover,
these cells contribute to the microcirculation dys-
regulation and blood-brain barrier disruption, which
facilitates A� accumulation and disease progression
[179, 180]. Finally, reactive astrocytes might even
pave the way for the formation of early amyloid
plaques [181]. Considering that AD has a long pre-
clinical phase, this dual role of glial cells [182] is
not incompatible with the current theory that easily
explains the very early stages of the disease. More-
over, some aspects of neuroinflammation, even under
chronic conditions, continue to promote microglial
phagocytosis and A� containment, resulting in a neu-
roprotective function [183].

THE SCALING OF MOLECULAR
PATHOLOGY TO THE MACROSCOPIC
BRAIN

Braak staging model

According to Braak’s neuropathological stag-
ing [184–187], pathological tau aggregates in AD
develop first in nerve cells of brainstem nuclei (sub-
cortical stages a–c) that have projections ending in
the cerebral cortex [188–190]. It appears that from
the locus coeruleus (LC) of the pontine tegmentum
[191–196], the lesions progress to a distinct portion of
the cerebral cortex, the transentorhinal cortex (TEC)
[197]. In cortical projection neurons, the resultant and
originally nonargyrophilic pretangle protein, during
cortical stages 1a and 1b, becomes transformed into
argyrophilic neurofibrillary lesions that characterize
subsequent NFT stages I–VI [189]. The neurofibril-
lary pathology advances from the TEC (NFT stage I)
into the OB [198], the entorhinal cortex (EC), and the
hippocampal formation (NFT stage II). During NFT
stage III, tau pathology progresses from the TEC to
the laterally adjoining basal temporal neocortex, and
during NFT stage IV, it extends more widely to the
temporal, insular, and frontal neocortices. In NFT
stage V, cases display severe involvement of most
neocortical association areas, leaving only the pri-
mary fields mildly involved or intact. In the end stage,
NFT stage VI, even these areas become involved. The
production of abnormal tau continues from the out-
set until the final stage of the pathological process
[188, 189, 199]. In summary, in AD, the pathology
progresses anterogradely from distinct predilection
sites in the lower brainstem to distant but connected
regions of the cerebral cortex, and it does so sequen-
tially with little interindividual variation, albeit at

different rates [189]. Considering the mechanism
implicated in tau spreading, a great deal of data
suggest that transcellular propagation of tau aggre-
gates, or seeds, could underlie disease progression
[200–207].

The prion-like seeding and spreading hypothesis
of tau

According to the prion-like hypothesis, patho-
logical tau can distribute from one cell to another,
thus propagating pathology from affected brain areas
to interconnected healthy areas, involving mecha-
nisms similar to those of prion diseases [208]. This
hypothesis could explain the hierarchical pathway
of neurodegeneration described in Braak’s scheme
[184]. The prion-like hypothesis involves two main
stages, namely the seeding, that is the ability of abnor-
mal tau to convert normal tau into a pathological form,
and the propagation, that is the spread of pathological
tau to connected neurons [209].

Abnormal tau has seeding capacity
Several studies support a seeding capacity of

tau similar to that of prions [209]. In this regard,
some authors showed that injection of tau aggre-
gates extracted from mice overexpressing mutated
tau (P301S) into mice overexpressing wild-type
human tau is sufficient to induce tau pathology
[201]. In particular, when a tau immunodepleted
extract was injected, no pathology was detected,
demonstrating that tau is the responsible factor of
aggregation, as later confirmed by other research
groups [210–212]. Most in vitro studies showed that
incubated aggregates/seeds are internalized by endo-
cytosis and promote aggregation of overexpressed tau
in cell lines [203, 204, 210, 213–221]. Evidence that
tau aggregates have prion-like seeding behavior come
mostly from experimental models [222]. However,
there is also evidence for seeding activity in tau aggre-
gates derived from patients with tauopathy. Indeed,
sarkosyl-insoluble PHFs extracted from AD brain tis-
sue induce seeding in cultured cells and wild-type
mice [223, 224]. In addition, in brain homogenates
and cerebrospinal fluid (CSF) from AD cases, tau
seeds have been found to induce non-aggregated tau
aggregation in FRET-based biosensor assays, partic-
ularly in regions known to be devoid of phospho-tau
deposits [220, 225]. Moreover, recent work showed
that human CSF from AD patients can induce tau
seeding in experimental models [226].
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Seeded tau aggregation is templated
Other studies demonstrated that the seeded tau

aggregation is templated [222]. Some authors, for
example, observed that native P301S tau seeds
derived from transgenic mice brains confer their
highest seeding competence to less competent recom-
binant P301S tau seeds when co-incubated with them
in vitro [227]. Under the light microscope, tau aggre-
gates induced in cells or in vivo have the same
morphological appearance as the parent tau seed,
suggesting a templated conversion mechanism [222].
This has been demonstrated in many studies from
Diamond’s laboratory, in which the formation of mor-
phologically distinct tau seeds resembles the parent
tau seed both in cell culture [228] and, more recently,
in vivo [225]. That a templated conversion mecha-
nism may be relevant to tauopathies in humans has
been demonstrated by studies from the laboratories
of Goedert and Tolnay, in which injection of brain
homogenates of different tauopathies into the brains
of mice expressing unaggregated human tau resulted
in the formation of only the inclusions of the corre-
sponding tauopathy [229].

Neuroanatomical spread of tau aggregates
Trans-synaptic propagation of pathological tau

has been demonstrated using a number of different
approaches in transgenic mice [222]. Some authors
showed not only the induction of tau aggregation
in rodent brains following intracerebral injection of
brain homogenates containing tau seeds, but also
the time-dependent appearance of tau pathology in
anatomically connected brain regions [201]. Others
reported the appearance of pathological tau in areas
connected to sites injected with tau seeds or tau-
expressing viral vectors [230–233]. Some authors
used a model in which human tau expression was
restricted to the entorhinal cortex alone, showing that
the tau pathology was evident in anatomically con-
nected regions that did not express the human tau
transgene [202, 205]. Further studies in tau trans-
genic mice indicated that tau seeds predict disease
spread by appearing in brain regions before the
occurrence of any other pathological changes [215].
Interestingly, this finding explains the histopatho-
logical observation made by some authors more
than 20 years ago [234]. These authors reported the
absence of pathological tau in a frontal cortical region
that was anatomically disconnected from the lim-
bic region following neurosurgery, decades before
the patient developed AD. Conversely, the authors
found an extensive tau pathology in the immedi-

ately adjacent brain regions and limbic and isocortical
areas [234].

Propagation involves several steps
The propagation of pathological tau to connected

neurons consists of at least four steps [235]. First, tau
must be secreted or released from donor neurons; sec-
ond, it must undergo aggregation before or after being
released; third, tau must be taken up by recipient neu-
rons; and fourth, tau aggregation must be induced in
recipient cells [236].

Currently, there is evidence that misfolded tau is
indeed secreted [209, 212, 237]. However, the nature
of secreted tau is debated in the literature [222, 238].
Tau is secreted mainly in free form [239–242], but
it is also found within nanotubes [243, 244] or asso-
ciated with extracellular vesicles (EVs) [245], such
as exosomes [242, 246, 247] and ectosomes [239].
While nanotubes may be difficult to visualize in the
human brain, phospho-tau-containing EVs have been
found not only in the brains of transgenic mice [248,
249], but also in peripheral fluids (CSFs) [242, 250]
and blood [251–253] of AD patients [209].

Considering the uptake step of tau by an adja-
cent recipient cell, in vitro studies showed that
extracellular aggregates of tau can be internalized
by naïve cells by promoting fibrillation of intra-
cellular tau [203, 204, 254]. Tau pathology can
be transferred between co-cultured cells [203, 204,
254] and also through synaptic contacts between
neurons that facilitate the propagation of pathol-
ogy [255]. Intracranial or peripheral administration
of pathological tau [222, 256] and in vitro exper-
iments have shown that tau is mainly internalized
by active endocytic processes [203, 257]. In particu-
lar, three types of endocytosis have been described:
bulk-endocytosis, actin-dependent macropinocytosis
mediated by HSPGs on the cell surface, and clathrin-
mediated endocytosis [208].

Once internalized, tau can escape endosomal
vesicles by inducing their rupture [258, 259] and
accumulate in the cytoplasm where it becomes a
potential template for tau misfolding [208]. Indeed,
pathogenic misfolded tau proteins act as “seeds”
that recruit soluble endogenous tau into larger aber-
rant conformations [260] that slowly propagate into
interconnected brain regions, as demonstrated in var-
ious animal models [235]. Although the biochemical
mechanisms that drive the conversion of normal tau to
the pathological form remain unclear, several models
of tau seeding have been proposed [261, 262]. Finally,
transcellular transfer of tau aggregates between seri-
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ally cultured cells in microfluidic chambers was
demonstrated [263]. In addition, diffusion of tau from
neuron to neuron through trans-synaptic connections
via exosomes has been reported to seed aggregates
[242, 249]. However, other mechanisms that do not
require secretion but a direct connection between
cytoplasm might be involved [222]. Indeed, a recent
work showed that nanotubes promote the interneu-
ronal transfer of tau fibrils into neurons [243, 244].

Limitations of the seeding and spreading
hypothesis

Although several pieces of evidence seem to sup-
port the seeding and spreading hypothesis of tau,
many points still remain to be clarified [68, 264, 265].
Firstly, some authors pointed out that the methods
used and data collected in some studies supporting
the hypothesis are not all without some limitations
[68, 265]. Secondly, the biochemical mechanism that
drives the conversion of normal tau to the patholog-
ical form is still not clear [208]. Thirdly, the exact
nature of the tau seeds responsible for the propa-
gation of tau pathology remains controversial [222].
Furthermore, the specific pathways and mechanisms
underlying the spread of pathological tau, includ-
ing the mechanism of releasing from donor neurons
and subsequent uptake by recipient neurons in AD,
remain unclear [209, 235, 266]. In addition, the
molecular forms of extracellular tau are not fully
understood, and the physiological or pathological
functions of this extracellular tau remain unknown
[266]. Further investigations are then needed to clar-
ify the relationship between the propagation of tau
aggregates and tau-induced toxicity and degeneration
[222]. Furthermore, it cannot be ruled out that genetic
variants identified as risk factors for tauopathies play
a role in the propagation of tau pathology, but many
more studies are needed to document this [222].
Finally, the contribution of selective vulnerability of
neuronal populations as an alternative explanation of
the spread of tau pathology needs to be clarified [222].

Microglia and astrocytes could be involved in the
spread of pathological tau

It is worth noting that some studies highlighted
the involvement of microglia in the spread of patho-
logical tau [208]. Indeed, it has been reported that
increased microglial activation accelerates the prop-
agation of tau in the brain [267]. Furthermore,
microglia were found to promote tau propagation
[246, 268], as supported by the marked reduction in
tau propagation through microglia depletion in two

independent models of tauopathy [246]. The mecha-
nism involved in the promotion of tau propagation by
microglia has not been fully elucidated. However, tau
was found in the EVs in the CSF of individuals with
AD [239], and microglia were found to internalize tau
seeds and degrade them [182]. When microglia fail
to degrade these tau seeds, deleterious consequences
occur, including the secretion of tau-containing exo-
somes that can spread to neurons [182].

Interestingly, tau was also found in astrocytes of
individuals with AD [269]. Although tau was found
in glial cells [270], astrocytes do not express this
protein under physiological conditions [271], and
the origin of tau in astrocytes in AD is still unclear
[272]. One unproven possibility is that AD progres-
sion induces the translation of tau from the mRNA
present in astrocytes [273]. Alternatively, astrocytes
could also capture extracellular tau [228, 274, 275].
In this regard, astrocytes have specific heparin sul-
fate proteoglycans (HSPGs) and receptors, such as
low-density lipoprotein receptor-related protein 1
(LDR1), that can mediate the uptake of tau aggregates
[133]. Aggregates can be internalized and processed
by various mechanisms, including lysosomal degra-
dation. Disruption of aquaporin-4 in perivascular
astrocyte ends may contribute to the disruption of
tau clearance and accumulation of tau aggregates in
the CNS [133]. However, the microglial and espe-
cially astrocytic mechanisms that may contribute to
pathological tau seeding are not yet fully understood
[133]. As for microglia, it is sufficient to mention
that they can also reduce the seeding activity of tau
[268, 276–278], supporting the idea that microglia
are indeed able to limit or promote the spread of
tau [182]. Considering astrocytes, one hypothesis
is that tau pathology spreads from one astrocyte to
another, possibly through astrocyte gap junction net-
works and tunneling nanotubes across brain regions
[266, 279]. Astrocyte engulfment of tau-containing
synapses may be another pathway by which astro-
cytes contribute to the spread of tau in AD [133].

The possible involvement of glial cells in tau
spreading is consistent with the current theory. In
this case, microglia and astrocytes activated by A�
deposition would not only promote tau pathogenesis
through their proneurogenic effect, but also con-
tribute to the spread of tau aggregates in the brain.

Open questions left in the Braak model

Despite the indubitable value of the Braak staging
model, some open questions remain.
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First, the view that nonthalamic nuclei would be
the first site of tau pathology has been questioned
[280]. Indeed, these nuclei are equipped with a type
of termination (i.e., nonjunctional varicosities) [191,
196, 281, 282], supporting a diffusive mode of trans-
mission [191, 196, 281, 283–285] that is not suitable
for neuron-to-neuron transmission of abnormal tau as
provided by the model. Indeed, recent findings have
suggested that TEC/EC are actually the first site that
develops early tau pathology [286]. In particular, tau
seeding activity that precedes detectable NFTs was
found in the LC only after it was already prominent
in the TEC/EC, i.e., at later NFT stages (IV–VI),
suggesting the idea that tau seeds spread from the
TEC/EC to the LC and then to more distant cortical
regions [286].

Second, to date, a clear explanation of why tau
pathology begins in TEC/EC seems lacking. Indeed,
it is not easy to contextualize this finding in the frame
of classical amyloid theory, considering that amyloid
plaques first appear in the association cortices of the
temporal lobe, at some distance from the TEC/EC
where damaged neurons containing NFTs are first
found [187, 287]. Additionally, further studies exam-
ining the early degeneration of the lateral EC have
reported that levels of amyloid peptides in this region
are not higher than those in other, less affected regions
[288, 289].

Third, despite the evidence that early tau pathology
emerges in entorhinal layer II cells at Braak stage II
[186] and that these cells project to the DG by the per-
forant path [290–294], the DG is not affected by tau
pathology at early stages. Indeed, granule cells of the
DG remain uninvolved in Braak stage III, and some
tau pathology emerges only at stage IV [186]. At the
same time, hippocampal CA1 cells receiving projec-
tions from entorhinal layer III cells [292, 293] are
impacted far earlier, starting at Braak stage II [186].

Finally, a clear and accepted explanation of the
peculiar regional distribution of tau lesions and sub-
sequent neurodegeneration in EOAD, especially in
the syndromic variants of AD, is lacking in the Braak
model.

A new model of tau spreading in the medial
temporal lobe

The current theory provides a new model of tau
spreading in the medial temporal lobe (MTL) (Fig. 1).
According to the new model, tau pathology begins
in NSCs within the niches of adult neurogenesis.
In particular, in LOAD, the initial tau pathology,

likely in the form of soluble aggregates of misfolded
and hyperphosphorylated but nonfibrillar tau protein
[280], originates in the SGZ in the hippocampal DG.
From this site, seeds of tau pathology spread retro-
gradely to the EC through the perforant path. From
here on out, anterograde transmission flanks retro-
grade transmission. Therefore, by virtue of reciprocal
connections between the EC and TEC [294–297], the
TEC receives tau seeds both anterogradely and ret-
rogradely. In this regard, it is interesting to note that
the EC projections to the TEC are input to layer II
[296, 297], where NFTs are first found [185, 298].
Then, from EC/TEC, the pattern of distribution of
tau pathology follows the Braak model. However, a
further difference may occur. Indeed, according to the
current model, it cannot be excluded that some fur-
ther foci of degeneration could start locally in some
regions of the cortex, provoked by neuroblasts car-
rying the seeds of tau pathology arising from the
V-SVZ niche. In this case, in LOAD, the primary
regional distribution pattern of tau pathology in the
MTL would be complicated by concurrent foci of
pathology that emerge locally in neocortical regions.
In the same context, it is noteworthy that the OB is
the arrival point of migrating neuroblasts from the
V-SVZ along the RMS, and at the same time, many
findings support early involvement of this region in
AD [198, 299–301]. However, olfactory structures,
including the OB, anterior olfactory nucleus, and pir-
iform cortex, send projections to the superficial layers
of EC [302, 303]. Therefore, retrograde transmission
of tau pathology from the EC to the OB could be a
more parsimonious explanation. The current model
seems plausible and coherent with some findings in
the literature. In this regard, it is worth noting that
retrograde transmission has been found to be possi-
ble. Indeed, projection neurons generate long axons
to transmit information from one site to another, and
for this purpose, their axons have mechanisms for
both anterograde and retrograde transport of various
cargos [222, 280]. Moreover, the idea of retrograde
transmission of tau pathology in the MTL in AD has
already been suggested [304]. In addition, the pat-
tern of connections among the DG, EC and TEC is
compatible with the new model of both retrograde
and anterograde transmission. In particular, the DG
receives projections from entorhinal layer II cells,
where tau pathology is found early in EC [186, 305].
Moreover, projections from the EC to the perirhinal
cortex that includes the TEC terminate most heavily
in and around layer II, where tau pathology is first
found in the TEC [184, 298].
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Possible solution to the questions left in Braak
staging

Interestingly, the current model seems to offer pos-
sible explanations for the open questions left in Braak
staging.

First, it is coherent with the recent view considering
the LC and other nonthalamic nuclei as not the pri-
mary sites for tau spreading in the MTL. At the same
time, the core hypothesis of tau pathogenesis as linked
to adult neurogenesis and migration offers a specula-
tive explanation for the emergence of tau pathology in
these sites. In fact, the LC is highly connected to the
hypothalamus, and constitutive neurogenesis in the
adult hypothalamus of mammals, including rodents,
rats, mice, voles [306–314], and sheep [315], has been
documented [316].

Second, according to the current model, tau pathol-
ogy emerges first in the TEC because this region
receives the massive seeds of tau pathology from
the EC, both anterogradely and retrogradely, through
the multiple reciprocal connections between the two
regions. Conversely, the EC receives the seeds of tau
pathology from the DG only by retrograde transmis-
sion (Fig. 1, Stage 1). Therefore, in the current model,
NFTs emerge first in TEC because the initial load of
tau pathology would be greater than in the EC (Fig. 1,
Stage 2).

Third, the absence of tau pathology in the DG at
early Braak stages is due to the strong activity of
clearance usually occurring in the neurogenic niches
[74, 75]. According to this view, although seeds of
tau pathology originate in NSCs in the SGZ niche
and spread retrogradely toward the EC by a perforant
path, the formation and accumulation of NFTs is
suppressed or at least delayed in NSCs in the DG
(Fig. 1, Stage 2). For the same reason, CA3 [118],
which receives excitatory outputs from the DG, is not
impacted by tau pathology at early stages. Instead,
tau pathology emerges first in CA3 at Braak stages
III-IV [186]. In the same context, it is relevant to
note that adult-generated neurons in the SGZ receive
local connections from multiple types of GABAer-
gic interneurons [317], whose inputs to the niche
are fundamental for maintaining a healthy level of
neurogenesis under normal conditions [318, 319].
Interestingly, these same GABAergic interneurons
have been shown to be particularly vulnerable to
AD pathologies, such as NFTs of phosphorylated
tau protein [317, 320–323]. Therefore, GABAergic
interneurons could be plausible candidates to convey
transmission of the first tau seeds originating in SGZ

NSCs. Strictly related to the previous point, the cur-
rent model seems to offer a plausible explanation for
why tau pathology spreads early from the EC over-
all to the hippocampal CA1 region, while it seems
not to target the DG, despite that the EC and the DG
are highly connected by the perforant path. Damage
to the perforant path between the lateral EC and DG
occurs unusually early in AD [324]. The long axons
of projection neurons are in fact not well equipped
to degrade or eliminate pathological proteinaceous
aggregates [189, 325]. Based on the current model,
the seeds of tau pathology, after which the EC, and
more so the TEC, have been impacted, would spread
anterogradely from the EC to multiple regions, as in
the classical Braak model. However, at this point, the
current view predicts that the DG would be primarily
disconnected from the EC because the entorhinal per-
forant projections toward the DG would already be
deteriorated due to the precedent retrograde transmis-
sion of tau pathology along the same projections in
the opposite direction, from the DG to the EC, during
the first stage of disease. Consequently, the connec-
tions between the EC and CA1 (and subiculum) are
unique undamaged fibers in the perforant path avail-
able for tau seed transmission at this stage (Fig. 1,
Stage 3).

Finally, the current model seems to offer a plau-
sible explanation for the peculiar distribution of tau
pathology in EOAD. Individuals with EOAD may
present with striking neurobehavioral phenotypes,
reflecting damage to the language systems [326],
visual systems [327], or frontal-executive systems
[328]. In general, EOAD is more likely to present
with atypical clinical phenotypes than LOAD patients
[329]. In one study, approximately 25% of EOAD
patients presented with a nonamnestic phenotype
in whom visual or apraxic and language pheno-
types predominated [330]. In another study, almost
60–70% of EOAD patients exhibited atypical patterns
of brain atrophy [329]. Interestingly, the focus and
system-specific neurobehavioral features in EOAD
variants do not reflect regional accentuation of A�,
but they do show strong correlations with the pattern
of glucose hypometabolism and atrophy [331–334].
More generally, despite their differences, in auto-
somal dominant AD (ADAD), EOAD and LOAD,
the distribution of A� deposition throughout the
brain is similar (with the exception of A� depo-
sition in the striatum in ADAD), affecting large
confluent areas of the association cortex and over-
lapping with a set of brain regions active at rest
[335–339]. Therefore, phenotypic heterogeneity in
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Fig. 1. A new model of the spread of tau pathology in the MTL according to current theory. Stage 1: The first seeds of tau pathology develop
in NSCs in the SGZ niche of the DG. Then, they spread from the DG to the EC by retrograde transmission along the connections of the
perforant pathway. Stage 2: Seeds of tau pathology spread from the EC to the TEC by both anterograde and retrograde transmission along
the multiple connections between the two regions. Because of the massive load of tau pathology accumulated in the TEC, tangles develop
here first. At the same time, tangle formation is suppressed (or delayed) in the DG because of the strong clearance activity that usually occurs
in the neurogenesis niches. As a result, the transmission of tau pathology from the DG to CA3 is nullified (red cross). Stage 3: Seeds of tau
pathology spread from the EC to the CA1 and subiculum along the EC-CA1 and EC-subiculum projections, respectively. In contrast, the
seeds of tau pathology would not spread anterogradely to the DG (red cross), because the neuronal connections between the EC and DG are
already deteriorated at this stage due to the transmission of tau pathology in the reverse (retrograde) direction in the previous stage (Stage
1). Stage 4. When tau tangles emerge in the CA1 and subiculum (starting from Braak stage II), the DG and CA3 are not yet affected. Figure
1 was produced by Antonio Garcia, scientific illustrator from Bio-Graphics.

AD is not easy to explain considering both the frame
of the classical amyloid theory and the primary
pattern of regional distribution of tau pathology start-
ing from the MTL according to Braak staging. In
the current model, EOAD and LOAD exhibit dif-
ferent regional distributions of tau pathology and
subsequent degeneration because the V-SVZ niche
is primarily active in EOAD, while the SGZ niche is
primarily active in LOAD. Accordingly, EOAD espe-
cially impacts regions on the dorsal cortex, whereas
LOAD impacts the MTL [340] (Fig. 2). Moreover,
activated microglia surrounding A� plaques release
chemokines that attract and drive migrating neurob-
lasts toward the regions of A� deposition, similar
to what happens in brain injury [125–131]. Conse-
quently, especially in EOAD, migrating neuroblasts
deviate from the RMS to the OB and take different
paths toward various regions of the cortex, carry-
ing the seeds of tau pathology to those locations.
In summary, the redirection of migrating neurob-
lasts to multiple possible destinations in the cortex
is the basis of heterogeneity in the regional distribu-
tion of tau pathology and subsequent degeneration

in atypical EOAD syndromes (Fig. 2). In addition, as
already reported, long-distance migration throughout
the inhibitory environment of the adult brain could
contribute to augmenting tau phosphorylation.

Interestingly, recent in vivo tau-PET imaging stud-
ies in AD have revealed substantial heterogeneity
in tau deposition patterns with significant deviations
from Braak’s scheme [334, 341, 342]. These find-
ings are in line with the four subtypes previously
identified from neuropathology and neuroimaging
studies based on the distribution of NFTs and patterns
of brain atrophy, respectively: hippocampal-sparing
AD, limbic-predominant AD, typical AD, and mini-
mal atrophy AD [343–354]. In addition, some studies
confirmed atypical patterns of tau deposition with
elevated tau-PET signal in the occipital and parietal
cortex [355], left temporo-parietal areas (logopenic)
[356] and, similarly, perirolandic areas (corticobasal
syndrome due to AD) [357, 358] reflecting the clin-
ical variants most frequently associated with EOAD
[359, 360]. Interestingly, some of these tau-PET
imaging studies in AD found that pathological tau
accumulates in the associative cortex, completely
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Fig. 2. Compatibility between the localization of the main niches of adult neurogenesis and the core regions targeted in AD. A) One of the
main niches of adult neurogenesis is the sub-granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus. At the same time, the
hippocampus is the first major region targeted in AD, especially when late-onset AD (LOAD) is considered. B) Another main niche in adult
neurogenesis is the ventricular subventricular zone (V-SVZ) along the lateral ventricles. From this niche, through several long migrations to
the cortex (dashed lines), it is possible to reach every cortical region (e.g., frontal, fronto-parietal, occipital) that is targeted by AD, especially
when considering early-onset AD (EOAD) and syndromic variants of AD. In addition, it is noteworthy that the olfactory bulb (OB) is the
end point of neuroblasts migrating from the V-SVZ along the rostral migratory stream (RMS) and, at the same time, many findings support
an early involvement of this region in AD. Figure 2 was produced by Antonio Garcia, scientific illustrator from Bio-Graphics.

sparing the hippocampus [342, 350, 359, 361, 362].
This finding strongly supports the idea of distinct foci
of early tau deposition and multiple pathways of tau
diffusion in AD, including cases without any involve-
ment of the hippocampus and/or entorhinal cortex
[342, 348].

This scenario does not fit well with Braak’s staging
system and seems more consistent with the current
theory that predicts different niches of adult neuro-
genesis and multiple pathways of migration to the
cortex.

Cortical arealization in development and AD

Considering that migration paths throughout the
cortex, including the RMS, are mostly quiescent in
the human adult cortex, the current model would be
plausible only provided that a strong pro-neurogenic
action would foster neurogenesis and support highly
demanding migrations. In this respect, the accumu-
lation of A� deposits and consequent microglial
activation are key factors. However, the distribution
of A� throughout the brain is diffuse and similar in
LOAD, EOAD, and FAD, as well as in AD vari-
ants. Therefore, it is not plausible that microglia
surrounding A� plaques signal a precise direction to
migrating neuroblasts, similar to focal brain insults,
such as stroke. Furthermore, the current model can-
not explain why only some directions of migration are
undertaken—those corresponding to the paths toward
the regions impacted in well-known AD variants, e.g.,
posterior, frontal, and left perisylvian—and not oth-
ers. At this point, I speculate that not only should
a further source of signals drive migration through-

out the cortex in EOAD but also that this source
should contain information about brain topography,
likely at the macroscopic level of hemispheres, lobes,
and gyres, to efficiently work. Surprisingly, I found
that the program under cortical arealization in devel-
opment perfectly fits this idea. In particular, there
is a complex mechanism regulating the progressive
patterning and correct localization of brain areas dur-
ing development [363], which necessarily uses some
spatial information related to brain topography to
work. This mechanism would be mostly, even if not
exclusively, under the genetic control of factors with
discrete expression in the cortical field (protomap
models). Moreover, some findings have suggested
that the main spatial information used is related to
simple brain axes. In particular, animal studies have
demonstrated that there is an anterior-posterior (A-P)
gradient of gene expression of morphogens or tran-
scription factors, such that specific genetic factors
enlarge rostral (motor) areas at the expense of caudal
(sensory) areas, and vice versa [363]. In addition to
this A-P gradient, there is evidence for graded expres-
sion patterns along with other distributions, including
the medial-lateral (M-L) and dorsal-ventral (D-V)
axes.

The failure of certain processes (e.g., cell prolifer-
ation, migration, and abnormal organization) during
cortex development has been associated with several
cortical malformations [364]. What is interesting is
that most malformations do not involve the entire cor-
tex uniformly but have regions of maximum severity.
For example, some malformations (schizencephaly,
megalencephaly) may alternately involve one or both
hemispheres. Another type of malformation (e.g.,
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lissencephaly) may have two forms, one with max-
imum severity in the frontal lobes and the other
with maximum severity in the occipital lobes [364].
Another more diverse malformation (i.e., polymicr-
ogyria) shows a highly heterogeneous topographic
distribution (e.g., frontal, frontoparietal, perisylvian,
parasagittal parieto-occipital, parietal, generalized),
with a predilection for the perisylvian cortex [365].
As might be expected considering that the malfor-
mations are due to the failure of certain processes
during cortical development, by observing the distri-
bution over the cortex of some of these developmental
malformations, we can easily recognize the structure
of the A-P, D-V, and M-L axes underlying the cor-
tical arealization process (Fig. 3). Interestingly, the
regions targeted by degeneration during early stages
in AD, considering LOAD, EOAD, FAD and all the
syndromic variants together, seem to be arranged at
opposite locations along the same A-P, D-V, and M-
L brain axes [366] (Fig. 3). In other words, AD (and
more specifically EOAD) and the program of corti-
cal arealization in development seem to use the same
alphabet of spatial information on brain topography
(Fig. 3).

In summary, I speculate that in EOAD, when neu-
roblasts leave the V-SVZ niche and start migrating,
the signals from microglia activated by A� deposition
provoke path redirection from the RMS and, at the
same time, sustain long-distance migration. However,
reactivation of the genetic program of arealization
during development would contribute to signaling the
direction for migrating neuroblasts to follow.

DISCUSSION

Adult neurogenesis in brain injury and AD

The study of adult neurogenesis and migration in
brain injury, keeping in mind the peculiarity of A�
deposition compared to other types of injury, seems
to support the notions of increased neurogenesis, pro-
motion, and redirection of neuroblast migration, as
well as reactivation of quiescent paths, recognized in
the current theory. Indeed, in rodents, various patho-
logical changes and injuries, e.g., ischemia or TBI,
stimulate neurogenesis in the V-SVZ [367–369] and
in the DG [370–374]. In addition, in the injured adult
brain, neuroblasts generated in the V-SVZ migrate
toward the site of injury [125, 126, 375–377], driven
by various guidance cues, such as chemoattractants
secreted by injury-activated astrocytes, microglia,
and vascular endothelial cells in the injured area [73,

378]. Accordingly, multiple studies have shown sig-
nificant intensification of neuroblast migration [125,
126, 367, 379] under these conditions. Therefore, the
migratory paths from the V-SVZ, which are largely
quiescent in the adult brain [380], could be reactivated
in response to injury [367].

Over the years epileptic seizures, as well as
stroke and TBI, were demonstrated to provoke func-
tional alterations in the hippocampal neurogenic
cascade that were characterized under the umbrella
term “aberrant neurogenesis” [381, 382]. In par-
ticular, aberrant neurogenesis encompasses multiple
(dys)functional outcomes, including excessive acti-
vation of NSCs [383, 384], alterations in NSC fate
[383, 385] with a shift from neurogenesis to astro-
genesis, downregulation of the proliferative capacity
of NSCs, neural progenitor cells or neuroblasts
[385–387], abnormal development and length of
the dendritic tree of newborn neurons [388, 389],
and ectopic migration of newborn neurons [390].
Interestingly, some authors, both in postmortem AD
patients and in a transgenic (3xTg) AD mouse model,
found that hyperphosphorylated tau, especially when
expressed in GABAergic interneurons in the DG, was
related to multiple alterations in SGZ NSCs strictly
resembling the cardinal features of aberrant neuroge-
nesis [317]. This finding suggests that tau-mediated
aberrant neurogenesis also occurs in AD.

The link between AD and adult neurogenesis

A link between AD and adult neurogenesis has
been recognized for some time. Indeed, AD and
adult neurogenesis are not only linked by common
sites where early pathology occurs and newly born
neurons integrate in the preexisting circuitry (e.g.,
MTL, OB) but also share a number of common
molecules in both processes [391–395]. In particular,
molecular players in AD, including apolipoprotein E
(ApoE), APP, and presenilin 1 (PS1), as well as their
metabolites, play a role in adult neurogenesis [392,
394]. Further critical signals in AD have been found
to regulate neurogenesis, such tau [38, 317, 396],
Notch1 [384, 397], cyclic AMP response element
binding protein (CREB) [398–406], and Wnt/�-
catenin [407–410]. Furthermore, some authors have
shown that blocking adult hippocampal neurogene-
sis in an AD mouse model exacerbated neuronal loss
and cognitive impairment, while inducing adult hip-
pocampal neurogenesis together with brain-derived
neurotrophic factor improved cognition in AD mice
[411]. Another study observed markers of increased
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Fig. 3. Cortical arealization in development and AD appear to share the same alphabet of spatial information about brain topography. The
coarse distribution over the cortex of brain malformations due to the failure of the arealization program during development and the key
regions targeted by AD, considering all phenotypes, seem to follow the same few topographical instructions related to anterior-posterior,
medial-lateral, dorsal-ventral brain axes and a simple left-right hemisphere specification. Figure 3 was produced by Antonio Garcia, scientific
illustrator from Bio-Graphics. This is a modified version of Fig. 1 in Abbate (2018) [366].
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neurogenesis in the DG of rare “resilient” individuals
who remained cognitively intact, despite the pres-
ence of neuropathological features associated with
AD, compared to AD and mild cognitive impair-
ment patients [412]. Therefore, the prevailing view
in the field is that impaired neurogenesis is a key
contributing factor to AD pathology-driven neuronal
dysfunction [394, 413–415]. Actually, the study of
adult neurogenesis in postmortem AD patients and
AD animal models has yielded conflicting results,
frequently reporting a decrease [392, 416–420], but
sometimes also an increase [392, 420, 421], in adult
neurogenesis. The current theory predicts a complex
relationship between the rate of neurogenesis and
AD, depending on disease stage. In the first stage,
there is a long-lasting tonic phase of reactive neuro-
genesis promoted by activated microglia triggered by
A� deposition. Accordingly, the rate of neurogene-
sis is augmented, and tau pathogenesis is amplified.
Then, the accumulation of tau aggregates in the niches
start to have detrimental effects, likely ultimately
reducing the rate of neurogenesis. This represents a
phase of aberrant neurogenesis in AD that is most
likely tau-mediated. A further phase could start when
degeneration first occurs in the brain. Indeed, simi-
lar to what happens in stroke or TBI, cell death in
the injured area stimulates the release of signals that
could provoke a second cycle of aberrant neurogene-
sis in AD. The contrasting results found in the study
of neurogenesis in AD seem to reflect this suspected
complex relationship.

Adult neurogenesis, AD, and primary age-related
tauopathy

The relative independence between the two pro-
cesses driving amyloid and tau pathology in the new
paradigm allows us to consider tau pathogenesis with-
out A� deposition. Consequently, the finding of tau
pathology uncoupled from amyloid pathology, as
found, for example, in primary age-related tauopa-
thy (PART) [422], seems compatible with the current
paradigm. Moreover, the current model seems to fit
well in explaining tau pathogenesis in PART. Indeed,
the topography of tau lesions in PART is consis-
tent with a possible origin in the NSCs within the
SGZ niche. In particular, NFT changes in PART are
usually restricted to the MTL and adjacent regions
[132, 422, 423]. Later age of onset [422, 424–427],
as well as limited spreading of tau pathology outside
the MTL in PART compared to AD, would be due
to the lack of a promoting effect on both neurogen-

esis and tau spreading by microglia in the absence
of A� deposition. Therefore, the core hypothesis of
tau pathogenesis as linked to adult neurogenesis and
migration seems capable of combining AD and PART
in a unique scenario. Some significant similarities
identified between the two diseases support this idea.
For example, NFTs in both disorders are identical,
sharing both 3 repeat and 4 repeat tau isoforms and
a 22–25 nm paired helical filamentous ultrastruc-
ture [422, 424, 428]. Moreover, phosphorylated tau
lesions have the same topographic distribution in both
PART and early AD [184, 424, 429]. In more detail, it
has been reported that neurons in layer II of the TEC, a
crucial region of early involvement in AD [184, 298],
are also affected by neurofibrillary degeneration in
PART [184, 298].

Adult neurogenesis, AD, and chronic traumatic
encephalopathy

Unexpectedly, some findings from the study of a
different disease, chronic traumatic encephalopathy
(CTE) [430], seem to support the core hypothesis
of tau pathogenesis as linked to adult neurogene-
sis and migration. CTE is a progressive tauopathy
with distinctive clinical and pathological features
that occurs after repetitive mild TBIs [430]. Micro-
scopically, CTE is characterized primarily by NFTs
and astrocytic tangles, with a relative absence of
A� peptide deposits [431–447]. The evidence sug-
gests that CTE begins focally, usually perivascularly,
especially around small cerebral vessels, and at the
depths of the sulci in the cerebral cortex [430, 446,
448–450]. Interestingly, some data have shown that
the perivascular regions and the depths of the cere-
bral sulci are the most stressed regions, when the
brain is subjected to rapid acceleration, decelera-
tion, or rotational forces, such as occurs in mild TBI
[451]. Thus, the highest concentration of phosphory-
lated tau correlates to the highest areas of stress in
CTE [451]. Subsequently, pathological NFTs spread
from these areas to adjacent superficial cortical lay-
ers. Considering the findings of an increase in the
generation of new neurons in the niches [368, 452]
and redirection of neuroblast migration to the injury
site after TBI [73], V-SVZ neuroblast migration is
ultimately redirected to the perivascular regions and
the depths of the cerebral sulci in CTE because these
regions are the primary sites of injury. Therefore, the
current model of tau pathogenesis based on adult neu-
rogenesis and migration in a special case of brain
injury fits well for explaining the peculiar sites of
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pathological tau deposition in CTE. Indeed, the dis-
tinct feature of prominent periventricular NFTs in
CTE is in agreement with the location of the V-SVZ
niche. Therefore, this model also seems to combine
neurodegeneration (AD) with traumatic degenera-
tive dementia (CTE) in a unique scenario. The fact
that the isoform profile and phosphorylation state
of CTE are very similar to those in AD [285, 308,
309] agrees with this idea. In particular, neuronal tau
pathology in CTE shows immunoreactivity to both
3R and 4R tau, as in AD [430, 453, 454]. In addi-
tion, tau in both AD and CTE is phosphorylated at
the same amino acids, including tau phosphorylated
at threonine 231, and all six isoforms are present,
leading to the observation that NFTs associated with
AD are indistinguishable from those that occur in
TBI [453].

Adult neurogenesis, AD, and the antimicrobial
protection hypothesis

The current theory does not focus on the process
that drives the initial deposition of A�. Consequently,
it is compatible with a recent etiologic model of
AD, namely the Antimicrobial Protection hypothesis,
which views A� deposition in a new light compared
to the classic amyloid hypothesis [455]. In this model,
A� deposition is an innate immune response that
normally protects against genuine, or misperceived,
microbial infection in the brain. A� first traps and
neutralizes invading pathogens in A�. Fibrillation
of A� stimulates neuroinflammatory pathways that
help fight infection and clear A�/pathogen deposits.
In AD, chronic activation of this pathway leads
to sustained inflammation and neurodegeneration.
This new model is supported by several lines of
evidence.

Indeed, many studies documented the presence
of abnormal levels of pathogens in the AD brain,
including viral, bacterial, and fungal infections [456],
particularly herpes simplex virus type 1 (HSV1)
[457], Chlamydia pneumoniae, and several types of
spirochetes [458–461].

Most importantly, A� showed consistent antimi-
crobial activity. Soscia et al. (2010) [462] were the
first to demonstrate antibacterial and antifungal activ-
ity of A� peptide against numerous pathogens. These
authors found that A� can act as an antimicrobial pep-
tide and that A� deposition can be rapidly induced in
mice, in Caenorhabditis elegans models, and in AD-
based neural cell models as an innate immune defense
mechanism against microbial pathogens [462, 463].

Interestingly, synthetic A� can reduce the growth of
common pathogens up to 200-fold in vitro [462].
Some authors reported that A� peptide strongly
inhibits the infectivity of influenza A virus in cell cul-
ture [464], while others [465, 466] reported similar
results for herpes simplex virus type 1 (HSV-1). Fur-
ther studies showed that A� peptides can protect the
host against brain infections with Salmonella enter-
ica serovar Typhimurium, HSV-1, and HHV-6 [463,
467].

Moreover, several evidence have mainly linked
HSV-1 infections to the pathogenesis of AD
[468–470]. In fact, HSV-1 DNA has been detected
more frequently in the brains of AD patients than in
healthy controls and has been found to be co-localized
with A� [471]. In addition, some studies verified
the presence of IgM anti-HSV-1 antibodies in most
people with AD [472]. Moreover, high titers of anti-
HSV-1 antibodies have been found to be positively
correlated with the development of AD-like cognitive
dysfunction [473], with symptoms of mild cognitive
impairment [474], and with bilateral temporal and
orbitofrontal cortical gray matter volume [475]. In
addition, some studies suggested that in people carry-
ing the APOE �4 allele and, therefore, predisposed to
develop AD, HSV-1 infection significantly increases
the risk of AD [476, 477]. Furthermore, HSV-1 was
shown to produce calcium-dependent GSK-3� acti-
vation, which results in hyperphosphorylation of tau
and A�PP proteins as well as A� accumulation [478,
479]. Also, HSV-1 reactivation was associated with
neuroinflammation and the appearance of several
markers of neurodegeneration [478–480]. In addi-
tion, the brain regions mainly affected during acute
encephalitis produced by active replication of HSV-
1 in neuronal cells of the brain (herpes simplex
encephalitis) [481], both in humans and in experi-
mental rodent models, are the same regions impaired
in AD (limbic system, frontal and temporal cortex)
[482–488]. Consistently, a high percentage of brains
of elderly people contain latent HSV-1 DNA espe-
cially in CNS regions critically involved in AD [476,
489]. More recently, some authors found that a mouse
model of HSV-1 infection and recurrent reactiva-
tion showed a picture resembling the phenotype of
sporadic AD [490]. Indeed, after infection and mul-
tiple rounds of reactivation of the virus promoting its
spread within the brain, infected mice showed accu-
mulation of A� and hyperphosphorylated tau proteins
in several brain areas, including the hippocampus,
and these molecular changes were accompanied by
memory deficits [490].
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Interestingly, the current adult neurogenesis theory
of AD is not only compatible with the antimicrobial
protection hypothesis, but also shows some relevant
points of convergence with it. It is noteworthy that
HSV-1 latency has been observed mainly within the
lateral ventricles in the SVZ, hippocampus, and brain-
stem before being detected in the neurons of the
trigeminal ganglion [491, 492], and also in the olfac-
tory bulbs, frontal cortex, and cerebellum in some
studies [492]. More generally, the olfactory nerve,
which leads to the lateral entorhinal cortex, is a
portal of entry of HSV-1 [493] and other viruses
[494], as well as Chlamydia pneumoniae, into the
brain [495]. In addition, brainstem areas that har-
bor latent HSV directly irrigate these brain regions
[190], and from the brainstem, neurons project to
the thalamus and eventually reach the sensory cor-
tex. Thus, it is interesting to note that the sites of
HSV-1 latency (hippocampus and SVZ) overlap with
the major niches of adult neurogenesis, and the path-
ways of HSV-1 infection seem consistent with the
network of connected regions considered relevant in
current theory in both LOAD (hippocampus - EC -
OB - brainstem) and EOAD (SVZ - OB). Based on
the finding that the preferred sites of HSV-1 latency
are in the niches of adult neurogenesis (hippocam-
pus and SVZ), ependymal cells and neural progenitor
cells turn out to be highly susceptible to HSV-1 infec-
tion [491, 496–498]. Indeed, HSV-1 readily replicates
in these cells during acute encephalitis [496, 498],
and viral lytic-associated proteins were detected in
these cells during latency [498]. The presence of
HSV-1 in lateral ventricle ependymal cells and neu-
ral progenitor cells during latent infection alters the
proliferation of NPCs as a consequence of fibrob-
last growth factor 2 deficiency [499], whereas HSV-1
replication during acute encephalitis results in their
loss and altered differentiation [496, 498]. Interest-
ingly, a recent study showed that HSV-1 affects adult
hippocampal neurogenesis in vitro and in vivo by
reducing the proliferation of NSCs and their neuronal
differentiation in the SGZ of the hippocampal DG,
through intracellular accumulation of A�, without
inducing cell death [500, 501]. Indeed, anti-A� anti-
bodies or experimental mouse models lacking APP
(and thus unable to form A�) reverse the impair-
ment of neurogenesis induced by HSV-1 infection
[500]. Furthermore, impairment of adult hippocam-
pal neurogenesis occurs when cognitive dysfunction
induced by HSV-1 infection is not yet present, sug-
gesting a role of adult hippocampal neurogenesis in
the pathogenesis of AD [501].

Main unresolved questions in the field and
possible solutions

The scenario proposed in the current theory seems
to offer possible explanations for some unresolved
questions in dementia and AD research (Table 1).

Aβ-tau interaction
While amyloid and tau pathology are clearly crit-

ical in the pathogenesis of AD, a major unresolved
question at this time is how the two interact [2, 335].
According to the current theory, amyloid and tau
have a twofold interaction. At a very early preclinical
stage, A� deposition has an indirect microglia-
mediated effect of fostering adult neurogenesis and
supporting migration, amplifying tau hyperphospho-
rylation in the niches or during long migrations. Later,
when the two are in close interaction, A� has a
documented downstream effect on tau pathogenesis.
The idea that A� deposition acts as a driving force
for tau pathogenesis by fostering neurogenesis and
supporting migration is consistent with several find-
ings showing that A� deposition facilitates both the
pathogenicity [502–506] and spread [335, 507, 508]
of tau in the brain, even when A� and tau are not
topographically closely related [509, 510].

Phenotypic heterogeneity in AD
Comparisons between EOAD and LOAD are par-

ticularly puzzling because, although both disorders
show a generalized pattern of A� distribution, tau
seems to accumulate preferentially in the memory
system in aging and LOAD but predominates in a
number of other neural systems in EOAD [335, 508].
Even within EOAD, different syndromes exhibit
different distributions of tau, despite similar distri-
butions of A� [335, 508]. The hypothesis of tau
pathogenesis as linked to adult neurogenesis seems
to combine EOAD and LOAD, as well as different
EOAD syndromes, in a unique scenario. Tau pathol-
ogy develops in the niches of adult neurogenesis in all
types of AD, but in EOAD, it is especially active in the
V-SVZ. Some neuroblasts carrying the seeds of tau
pathology migrate from this niche toward different
regions of the cortex guided by complex signals, after
which microglia activated by A� deposition redirect
migration from the RMS toward the site of injury,
similar to what occurs in stroke or TBI. When these
neuroblasts arrive at target regions in the occipital,
parietal, frontal, or left perisylvian cortex, degener-
ation begins to develop. Therefore, in this model,
a common mechanism through distinct migratory
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Table 1
Unresolved questions in the field and possible explanations according to current theory

Open question in the field Possible solution according to current theory

A�-tau interaction While amyloid and tau pathology are clearly
critical in the pathogenesis of AD, a major
unresolved question is how the two interact?

Amyloid and tau have a twofold interaction. At a very early preclinical stage, A� deposition has an
indirect microglia-mediated effect of promoting adult neurogenesis and supporting migration, with
the effect of amplifying hyperphosphorylation of tau in niches or during long migrations. Later, when
the two are in close interaction, A� has the documented downstream effect on tau pathogenesis.

Difference between
EOAD and LOAD

Why do tau seem to accumulate preferentially in
the memory system in aging and LOAD, but
predominates in a number of other neural
systems in EOAD, although both disorders show
a generalized pattern of A� distribution?

Tau pathology develops in the niches of adult neurogenesis in all types of AD, but in EOAD the
V-SVZ is particularly active. NSCs carrying the seeds of tau pathology migrate from this niche to
different regions of the cortex driven by complex signals after microglia activated by A� deposition
redirect migration from the canonical RMS. In LOAD, in accordance with an age-related decline in
neurogenesis, the SGZ of the hippocampal DG remains mainly, or often exclusively, active. NSCs
briefly migrate to the granular layer in the DG, where the seeds of tau pathology begin to develop and
spread within the MTL.

Phenotypic heterogeneity
in (EO)AD

Why do different (EO)AD syndromes exhibit
different distributions of tau despite similar
distributions of A�?

Microglia activated by A� deposition promote neurogenesis so that more newborn neurons are
present mainly in the V-SVZ niche in the EOAD. When these neuroblasts leave the V-SVZ niche and
begin to migrate, microglia signals cause a redirection of the pathway from the canonical RMS and
support long-distance migration. Meanwhile, the genetic program of arealization during development
is reactivated and helps signal the direction for migrating neuroblasts to follow. Specifically, a
mechanism based on gradients of gene expression of morphogens or transcription factors specifies
certain localizations along the simple brain axes A-P, D-V and L-M. Thus, some neuroblasts carrying
the seeds of tau pathology migrate to these locations in the cortex and, when they arrive at their final
destination in the occipital, parietal, frontal, or left perisylvian cortex, a focus of degeneration begins
to develop.

Scaling of molecular
pathology to the
macroscopic brain

Why does AD start in TEC? According to current theory, adult NSCs in the SGZ niche are the first cells that carry the initial seeds
of tau pathology. However, NFT formation is suppressed and delayed in the DG because of the strong
clearance activity in the niche. The seeds of tau pathology, probably after some GABAergic
interneurons carry transmission from SGZ NSCs, spread retrogradely from the DG to the EC along
the perforant pathway connections. Then, the seeds of tau pathology spread from EC to TEC through
both retrograde and anterograde transmission due to the multiple reciprocal connections between the
two regions. Thus, the TEC receives a massive load of tau pathology from the EC, and this fact would
explain why NFTs appear first here.

Not specificity of tau
pathology in AD

Why is tau pathology in CTE, PART and AD so
similar?

According to the new theory, tau pathology would develop in the niches of adult neurogenesis in all
three diseases. However, in CTE, migration is redirected to sites of injury that lie at the depth of sulci
and at the perivascular level. In PART, the lack of a promoter effect on both neurogenesis and tau
spreading by microglia, in the absence of A� deposition, causes limited spread of tau pathology
outside MTL compared with AD.

(Continued)
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Table 1
(Continued)

Open question in the field Possible solution according to current theory

Selective vulnerability
(region)

Why some definite brain regions but not others
are impacted by degeneration?

The selection of a particular brain region as a target would be determined by the localization of the
SGZ niche in the MTL or the direction of migrations to the cortex made by neuroblasts carrying the
seeds of tau pathology from the V-SVZ. Thus, the selection of a cortical region depends on the
location of the niches or the combined outcome of the complex signals guiding the migrating
neuroblasts rather than on a regional vulnerability. Therefore, the concept of regional selective
vulnerability appears superfluous in the new scenario.

Selective vulnerability
(cell)

Why proteins that usually show widespread
expression should accumulate in one set of cells
but not in apparently similar neighboring cells?

Tau pathology develops in NSCs when neurons are immature and undifferentiated and their fate, as
well as their final localization, have not yet been fully decided. Therefore, in this scenario, the
concept of selective cellular vulnerability appears superfluous

Preponderance in humans Why AD develops mainly in humans although
all vertebrates produce APP, �-secretase, A�,
and tau protein, and neurogenesis and neuronal
migration in the adult brain are well conserved
from fish to primates?

The cause is the incredible development of the neocortex in humans compared with other vertebrates.
Both processes implicated in the pathogenesis of AD according to current theory, i.e., metabolism
driving amyloid deposition and adult neurogenesis/migration driving tau pathogenesis, are
particularly stressed in the extended and interconnected cortex of the human brain. The longevity
revolution, another distinct aspect of humans, is likely to contribute to the extremes of this scenario.

EOAD, early onset Alzheimer’s disease; LOAD, late onset Alzheimer’s disease; V-SVZ, ventricular subventricular zone; NSCs, neural stem cells; RMS, rostral migratory stream; SGZ, subgranular
zone; DG, dentate gyrus; MTL, medial temporal lobe; A-P, anterior-posterior; D-V, dorsal-ventral; M-L, medial-lateral; NFTs, neurofibrillary tangles; EC, entorhinal cortex; TEC, transentorhinal
cortex; CTE, chronic traumatic encephalopathy; PART, primary age-related tauopathy.
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paths would explain the phenotypic heterogeneity in
EOAD. In LOAD, in agreement with an age-related
decline in neurogenesis [511–514], it remains active,
especially, or often exclusively, the SGZ of the hip-
pocampal DG. Neuroblasts migrate a brief distance
to the granular layer in the DG, where the seeds of
tau pathology start to develop and spread inside the
MTL.

Not specificity of tau pathology in AD
The model of tau pathogenesis proposed in the

current theory seems not to be specific for AD.
For example, it was able to combine three dif-
ferent diseases, i.e., AD, CTE, and PART, into a
unique scenario. Equally, it could be conveniently
applied to other proteinopathies in different neurode-
generative diseases. In this regard, considering, for
example, Parkinson’s disease dementia and limbic-
predominant age-related TDP-43 encephalopathy, it
is intriguing to report that there is some evidence of
the presence of neurogenic niches in mammals in the
substantia nigra and amygdala [316].

Selective vulnerability
The clinical manifestation of a particular neurode-

generative disease reflects the region of the brain
and the specific population of cells within it that
are affected [515]. Major neurodegenerative diseases
differ from each other not only in the type of patholog-
ical protein that accumulates but also in the regions
impacted and the types of neurons that are vulner-
able. Why proteins that usually show widespread
expression should accumulate in one set of cells
but not in apparently similar neighboring cells and
why some definite brain regions but not others are
impacted are fundamental questions remaining in
the field [515]. These questions have been primarily
conceptualized in the notion of selective vulnerabil-
ity (cellular and regional) [515–517]. The current
conceptualization seems to offer a simple and unex-
pectedly rapid solution to the question of selective
vulnerability in dementia. Indeed, the selection of a
definite brain region as a target would be determined
either by localization of the neurogenic niches or by
direction of the migration paths toward the cortex
taken by neuroblasts carrying the seeds of tau pathol-
ogy. Therefore, the selection would be established
in advance or actively driven rather than emerging
passively by virtue of regional vulnerability. In other
words, according to the current theory, there would
not be any regional vulnerability to determine. We can
draw the same conclusion considering selective cell

vulnerability. Indeed, according to the main hypothe-
sis, tau pathology develops in NSCs when neurons are
immature, and their fate, as well as final localization,
have not yet been totally decided. In this context, it is
evident that the concept of selective cell vulnerability
appears unnecessary.

Preponderance in humans
The current view suggests a possible explanation

for another relevant question in the field. In particular,
although all vertebrates produce A�PP, �-secretase,
A�, and tau protein [518–520] and neurogenesis
and neuronal migration in the adult brain are well
conserved from fish to primates [73, 521–523], AD
develops mainly in humans. The reason is most
likely found in the primary distinctive aspect of the
human brain, that is, the incredible development of
the neocortex. In this regard, it is worth noting that
both the processes implicated in AD pathogenesis in
the current theory, i.e., metabolism driving amyloid
deposition and adult neurogenesis/migration driv-
ing tau pathogenesis, are particularly stressed in an
extended and interconnected cortex. In particular,
advanced cognitive performance is highly demanding
on the metabolism. At the same time, adult neuroge-
nesis strains try to supply an adequate pool of new
neurons to guarantee high plasticity and repair from
injury. Finally, neuronal migration is long-distance
and demanding. The longevity revolution [524], a fur-
ther distinct aspect of humans, likely contributes to
extremes in this scenario. Therefore, amyloid deposi-
tion and NFT formation are inevitable consequences
in extremely old and advanced human brains. Unfor-
tunately, amyloid and tau pathology interact, with the
first fosters and amplifying the second, resulting in
emergent AD.

Limitations

The current theory is highly speculative. Many
parts of the scenario depicted are based on sug-
gestions and hypotheses that require more concrete
evidence. Moreover, I did not find any data in the
literature supporting some of the hypotheses pro-
posed. For example, one hypothesis is that long
migration of neuroblasts from the V-SVZ to different
regions of the cortex are implicated in the develop-
ment of EOAD. However, evidence for organized,
long-distance migration of newly generated neurons
in the adult human brain is lacking [525–528]. Addi-
tionally, useful methods and techniques are needed
to verify some hypotheses proposed in the theory
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that are not yet available. In particular, the study
of adult neurogenesis in humans faces many chal-
lenges. For example, it is currently not possible to
confirm the existence of adult neurogenesis in the
living human brain [529]. Additionally, some authors
noticed that adult hippocampal neurogenesis markers
degrade rapidly in fixed postmortem tissues and could
thus be undetectable if the tissues are not stored and
processed quickly [530]. Moreover, considering the
study of neurogenesis in AD, other authors observed
that data from postmortem human tissues are intrin-
sically controversial and difficult to interpret because
as a rule, postmortem material reflects the late stages
of the disease [420]. In addition, artifacts and misin-
terpretations can arise due to the stage of the disease
and treatments provided [420]. Furthermore, these
discrepancies also depend on the methods used for
labeling proliferating cells [420].
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A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M,
Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S,
Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Mess-
ing A, Mishra A, Molofsky AV, Murai KK, Norris CM,
Okada S, Oliet SHR, Oliveira JF, Panatier A, Parpura V,
Pekna M, Pekny M, Pellerin L, Perea G, Pérez-Nievas
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G, Colin M, Toni N, Déglon N (2020) Tau accumulation
in astrocytes of the dentate gyrus induces neuronal dys-
function and memory deficits in Alzheimer’s disease. Nat
Neurosci 23, 1567-1579.

[273] Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ
(2018) The aging astrocyte transcriptome from multiple
regions of the mouse brain. Cell Rep 22, 269-285.

[274] Yamada K, Cirrito JR, Stewart FR, Jiang H, Finn MB,
Holmes BB, Binder LI, Mandelkow E-M, Diamond MI,
Lee VM-Y, Holtzman DM (2011) In vivo microdialysis
reveals age-dependent decrease of brain interstitial fluid
tau levels in P301S human tau transgenic mice. J Neurosci
31, 13110-13117.
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