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Abstract.
Background: Alzheimer’s disease (AD) is the most common form of dementia in the elderly marked by central nervous
system (CNS) neuronal loss and amyloid plaques. FAM222A, encoding an amyloid plaque core protein, is an AD brain
atrophy susceptibility gene that mediates amyloid-� aggregation. However, the expression interplay between FAM222A and
other AD-related pathway genes is unclear.
Objective: Our goal was to study FAM222A’s whole-genome co-expression profile in multiple tissues and investigate its
interplay with other AD-related genes.
Methods: We analyzed gene expression correlations in Genotype-Tissue Expression (GTEx) tissues to identify FAM222A
co-expressed genes and performed functional enrichment analysis on identified genes in CNS system.
Results: Genome-wide gene expression profiling identified 673 genes significantly correlated with FAM222A (p < 2.5 × 10–6)
in 48 human tissues, including 298 from 13 CNS tissues. Functional enrichment analysis revealed that FAM222A co-expressed
CNS genes were enriched in multiple AD-related pathways. Gene co-expression network analysis for identified genes in each
brain region predicted other disease associated genes with similar biological function. Furthermore, co-expression of 25 out
of 31 AD-related pathways genes with FAM222A was replicated in brain samples from 107 aged subjects from the Aging,
Dementia and TBI Study.
Conclusion: This gene co-expression study identified multiple AD-related genes that are associated with FAM222A, indicating
that FAM222A and AD-associated genes can be active simultaneously in similar biological processes, providing evidence
that supports the association of FAM222A with AD.
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INTRODUCTION

It has been increasingly recognized that
Alzheimer’s disease (AD) is a genetically dichoto-

∗Correspondence to: Jingjing Liang, Department of Pharmacy
Practice and Science, College of Pharmacy, University of Arizona,
Tucson, AZ, USA. E-mail: jliang2@arizona.edu.

mous disease, with more than 90% of the late-onset
sporadic form inherited in a non-Mendelian fashion
(LOAD), and less than 10% of AD early-onset famil-
ial form showing classical Mendelian inheritance
(EOAD) [1]. The pathophysiological process of
AD is believed to begin years before the diagnosis
of clinical dementia [2]. Quantitative structural
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magnetic resonance imaging (MRI) has been
extensively used for assessment of AD-related
structural differences in selective brain regions [3].
Our recent cross-phenotype association analysis of
MRI measures and genotypes from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) identified
a new single nucleotide polymorphism rs117028417
on FAM222A associated with AD-related imaging
quantitative traits [4], which was replicated in
the Enhancing NeuroImaging Genetics through
Meta-Analysis (ENIGMA) consortium cohort [5].
Despite a marginal association with AD diagnosis
in the International Genomics of Alzheimer’s
Project (I-GAP) [6], FAM222A rs117028417 has a
significant association with longitudinal changes in
brain amyloid deposition in AD patients [4]. The
protein encoded by FAM222A, we named Aggre-
gatin, is predominantly expressed in the central
nervous system (CNS) [4]. Remarkably, Aggregatin
accumulates within the center of amyloid plaques,
physically interacts with amyloid-� (A�), facilitates
A� aggregation, and regulates the formation of
amyloid deposits and associated neuroinflammation
and cognitive deficits in the AD mouse model [4].
Taken together, these results support the important
role of FAM222A and its encoded Aggregatin in AD
pathogenesis.

Gene co-expression analysis, an algorithm able
to associate functionally related genes from gene
expression data [7], has been increasingly used to
discern transcriptional regulatory programs, priori-
tize candidate disease genes, understand underlying
pathomechanisms, and identify biomarkers or ther-
apeutic targets in wide range of human diseases
including AD [8–11]. Although gene co-expression
analysis do not necessarily provide information about
the causality relationships between genes, differential
co-expression analysis among various tissues have
been used to improve prediction of tissue related
disease and functions [12]. Brain function is gov-
erned by precise regulation of gene expression across
anatomically distinct structures. Study of gene co-
expression profiles for region-specific processes in
non-pathological brain tissue can be used to associate
gene of unknown function with biological process
and disease prediction [13]. In addition, postmortem
analysis of gene expression profile in brains of
patients with AD have suggested multiple signifi-
cant biological mechanisms and disease promoting
pathways [14–16]. Analysis of the local and global
alterations in the gene co-expression profile in normal
and pathological brain tissues is helpful to under-

stand gene’s biological and physiological function
and potential role in the disease.

Our previous study on the pathomechanisms of
FAM222A and its encoded Aggregatin have primar-
ily concentrated on its pathophysiological function
in brain amyloid deposition, with relatively limited
investigation of its expression association with other
neurodegeneration or AD related risk genes. We con-
ducted gene co-expression analysis for FAM222A
from the Genotype-Tissue Expression (GTEx) RNA-
seq data [17] to better understand gene expression
levels across individuals and diverse tissues. The
GTEx project donors were 20 to 70 years of age, aver-
aging 53.4 years [17]. Most of the donors died from
traumatic injury, cerebrovascular and heart disease,
with a small proportion dying from liver, renal, respi-
ratory, and neurological diseases [17]. We conducted
gene co-expression network and pathway enrichment
analysis to gain mechanistic insight using identified
genes co-expressed with FAM222A in multiple brain
tissues. Additionally, the results were validated in
both traumatic brain injury (TBI) (healthy) and AD
(pathologic) cases from a unique aged population-
based cohort from the Adult Changes in Though
(ACT) study.

METHODS

The Genotype-Tissue Expression (GTEx) project

Fully processed, filtered, and normalized
gene expression data from 49 tissues and cell
lines were downloaded from the Genotype-
Tissue Expression project portal (version 8)
(https://www.gtexportal.org). Only genes with
twenty or more donors with expression estimates
>0.1 Reads per Kilo-base of transcript (RPKM)
and an aligned read count of six or more within
each tissue were considered significantly expressed.
Within each tissue, the distribution of RPKMs in
each sample was quantile-transformed using the
average empirical distribution observed across all
samples. Expression measurements for each gene in
each tissue were subsequently transformed to the
quantile of the standard normal distribution.

Gene co-expression network analysis

Pearson correlation analysis were conducted
between genome-wide genes with FAM222A in
each tissue. The Pearson’s correlation coefficient

CORRECTED P
ROOF

https://www.gtexportal.org


J. Liang et al. / Gene Co-Expression Analysis of Multiple Brain Tissues Reveals Correlation of FAM222A Expression 3

and the corresponding p-value were calculated
for each pair of genes. The genes that corre-
lated with FAM222A with p ≤ 2.5 × 10–6 were
defined as statistically significant. For the genes
identified significantly correlated with FAM222A
in 13 brain tissues, co-expression networks for
each tissue were constructed by computing Pear-
son’s correlation between each pair of genes.
The pairs of genes with correlation p ≤ 2.5 × 10–6

were defined as connected. R package “visNet-
work”, available at https://github.com/datastorm-
open/visNetwork, were used to visualize the network
in each brain tissue.

Protein-protein interaction (PPI) network
analysis

The search tool for retrieval of interacting genes
(STRING) (http://string-db.org) database, which
integrates both known and predicted PPIs, can be
applied to predict functional interactions of proteins
[18]. To seek potential interactions between genes
identified significantly correlated with FAM222A
in different brain tissues, The STRING tool was
employed. Active interaction sources, including gene
oncology, KEGG pathway, subcellular localization
database, tissue expression database, disease-gene
associations mined from literature and WikiPath-
way were applied to construct the PPI networks.
Pathway enrichment analyses for the genes iden-
tified significantly correlated with FAM222A in
13 brain tissues were conducted using Enrichr
(http://amp.pharm.mssm.edu/Enrichr/). Enrichr is a
web-based tool that conduct intuitive enrichment
analysis providing various types of visualization sum-
maries of collective functions of gene lists [19]. The
significant terms and pathways were selected from
the threshold of adjusted p < 0.05.

The Aging, Dementia and Traumatic Brain Injury
study

The Aging, Dementia and TBI study is a detailed
neurological, molecular, and transcriptomic charac-
terization of brains of control and TBI exposure
from a unique aged population-based cohort from
the ACT study. This study was developed by a
consortium consisting of the University of Washing-
ton, Kaiser Permanente Washington Health Research
Institute, and the Allen Institute for Brain Sci-
ence, and was supported by the Paul G. Allen

Family Foundation. This freely available resource
(https://aging.brain-map.org/) presents a systematic
and extensive data set of study participant RNA
sequencing (RNA-seq) analysis of hippocampus,
neocortex, and white matter of forebrain. Specific
methodological details are available on the “Docu-
ment” tab at https://aging.brain-map.org/.

For gene expression data, 377 samples collected
from cortical grey (parietal and temporal) and white
matter (parietal) and hippocampus from a total of
107 brains. The donors age ranged from 78 to
100+ years old and included 44 females and 63
males. Based on the DSM-IV diagnostic criterion
for clinical significance, there were 30 individuals
diagnosed with AD, 12 with multiple etiologies of
TBI, 4 with vascular cause, 3 with other medical
cause, 2 with other unknown cause, and 56 were
non-dementia controls. The details of normalized
gene-level FPKM values of RNAseq gene expression
data generation was available at https://help.brain-
map.org/display/aging/Documentation.

To replicate the correlations of AD-related genes
with FAM222A in GTEx, Pearson correlation analy-
sis of 31 identified genes expression with FAM222A
were conducted in the aging, dementia and TBI
studies, 107 donors for four brain regions: tem-
poral neocortex (TCx), white matter of forebrain
(FWM), hippocampus (HIP), and parietal neocor-
tex (PCx). The significant threshold was empirical
p-value adjusting multiple tests by Bonferroni cor-
rection (p < 0.05/124 = 4.0 × 10–4).

RESULTS

FAM222A co-expression analysis across 48
tissues and cells lines in GTEx data

We conducted whole-genome gene co-expression
analysis for FAM222A across 48 tissues avail-
able in GTEx v8 data including approximately
984 postmortem donors with genotype information
and 17,832 RAN-seq samples and identified genes
that are correlated with FAM222A in transcription
expression level. There were 673 genes that were
transcriptionally correlated with FAM222A in 48
GTEx tissues (p < 2.5 × 10–6), in which 298 genes
were identified from 13 central nervous system (CNS)
tissues (Figs. 1, 2A; Supplementary Table 1). The
average number of genes identified co-expressed with
FAM222A in 13 CNS tissues was significantly higher

CORRECTED P
ROOF

https://github.com/datastorm-open/visNetwork
http://string-db.org
http://amp.pharm.mssm.edu/Enrichr/
https://aging.brain-map.org/
https://aging.brain-map.org/
https://help.brain-map.org/display/aging/Documentation


4 J. Liang et al. / Gene Co-Expression Analysis of Multiple Brain Tissues Reveals Correlation of FAM222A Expression

Fig. 1. Flowchart of the gene-coexpression analysis. AD, Alzheimer’s Disease; GTEx, The Genotype-Tissue Expression (GTEx) project;
CNS, central nervious system; TBI, traumatic brain injury.

than 35 other tissues (p = 9.8 × 10–3) (Fig. 2A), sug-
gesting FAM222A is more functional active in brain
tissues.

Genes co-expressed with FAM222A were
enriched in AD related pathways

Pathway enrichment analysis was performed
on the 298 genes from the 13 CNS tissues using
STRING database (Supplementary Table 1). We
found enrichment of amyloid precursor protein
metabolic process (p = 5.3 × 10–5), galactosylce-
ramide biosynthetic process (p = 3.1 × 10–3), and
anterograde axonal protein transport (p = 1.3 × 10–2)
in GO Term biological process pathways. Ciliary
rootlet (p = 1.1 × 10–4), intrinsic component of
synaptic membrane (p = 1.8 × 10–4), and neurofib-
rillary tangle (p = 5.6 × 10–3) were enriched in GO
Term cellular component pathways. Alzheimer’s
disease (p = 5.4 × 10–8), spinocerebellar ataxia
(p = 9.6 × 10–3), and dopaminergic synapse path-

ways (p = 2.1 × 10–2) were enriched in KEGG
pathways (Fig. 3A). Other AD related pathways
were identified including amyloid precursor
protein catabolic process (p = 1.0 × 10–2); regula-
tion of protein oligomerization (p = 1.4 × 10–2);
positive regulation of amyloid fibril forma-
tion (p = 1.3 × 10–2); AD and miRNA effects
(p = 2.1 × 10–10); neurodegenerative disease
(p = 5.9 × 10–3); amyloid plaque (p = 1.3 × 10–2);
AD specific cell type (p = 1.4 × 10–3); and amyloid-
� complex (p = 4.7 × 10–3) (Fig. 3B; Supplementary
Table 2).

We identified 31 genes co-expressed with
FAM222A in brain tissues that were also present
in AD related pathways (Table 1). Eight out of
31 genes were identified in amygdala, in which
PSEN2, PIK3R4, VPS35, KIF5A, KIF5B, and KIF5C
were negatively correlated with FAM222A; and LDL-
RAP1 and PSEN1 were positively correlated with
FAM222A (Fig. 4A). In the network analysis, PSEN2,
PIK3R4, and VPS35 were independently correlated
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Fig. 2. Genes with expression significantly correlated with FAM222A in GTEx tissues. A) Number of genes with expression significantly
correlated with FAM222A in 48 GTEx tissues (Pearson correlation p ≤ 2.5 × 10–6). The mean number of genes identified in 13 brain tissues
are significantly larger than genes identified in other GTEx tissues (p = 1.7 × 10–3). B) Hierarchical clustering analysis for genes with
expression significantly correlated with FAM222A in 13 brain tissues.

with FAM222A and not clustered with other AD
related genes (Fig. 4C). KIF5A, KIF5B, KIF5C, LDL-
RAP1, and PSEN1 were intercorrelated (Fig. 4C).
Interestingly, KIF5B was connected to LDLRAP1
through FA2H (Fig. 4C). FA2H is the fatty acid
hydroxylase gene and defective FA2H was reported
to lead to a novel form of neurodegeneration with
brain iron accumulation [20], though FA2H is not
present in AD-related pathways. Besides, KIF5B is
also connected to PSEN1 through UGT8, which is a
member of glycosyltransferase family 8 (Fig. 4C).
Other studies have identified associations between
mutations in UGT8 and sporadic amyotrophic lat-
eral sclerosis. Specifically isolated dysfunction of a
glycosyltransferase is sufficient to cause neurode-
generative disease [21]. Downregulated of UGT8
leads to disruption of myelin synthesis and further
lead to neurodegeneration [22]. In cerebellar hemi-
sphere, six genes were identified: NEFH and GRIN2B

were independently correlated with FAM222A; and
ATP2A3, ITPR1, and BCL11A were interconnected
in one cluster (Fig. 4B). WNT16 connected with
ATP2A3/ITPR1/BCL11A clusters through LARGE1
and CLEC2L (Fig. 4D). Both ATP2A3 and ITPR1
were involved in the cGMP and calcium signaling
pathway, which was reported to be deregulated in
AD patients and mouse models [23]. CLEC2L was
reported to be downregulated in the entorhinal and
temporal lobe cortex in AD patients [24]. The gene
co-expression networks of genes identified to be sig-
nificantly correlated with FAM222A in nine other
brain tissues are shown in Supplementary Figure 1.
SPPL3, SER1, and EIF3A connected TUBB2B and
CLU in spinal cord. NIPAL4 and CDC42EP1 were
identified to be significantly correlated with both
FAM222A and AD-related gene LDLRAP1 in hip-
pocampus. GLI1 co-expressed with CALM2 in basal
ganglia putamen. The potential association between
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Fig. 3. Pathway enrichment analysis for genes identified with expression significantly associated with FAM222A in 13 brain tissues. A)
GO/KEGG enrichment analysis; B) Subcellular localization, tissue expression, disease-gene associations mined from literature and wiki
pathway enrichment analysis.

the functionality of these genes and AD merits further
investigation.

Replication of co-expression between AD-related
pathway genes and FAM222A in the Aging,
Dementia and TBI Study

The scientific goals of GTEx project required that
both donors and their biospecimen present with no
evidence of disease [25]. The donor ages ranged from
20 to 79 years, with traumatic injury, cerebrovascu-
lar, heart disease and liver, renal respiratory diseases
as the primary causes of death [17]. Previous studies
have suggested that gene expression profiles in patho-
logical conditions in AD are distinct from heathy
tissues [16, 26, 27]. To further study whether the
co-expression of AD pathway genes with FAM222A
can be replicated in brain tissues from AD patients,
we conducted gene co-expression analysis of 31 AD
pathway related genes with FAM222A in brain tissues
from 107 AD, dementia, or TBI patients and their age-
matched controls from the ACT study. The results
showed that 25 out of 31 AD genes co-expressed with
FAM222A in GTEx subjects can be replicated with
consistent Pearson correlation coefficient direction
and significant p-value in Aging, Dementia and TBI
study (Figs. 1, 5, Table 2). Interestingly, the absolute

Pearson correlation coefficients for 21 genes obtained
in replication data are larger than those found in the
GTEx study samples (Fig. 5).

Among the 25 replicated genes, ABCG1, AXIN1,
GRIN2B, BACE1, LDLRAP1, PSEN1, and VPS35
were significantly correlated with FAM222A
(p < 4.0 × 10–4) in all four brain regions (temporal
neocortex, white matter of forebrain, hippocam-
pus, and parietal neocortex) (Table 2). Between
expression levels of FAM222A and the seven genes,
there was no different expression patterns of those
genes among patients with vascular condition,
multiple etiologies, other cause induced TBI, AD,
and non-dementia controls (Supplementary Fig-
ure 2). Among the seven genes, PSEN1, ABCG1,
LDLRAP1, and BACE1 all directly involved in
A�PP metabolic process and all of them positively
correlated with FAM222A expression. ABCG1
gene encodes a cholesterol transporter protein that
has been reported to mediate A� production [28].
Expression of ABCG1 increased A� production
for both the amyloidogenic and nonamyloidogenic
pathways [28]. PSEN1 encodes the catalytic subunit
of the A�PP-processing enzyme �-secretase, causing
familiar AD [29]. BACE1 functions as the primary
�-secretase and is essential for A� production [30].
AXIN1 involved in the Wnt signaling pathway,
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Table 1
Significant genes correlated with FAM222A in brain tissues and present in Alzheimer’s disease related pathways

Gene Tissue Pearson
Correlation
Coefficient

p Sample
Size

Pathway Functional Category

ABCG1 BRNSNG 0.30 1.15E-06 114 Amyloid precursor protein metabolic process; Amyloid
precursor protein catabolic process

Biological Process

APOE BRNNCC 0.30 1.60E-06 202 Amyloid precursor protein metabolic process; Amyloid
precursor protein catabolic process; Alzheimer disease;
Amyloid plaque; Alzheimer disease specific cell type;
Amyloid-beta complex; Positive regulation of amyloid fibril
formation

Biological Process; KEGG
pathway; Tissue expression;
Subcellular localization.

ATG101 BRNHPP 0.33 1.90E-06 165 Alzheimer disease KEGG Pathway
ATP2A3 BRNCHB 0.67 2.35E-14 175 Alzheimer disease KEGG Pathway
AXIN1 BRNCTXA 0.54 5.03E-10 205 Alzheimer disease KEGG Pathway
BACE1 BRNCTXA 0.41 2.24E-06 205 Amyloid precursor protein metabolic process; Amyloid

precursor protein catabolic process; Alzheimer disease;
Amyloid plaque; Alzheimer disease specific cell type;
Amyloid-beta complex

Biological Process; KEGG
pathway; Tissue expression;
Subcellular localization.

BCL11A BRNCHB –0.51 1.00E-06 175 Regulation of protein oligomerization Biological Process
CALM2 BRNPTM –0.54 1.92E-08 170 Alzheimer disease KEGG Pathway
CAPN2 BRNSPC 0.41 2.08E-07 126 Alzheimer disease KEGG Pathway
CLU BRNSPC –0.27 1.84E-06 126 Neurofibrillary tangle; Positive regulation of amyloid fibril

formation
Cellular Component;
Subcellular Localization;
Biological Process

FZD3 BRNHPT 0.35 3.94E-07 170 Alzheimer disease KEGG Pathway
GRIN2B BRNCHB –0.47 1.94E-06 175 Alzheimer disease KEGG Pathway
IRS1 BRNSNG –0.41 5.93E-07 114 Alzheimer disease KEGG Pathway
ITPR1 BRNCHB 0.47 1.29E-06 175 Alzheimer disease KEGG Pathway
KIF5A BRNAMY –0.58 2.90E-08 129 Alzheimer disease KEGG Pathway
KIF5B BRNAMY –0.62 1.74E-09 129 Alzheimer disease KEGG Pathway
KIF5C BRNAMY –0.52 1.62E-06 129 Alzheimer disease KEGG Pathway
LDLRAP1 BRNAMY 0.46 3.87E-08 129 Amyloid precursor protein metabolic process Biological Process
LDLRAP1 BRNHPP 0.36 1.49E-06 165 Amyloid precursor protein metabolic process Biological Process
MTOR BRNCHA –0.35 2.64E-08 209 Alzheimer disease KEGG Pathway

(Continued)CORRECTED P
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Table 1
(Continued)

Gene Tissue Pearson
Correlation
Coefficient

p Sample
Size

Pathway Functional Category

NEFH BRNCHB –0.38 4.22E-06 175 Neurofibrillary tangle Cellular Component;
Subcellular Localization

NEFM BRNSNG –0.32 5.37E-06 114 Neurofibrillary tangle Cellular Component;
Subcellular Localization

PIK3R4 BRNAMY –0.54 6.12E-07 129 Alzheimer disease KEGG Pathway
PSEN1 BRNAMY 0.46 2.98E-06 129 Positive regulation of amyloid fibril formation; Amyloid

precursor protein metabolic process; Amyloid precursor protein
catabolic process; Alzheimer disease; Amyloid plaque;
Alzheimer disease specific cell type; Neurofibrillary tangle;
Amyloid-beta complex

Biological Process; KEGG
Pathway; Tissue Expression;
Subcellular Localization

PSEN2 BRNAMY –0. 2.22E-06 129 Amyloid precursor protein metabolic process; Amyloid
precursor protein catabolic process; Alzheimer’s disease;
Alzheimer’s disease specific cell type; Amyloid-beta complex

Biological Process; KEGG
pathway; Tissue Expression;
Subcellular Localization.

PSMD12 BRNCDT –0.31 1.04E-06 194 Alzheimer disease KEGG Pathway
RTN4 BRNPTM 0.33 1.08E-06 170 Alzheimer disease KEGG Pathway
TUBA1A BRNPTM 0.32 1.67E-06 170 Alzheimer disease KEGG Pathway
TUBB2B BRNSPC –0.44 1.82E-08 126 Alzheimer disease KEGG Pathway
VPS35 BRNAMY –0.45 1.21E-07 129 Regulation of protein oligomerization Biological Process
WNT16 BRNCHB 0.37 2.95E-08 175 Alzheimer disease KEGG Pathway
ZDHHC1 BRNCHA 0.33 1.06E-06 209 Regulation of protein oligomerization Biological Process

BRNSNG, Brain - Substantia nigra; BRNNCC, Brain - Nucleus accumbens (basal ganglia); BRNHPP, Brain - Hippocampus; BRNCHB, Brain - Cerebellar hemisphere; BRNCTXA, Brain -
Cortex; BRNPTM, Brain - Putamen (basal ganglia); BRNSPC, Brain - Spinal cord (cervical c-1); BRNHPT, Brain - Putamen (basal ganglia); BRNAMY, Brain - Amygdala; BRNCHA, Brain -
Cerebellum; BRNCDT, Brain - Caudate (basal ganglia).
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Fig. 4. Gene co-expression network. A, B) Correlation matrix plot of genes identified to be significantly co-expressed with FAM222A in
brain amygdala (A) and cerebella hemisphere (B) and presented in the KEGG Alzheimer’s disease pathway. C, D) Gene co-expression
network of genes identified to be significantly co-expressed with FAM222A in brain amygdala (C), and cerebella hemisphere (D). Nodes
represent the gene; edge indicates the pairs of genes are significantly co-expressed (Pearson correlation p < 2.5 × 10–6) in the corresponding
brain tissue. The red node is FAM222A, the orange node are the genes presented in the KEGG Alzheimer’s disease pathway.

Fig. 5. Scatterplot of Pearson correlation coefficients between AD-pathway related genes expression levels with FAM222A obtained from
GTEx data and ACT data.
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Table 2
AD pathway genes identified to be significantly correlated with FAM222A expression levels in ACT study

TCx FWM HIP PCx
Gene Correlation

Coefficient
p Correlation

Coefficient
p Correlation

Coefficient
p Correlation

Coefficient
p

ABCG1 0.49 2.93E-07 0.61 5.96E-11 0.49 4.09E-07 0.53 5.22E-08
APOE –0.09 4.00E-01 0.41 3.64E-05 0.21 4.12E-02 0.18 9.36E-02
ATP2A3 –0.06 5.83E-01 0.25 1.54E-03 0.24 2.19E-03 –0.11 2.89E-01
AXIN1 0.36 2.70E-04 0.54 2.07E-08 0.37 2.69E-04 0.40 1.01E-04
BACE1 0.50 1.11E-07 0.73 8.67E-17 0.33 1.16E-03 0.63 3.03E-11
BCL11A –0.19 6.07E-02 –0.79 2.05E-21 –0.07 5.24E-01 –0.20 5.26E-02
CALM2 –0.31 1.93E-03 –0.13 2.12E-01 –0.27 7.33E-03 –0.15 1.59E-01
CAPN2 0.15 1.34E-01 0.47 2.54E-06 0.12 2.42E-01 0.07 5.26E-01
CLU –0.05 6.12E-01 –0.42 3.51E-05 0.02 8.66E-01 –0.01 9.59E-01
GRIN2B –0.47 1.07E-06 –0.83 7.28E-25 –0.39 1.22E-04 –0.50 3.59E-07
IRS1 0.13 1.93E-01 –0.68 4.42E-14 –0.24 1.77E-02 –0.10 3.42E-01
KIF5A 0.09 3.86E-01 –0.69 1.43E-14 0.07 5.21E-01 –0.11 2.90E-01
KIF5B –0.50 1.06E-07 –0.56 5.97E-09 –0.40 5.82E-05 –0.36 4.95E-04
KIF5C –0.16 1.08E-01 –0.38 1.48E-04 –0.21 4.36E-02 –0.25 1.59E-02
LDLRAP1 0.66 1.40E-13 0.73 1.61E-16 0.67 1.36E-13 0.75 1.53E-17
MTOR –0.19 5.68E-02 –0.46 3.17E-06 –0.16 1.23E-01 –0.07 4.90E-01
NEFH –0.06 5.51E-01 –0.63 9.10E-12 –0.10 3.46E-01 –0.10 3.66E-01
NEFM –0.17 9.95E-02 –0.74 4.81E-17 –0.05 6.34E-01 –0.17 1.05E-01
PSEN1 0.61 1.34E-11 0.81 1.43E-22 0.49 6.52E-07 0.64 8.43E-12
PSEN2 –0.24 1.78E-02 –0.68 5.16E-14 –0.26 1.01E-02 –0.06 5.57E-01
PSMD12 –0.35 4.66E-04 –0.66 4.21E-13 –0.41 3.44E-05 –0.39 1.08E-04
TUBA1A 0.07 4.63E-01 0.57 2.10E-09 0.01 9.29E-01 0.29 5.54E-03
VPS35 –0.36 2.20E-04 –0.71 9.16E-16 –0.45 4.19E-06 –0.39 1.40E-04
WNT16 0.17 9.94E-02 0.61 7.55E-11 0.02 8.32E-01 0.24 2.14E-02
ZDHHC1 0.09 3.95E-01 0.45 7.81E-06 0.01 9.08E-01 0.10 3.22E-01

TCx, temporal neocortex; FWM, white matter of forebrain; HIP, hippocampus; PCx, parietal neocortex.

whose deregulation lead to synaptic vulnerability in
AD [31].

DISCUSSION

Co-expressed genes are usually co-regulated by
the same set of regulators and likely involved in
related biological processes. Importantly, gene co-
expression analysis of healthy samples has been
successfully used to reveal novel genes and molecu-
lar pathways underlying brain disorders [32]. Seeking
to elucidate the underlying molecular mechanism
and identify biologically relevant genes associated
with FAM222A in a genome-wide manner, we per-
formed gene co-expression analysis for FAM222A
using GTEx RNA-seq sequence data of multi-
ple human tissues. The analyses identified 298
FAM222A co-expression genes representing dis-
tinct biological pathways largely in the brain and
spinal cord that have a molecular connection of
FAM222A. Among those CNS genes co-expressed
with FAM222A, many neurodegeneration-related
genes, especially multiple AD-associated genes,
were enriched. As co-expression analysis identifies
correlations, this finding indicates that FAM222A

and AD-associated genes can be active simultane-
ously in similar biological processes, and therefore
corroborates the relevance of FAM222A to AD. Note-
worthily, although our gene co-expression analysis
does not necessarily confer information about the
casual role of FAM222A, or distinguish between
regulatory and regulated genes, it does highlight a
potential complex interplay of FAM222A and other
AD or neurodegeneration-related genes in healthy
brains. We further validated many of the correlations
between AD-associated genes with FAM222A in the
Aging, Dementia and TBI Study. In this replication
study, we found that the magnitude of the correla-
tions for most of the validated genes were larger
than GTEx, suggesting that the interplays between
FAM222A with other AD-related genes increased in
aging, AD, or TBI damaged brain tissues. How the
connected biological processes changes in aging and
pathological tissues change will need further investi-
gation.

Aggregatin, the protein encoded by FAM222A, was
reported to be a plaque core protein directly binding
A� and facilitating A� aggregation, a process thought
to be central in AD [4]. The coding variants on
FAM222A were found significantly associated with
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longitudinal increase of brain amyloid deposition [4].
In our analysis, we found that FAM222A expres-
sion level was significantly correlated with multiple
amyloid precursor protein metabolic process genes
including PSEN1, PSEN2, BACE1, APOE, LDL-
RAP1, and ABCG1 (Table 2). For PSEN1, ABCG1,
LDLRAP1, and BACE1, the positive correlation with
FAM222A were consistently significant in all four
brain tissues from hippocampus and neocortex in the
replication aging samples (Supplementary Figure 2).
Aggregatin directly binds A� and facilitates A�
aggregation [4]. Aggregating puncta appears concur-
rently with amyloid plaques and should accumulate
in plaques before or concurrent with rather than after
the well formation of plaques [4]. It is possible that
Aggregatin enhances amyloid deposition which fur-
ther induces upregulation of A� metabolic process
pathway and A� production.

Another gene identified to be consistently corre-
lated with FAM222A in four brain tissues is VPS35.
VPS35, vacuolar sorting protein, is a major com-
ponent of the retromer complex and important for
endosome-to-Golgi retrieval of membrane proteins
[33]. VPS35/retromer deficiency was found in the
hippocampus of AD patients [34]. It was reported
that microglial VPS35-deficiency precipitated AD
pathology by impairing disease-associated microglial
(DAM) development and DAM mediated A� uptake
and clearance [35]. In the Aging, Dementia and TBI
study, we did not find different expression of VPS35
or FAM222A in 35 AD patients based on the DSM-IV
diagnostic criterion. Lower level of VPS35 expres-
sion led to decreased DAM-mediated A� clearance,
further induced increased Aggregatin-facilitated A�
aggregation. It is interesting that the correlation coef-
ficient between VPS35 and FAM222A in healthy brain
tissues from GTEx data was –0.45, whereas the cor-
relation coefficient in aged and diseased brain tissues
from the Aging, Dementia and TBI study was –0.71,
implying the level of genes interplay and connected
biological process increased in AD pathological tis-
sues.

AXIN1 also consistently correlated with FAM222A
in four brain tissues in the Aging, Dementia and TBI
samples. This gene encodes a cytoplasmic protein
which contains a regulation of G-protein signaling
(RGS) domain and a disheveled and axin (DIX)
domain. The protein functions as a negative regula-
tor of the Wnt signaling pathway [36]. The presenilin
proteins were also reported to be negative regulators
of canonical Wnt signaling [37]. Genetic common
variants in the Wnt receptor LRP6 have been reported

to be associated with AD in population-based linkage
analyses, and functional study showed the risk alleles
lead to decreased �-catenin signaling [38]. Wnt sig-
naling was also reported to inhibit the metabolism of
A�PP and enhance phosphorylation of the tau protein
[39]. The correlation coefficient between AXIN1 and
FAM222A in GTEx and the Aging, Dementia and TBI
samples are both 0.54, suggesting that the effects of
Wnt signaling to A�PP metabolism might not change
in the pathological brain.

Co-expression networks constructed from
RNAseq data can identify groups of genes with
a tendency to co-activate in the same biological
process and further infer gene function. The dif-
ferential co-expression analysis usually identified
genes with varying co-expression partners under
different conditions, such as disease states and
tissue types [12, 40–42]. The regulatory mechanism
of the co-expressed genes can be protein-protein
interactions, shared transcription factors (TFs) and
their targets, or even similar methylation patterns
[43, 44]. The disease-related genes usually have
tissue-specific abnormalities [45, 46]. Analyzing
the disease-associated module in tissue-specific
gene co-expression network can identify potential
disease genes. In our gene co-expression network
in brain amygdala, FA2H was found correlated
with LDLRAP1, KIF5B, and FAM222A (Fig. 3C).
FA2H encodes a fatty acid 2-hydroxylase essential
for the proper functioning of the nervous system.
It introduces a 2-hydroxyl group to the N-acyl
chain of a major myelin lipid, galactosylceramide.
FA2H knockout mice were morphologically and
functionally normal [47]. However, the absence of
FA2H lead to gradual demyelination and axonal
degeneration [47]. Another gene presented in the
gene co-expression network module in brain amyg-
dala is UGT8, which correlated with PSEN1, KIF5B,
and FAM222A. A study investigating molecular
subtypes of AD in the Mount Sinai/JJ Peters VA
Medical Center Brain Bank (MSBB-AD) study and
the Religious Orders Study-Memory and Aging
Project (ROSMAP) reported UGT8 had a consistent
de-regulation direction in multiple brain regions in
both the A�-predominant and tau NFT-predominant
AD subtypes [48]. A genetic epidemiology study
conducting family-based linkage and association
analyses reported a non-synonymous SNP in UGT8
was highly associated with musical ability [49].
Interestingly, some patients with AD have been
reported to preserve musical ability long after losing
all other cognitive functions [50]. UGT8 encodes
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UDP glycosyltransferase 8, an enzyme involved
in complex lipid biosynthesis in the myelinating
oligodendrocytes [51] and clearance of long-chain
ceramides (lcCer). lcCer clearance in neurons was
regulated by glucosylceramide synthase (GCS) [52].
Study showed that significant downregulation in glial
GCS expression was associated with an increase in
UTG8 expression level in AD [53]. Further studies
of the roles of FA2H, UTG8, lipid metabolism and
myelin synthesis in AD are needed. These studies of
the two genes suggest that potential disease genes
can be identified through highlighting genes that
are correlated with multiple disease genes in gene
co-expression network analysis.

The burden test identified eight rare missense vari-
ants on FAM222A associated with annual longitudinal
changes of CSF phosphorylated tau level in 273
ADNI subjects (p = 0.039) [4]. We found FAM222A
co-expressed with three neurofibrillary tangle (NFT)
genes, NEFH, NEFM, and CLU. NEFH and NEFM
encode neurofilament heavy and medium chains.
Neurofilament accumulations were present in axons
of lower motor neurons in amyotrophic lateral scle-
rosis [54], within Lewy bodies in Parkinson’s disease
dopaminergic neurons [55] and overlapped with tau
NFTs in brains affected by AD [56]. The protein
encoded by CLU, clusterin, is a secreted chaperone
[57]. Multiple studies have suggested that clusterin
interacts and binds to A�, alters aggregation and pro-
mote A� clearance, suggesting a neuroprotective role
[58–60]. However, several other studies show that
clusterin may actually inhibit the clearance of A� and
function as a key mediator regulating A�-induced
neurotoxicity [61–63]. In genome-wide association
studies, CLU is the third most significant genetic risk
factor for late onset AD and several variants have
been identified in CLU [64, 65]. In the AD entorhinal
cortex, clusterin co-localized with NFTs, and neu-
rons containing NFTs showed increased expression
of CLU [66]. In our study, we found FAM222A neg-
atively correlated with NEFH, NEFM, and CLU in
healthy brains from GTEx data (Table 1). In the
Aging, Dementia and TBI study, NEFH, NEFM, and
CLU were all replicated to be significantly negatively
correlated with FAM222A in the forebrain white mat-
ter (Table 2). Further studies to assess the physical
interaction between Aggregatin and tau, neurofila-
ments and clusterin, and the role of Aggregatin in tau
and neurofilaments aggregation will be important.

In this study, we performed genome-wide co-
expression analysis specifically for FAM222A and
identified multiple AD, A� complex, and NFTs-

related pathways. Results indicate that Aggregatin is
involved in the accumulation of multiple neurodegen-
erative disease-specific proteins. This work will guide
the future efforts to understand the role of Aggregatin
in protein aggregation and pathology of neurodegen-
erative diseases. There are several limitations to this
study. Most notably, the GTEx brain tissues samples
are from a variety of ages, with 60% between 60–70
years, 25% between 50–59 years, and 15% between
20–39 years, whereas the validation data sample was
from an elder population ranging from 78 to 100+
years. Although we found the absolute correlation
coefficient increased in the aging samples, we did
not evaluate how the identified gene pairs correla-
tions change with age in GTEx data due to sample
size limitations. In the gene co-expression network
analysis, because we only input genes correlated with
FAM222A, we did not employ the weighted gene co-
expression network (WGCNA) method but defined
the adjacency matrix using a strict hard threshold of
Pearson correlation p-values <2.5 × 10–6. The bio-
logical function and pathological roles of proteins
encoded by genes identified to be simultaneously cor-
related with both FAM222A and other AD genes need
to be further validated and investigated.
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