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Abstract. The neurovascular unit (NVU) is involved in the pathological changes in Alzheimer’s disease (AD). The NVU
is a structural and functional complex that maintains microenvironmental homeostasis and metabolic balance in the central
nervous system. As one of the most important components of the NVU, microglia not only induce blood-brain barrier
breakdown by promoting neuroinflammation, the infiltration of peripheral white blood cells and oxidative stress but also
mediate neurovascular uncoupling by inducing mitochondrial dysfunction in neurons, abnormal contraction of cerebral
vessels, and pericyte loss in AD. In addition, microglia-mediated dysfunction of cellular components in the NVU, such
as astrocytes and pericytes, can destroy the integrity of the NVU and lead to NVU impairment. Therefore, we review the
mechanisms of microglia-mediated NVU dysfunction in AD. Furthermore, existing therapeutic advancements aimed at
restoring the function of microglia and the NVU in AD are discussed. Finally, we predict the role of pericytes in microglia-
mediated NVU dysfunction in AD is the hotspot in the future.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neu-
rodegenerative disease characterized by decreased
cognitive function and is the most common type of
dementia. The classic pathological changes in AD
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include amyloid-f3 peptide (AB) accumulation in the
brain parenchyma and around brain vessels and neu-
rofibrillary tangles formed by hyperphosphorylated
microtubule-related protein tau in neurons [1, 2]. The
number of people suffering from AD is more than
50 million globally, which makes AD the fifth lead-
ing cause of death in the world [2]. With the trend
in global ageing, the prevalence of AD will greatly
increase in the coming years, and economic and social
burdens will also increase heavily [3]. Therefore, it
is urgent to reveal new pathological mechanisms and
discover therapeutic targets for AD.
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The neurovascular unit (NVU) is a closely con-
nected structural and functional complex composed
of microglia, astrocytes, oligodendrocytes, neu-
rons, interneurons, vascular smooth cells (VSMCs),
pericytes, brain microvascular endothelial cells
(BMECs), basement membrane and extracellular
matrix. In fact, the NVU is responsible for regulat-
ing microenvironmental homeostasis and metabolic
balance [4]. BMECs, VSMCs, pericytes, and perivas-
cular astrocytic end-feet make up the blood-brain
barrier (BBB), which selectively controls the
exchange of substances between the central nervous
system (CNS) and peripheral blood. Moreover, the
NVU maintains the balance of metabolism in the CNS
by providing sufficient blood fluids and nutrients. The
NVU regulates cerebral blood fluid (CBF) accord-
ing to neuronal activity depending on neurovascular
coupling [5].

NVU dysfunction has been found in the early
stage of AD [4]. It includes BBB destruction,
neurovascular uncoupling, and abnormal commu-
nication among NVU cells [5]. In fact, we are
mainly focusing on the role of NVU dysfunction
in hippocampus in AD. BBB breakdown begins
and aggravates in the hippocampus and its CAl
and dentate gyrus regions in normal aging and in
mild cognitive impairment (MCI) individuals [6].
Impaired neurovascular coupling has been found
in the hippocampus, parahippocampal gyrus, pre-
cuneus, and posterior cingulate cortex in the MCI
patients and in the hippocampus in AD patients [7].
Moreover, NVU dysfunction significantly accelerat-
ing the progression of AD. First, BBB breakdown
exacerbates A3 accumulation [8] and which destroys
the microenvironmental homeostasis of the CNS [9].
Second, neurovascular uncoupling, which is charac-
terized by a decreased response of blood vessels to
neuronal activity, decreases CBF [5], increases BBB
permeability [10], exacerbates A3 deposition [11]
and tau hyperphosphorylation [12], and induces neu-
roinflammation, oxidative stress [13], and neuronal
damage [5].

As one of the most important constituents of
the NVU, microglia are the main resident immune
cells in the CNS, and excessive microglial activa-
tion is one of the most important changes in the
early stage of AD [14]. Though early recruitment of
microglia may be neuroprotective by A3 clearance,
microglial engulfment, and degradation of A3 is sup-
pressed and proinflammatory cytokines are increased
as disease progresses [15]. In fact, AR activated
M1 microglia depending on P2X7 receptor (P2X7R)

and the poly (ADP-ribose) polymerase-1 (PARP-1)
pathways while spleen tyrosine kinase pathway is
critical in neuroprotective microglia in AD [16-18].
And A activates NLRP3 inflammasome and induce
lysosomal damage in microglia in the process of
engulfment [19]. AR and tau induce mitochondrial
dysfunction in AD brain, while mitophagy impair-
ment in microglia upregulates neuroinflammation
and suppresses phagocytosis of Af and tau [20, 21].
Moreover, microglia mediate NVU dysfunction in
many diseases, including AD. Excessive activation of
microglia destroys BBB integrity and the regulation
of CBF and contributes to neurodegeneration [16, 22,
23]. However, the exact mechanism is still unclear.
In this review, we examined microglia to clarify
the mechanism of NVU dysfunction in AD, includ-
ing BBB destruction, neurovascular uncoupling,
and impairment in constituent cells. Furthermore,
we summarized the existing AD therapies target-
ing microglia and NVU dysfunction to inspire
researchers to go in new directions to identify medi-
cations for microglia-mediated NVU impairment.

MICROGLIA MEDIATE NVU
DYSFUNCTION IN AD

Microglia mediate NVU dysfunction via BBB
impairment

The influence of microglia on the BBB is largely
dependent on the activation phenotypes of microglia.
A-activated M1 microglia have increased secretion
of inflammatory factors and chemokines, includ-
ing tumor necrosis factor-a (TNF-a), interleukin-1(3
(IL-1pB), interleukin-6 (IL-6), interleukin-12 (IL-12),
CCL-2, CXCL-10, reactive oxygen species (ROS),
and nitric oxide (NO), which exacerbate damage
to the BBB [24-27]. In contrast, M2 microglia are
characterized by alternative activation and acquired
inactivation and play an important role in the pro-
tection and repair of the BBB by suppressing
neuroinflammation in the CNS [25].

Microglia affect tight junctions (TJs) and adhe-
sion junctions (AJs) between BMECs to modulate the
permeability of the BBB. Under physiological condi-
tions, resting microglia maintain the integrity of the
BBB. These cells improve the expression of TJ fac-
tors such as zonula occludens 1 (ZO-1) and occludin
on BMECs in vitro [26]. Moreover, microglia in a
resting state directly provide the essential proteins
for TJs, such as claudin-5, to protect the integrity of
the BBB [28].
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It has reported age-dependent BBB breakdown in
hippocampus which is significantly aggravated in
MCI patients [6]. M1 microglial activation is also
found in the early stage of AD, and evidence indi-
cates it is involved in BBB dysfunction in the early
stage of AD [29]. First, proinflammatory factors
derived from M1 microglia, including IL-13, TNF-
a, and CCL2, affect BMECs and directly destroy
the BBB in AD. Af-activated microglia secrete IL-
13 by upregulating the expression of P2X7 receptor
(P2X7R) [16]. IL-1 increases the expression of IL-
6, interleukin-8 (IL-8), and TNF-a and decreases
the expression of ZO-1, enhancing BBB paracellu-
lar permeability. A study also showed that IL-1f3
upregulated the expression of intracellular adhesion
molecule-1 and vascular cell adhesion molecule-1
to increase the transmigration of peripheral white
blood cells (WBCs) into the CNS [30]. AB-activated
M1 microglia release NO and TNF-a via PARP-
1 to downregulate the expression of TJ proteins,
including ZO-1 and occludin, increasing BBB para-
cellular permeability in vitro [26]. CCL2 decreases
AlJs and increases platelet endothelial cell adhe-
sion molecule-1 (PECAM-1) on BMECs by inducing
the phosphorylation and transference of 3-Catenin
from AJs to PECAM-1, which may contribute to
BBB dysfunction and increase WBC recruitment
[31]. AB-activated M1 microglia also release matrix
metalloproteinases-9 (MMP-9) and ROS to dam-
age BMECs and TJs [32]. Second, AP-activated
microglia activate astrocytes by releasing inflam-
matory factors, further contributing to the indirect
destruction of the BBB [33-35]. Third, AB-activated
microglia secrete proinflammatory factors to induce
pericyte loss [26, 36-38], potentially leading to
BBB destruction [39—41]. Overall, M1 microglia can
destroy TJs and AJs between BMECs by mediating
neuroinflammation, astrocyte dysfunction and per-
icyte loss, leading to BBB and NVU impairment
(Fig. 1).

Increased infiltration of peripheral WBCs in
the CNS exacerbates neuroinflammation and BBB
dysfunction. Ap-activated microglia and cerebral
macrophages secrete chemokines and cytokines
to induce peripheral monocytes to accumulate in
the CNS and transform into resident macrophages
to exacerbate BBB and NVU dysfunction [42].
Microglial inflammatory factors mediate peripheral
WBC migration in complex ways. Proinflamma-
tory factors (IL-1p, TNF-a, IL-6, and IL-12) and
chemokines (monocyte chemoattractant protein-1,
macrophage inflammatory protein-lo, macrophage

inflammatory protein-1(, and IL-8) secreted by A-
activated M1 microglia increase the permeability of
the BBB and the infiltration of monocytes into the
CNS in vitro [42]. Specifically, IL-18 induced the
migration of peripheral WBCs and exacerbated the
destruction of the BBB by increasing the release of
proinflammatory factors, including CCL2, CCL20,
and CXCL2 [43]. Then, CCL2 was shown to coop-
erate with monocytes and lymphocytes to reduce the
expression of TJs [44] and induce the disruption of
Als, destroying the integrity of the BBB. Increased
PECAM-1 was also shown to recruit peripheral
WBC:s [31]. Finally, microglia-derived TNF-a plays
an important role in peripheral WBC migration. AB-
activated microglia secrete TNF-a, which is essential
for CXCR2-dependent transmigration of T cells
across the BBB [45]. These cells induced T cells and
monocytes to transmigrate into the CNS by upreg-
ulating the expression of major histocompatibility
complex and vascular cell adhesion molecule-1 on
BMEC:s [46, 47] (Fig. 1).

Microglia mediate NVU dysfunction via
neurovascular uncoupling

Neurovascular uncoupling is one of the most
important reasons for CBF reductions in AD [48,
49]. Reduced CBF is a sign of the early stage of AD,
which leads to neuronal death and neurodegenera-
tion through metabolic dysfunction in neurons and
glial cells [48, 49]. Microglia-mediated neuroinflam-
mation has been observed in the early stages of AD
[29, 50], and studies have shown a close correlation
between microglia and neurovascular uncoupling in
AD [51]. Multiple lines of evidence have shown
that microglia modulate neurovascular coupling via
the P2Y12 receptor (P2Y12R) under physiological
conditions. The expression of P2Y12R on microglia
is significantly decreased in AD, impairing cellular
communication and the response of cerebral vessels
to neuronal activity [22, 52].

Damage to neuronal mitochondria has been proven
to contribute to metabolic dysfunction in neurons and
neurovascular uncoupling [53]. In fact, gp91phox, a
catalytic subunit of NADPH oxidase (NOX), is sig-
nificantly upregulated in microglia and neurons in
MCI patients [54]. A study showed that ROS derived
from NOX containing gp91phox were essential for
ApB-induced neurovascular uncoupling [55]. There-
fore, the interaction between microglia and neurons
plays a crucial role in neurovascular uncoupling in
AD. It was reported that AB-activated microglia pro-
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Fig. 1. Microglia mediate BBB dysfunction. Firstly, microglia induced by A@ secrete IL-13, TNF-o, MMP-9, and CCL2 to destroy TJs
and AJs between BMECs and increase the expression of leukocyte adhesion molecules (LAMs) on BMECs to attract peripheral WBCs.
Secondly, activated microglia secrete Clq, TNF-a and IL-13 to activate astrocytes. The activated astrocytes promote transmigration of
peripheral WBCs across BBB by secreting CCL2 and induce BBB breakdown by secreting C3 and vascular endothelial growth factors
(VEGEF). Thirdly, activated microglia mediate pericyte dysfunction by secreting TNF-a and presenting AP to Thl cells. Then, activated
pericytes increase the release of MMP-9 to destroy TJs leading to BBB impairment.

mote the release of IL-1B, TNF-a, and NO and
the activation of NOX by upregulating P2X7R and
PARP-1 pathways in an AD mouse model [16, 17].
Increases in HO, and NO and proinflammatory
factors led to structural and functional damage to neu-
ronal mitochondria, contributing to increased ROS.
TNF-o induced neuronal mitochondrial dysfunc-
tion via neuron-derived extracellular vesicles (EVs),
leading to increased oxygen consumption and grad-
ual ROS release from neurons [56]. As a result,
increased ROS activate NOD-like receptor protein
3 (NLRP3) inflammasomes to exacerbate oxida-
tive stress, neuroinflammation, insulin resistance and
metabolic abnormalities [48, 53], leading to neu-
rovascular uncoupling in AD.

Recent studies have shown that the primary
mechanism of neurovascular uncoupling in AD is
cerebrovascular component dysfunction [57]. First,
activated microglia promote VSMC and pericyte dys-

function, leading to neurovascular uncoupling. On
the one hand, microglia can directly mediate peri-
cyte degeneration. Activated microglia can secrete
proinflammatory factors to induce pericyte loss [26,
36-38]. LPS-activated microglia directly increased
the release of ROS from pericytes by secreting TNF-o
and IL-13, leading to death in rat retinal microglia and
pericytes [58]. Then, pericyte degeneration reduces
the capillary response to neuronal activity, resulting
in neurovascular uncoupling [59]. We think a simi-
lar mechanism by which activated microglia induce
pericyte loss leading to neurovascular uncoupling is
present in AD. On the other hand, activated microglia
indirectly induce cerebral vessels to contract by exac-
erbating A3 accumulation. Af-activated microglia
upregulate cyclooxygenase 2 to increase the expres-
sion of IL-1B3. Then, IL-1B upregulates [3-site
APP-cleaving enzyme (BACE-1) in neuron-like cells
(SH-SYS5Y cells) to exacerbate AP accumulation



W. Huang et al. / Microglia-Mediated NVU Dysfunction in AD S339

[60]. Increased AR deposition mediates the hyper-
contractive phenotype of VSMCs in small arteries
in the CNS and decreases CBF via high levels of
serum response factor (SRF)/myocardin (MYOCD)
[61, 62]. In human and mouse models of AD, A also
induced pericytes around brain capillaries to contract
through NADPH-oxidase-4 (NOX4)-derived ROS
[63]. However, some researchers believe that VSMCs
can directly contract cerebral vessels, while pericytes
cannot. In contrast, pericytes influence CBF only
by indirectly regulating cellular interactions [64].
Finally, the end-feet of astrocytes on cerebral vessels
are very important for communication between blood
vessels and neurons. The expression of aquaporin-
4 (AQP-4) in astrocytic end-feet on the vessels is
significantly reduced in AD and is accompanied
by a prominent increase in microglial activation
and proliferation [65]. Excessive levels of activated
microglia may be involved in astrocyte-mediated
neurovascular uncoupling, but the exact mechanism
is still unknown. Overall, microglia can mediate neu-
rovascular uncoupling in AD by downregulating the
expression of P2Y12R, increasing ROS and proin-
flammatory factors to induce neuronal mitochondrial
impairment, exacerbating A3 accumulation to atten-
uate the response of cerebral vessels to neuronal
activity and inducing dysfunction in pericytes and
astrocytes (Fig. 2).

Microglia mediate NVU dysfunction through
impairment of the cellular components of the
NVU

The NVU is a structural and functional complex
[4]. Dysfunction of the cellular components of the
NVU has been observed in AD, including changes in
the distribution of capillaries, pericyte diminishment,
astrocyte activation and proliferation, and the relo-
cation of microphages [66]. Evidence support that
microglia is involved in this process and potentially
lead to NVU dysfunction.

Microglia mediate NVU dysfunction via
astrocyte impairment

As an important constituent of the NVU, astro-
cytes are reactive cells in the CNS that can rapidly
and simultaneously exchange information with sev-
eral synapses. Astrocytes maintain the integrity of the
BBB and regulate CBF with BMECs, pericytes and
VSMCs [67]. Additionally, reactive astrocytes accel-
erate AD progression by significantly affecting A3

and tau pathology via BACE-1 and IL-3 pathways
[68, 69].

Microglia induce excitotoxicity in astrocytes and
disturb the communication among astrocytes and
surrounding cells to mediate astrocyte impairment,
ultimately leading to NVU dysfunction in AD [70].
First, microglia play an important role in severe
neuronal excitotoxicity induced by the release of
calcium ion-dependent gliotransmitters such as glu-
tamate from astrocytes [71]. TNF-a, which is mainly
secreted by microglia, was shown to be essential for
calcium-dependent release of glutamate by astrocytes
[72, 73]. TNF-a mediates calcium ion-dependent
glutamate release by activating prostaglandin E2 in
astrocytes, which leads to neuronal apoptosis in an
AD mouse model [74]. The expression of inter-
mediate conductance calcium-activated potassium
channels (KCa3.1 channels) on reactive astrocytes
and activated microglia was enhanced in AD patients
and SAMPS mice [75, 76]. Some researchers found
that microglia-derived TGF-3 upregulated astrocyte
KCa3.1 channels to induce astrogliosis and increased
the level of calcium ions to mediate the release of
glutamate during AD [71, 75, 77]. Second, a high
number of gap junctions is important for intercellu-
lar communication among astrocytes. In particular,
AB-activated microglia suppress the expression of
astrocyte gap junctions by secreting TNF-o and IL-
1B, contributing to astrogliosis [78]. Third, activated
microglia are involved in the regulation of astrocyte
complement-dependent intercellular communication
leading to NVU dysfunction. Specifically, activated
microglia release Clq to activate the nuclear factor-
kappa B (NF-«B) pathway in astrocytes, which
release C3 [33, 79]. C3 has been reported to com-
promise neuronal synapses and cognitive function by
acting on neuronal C3R and destroying the BBB by
acting on BMECs [35, 80]. Finally, C3 attenuated
microglial phagocytosis of AP [81].

Ap-activated microglia induce NVU dysfunction
by mediating astrocyte activation and neuroinflam-
mation. Microglia are more sensitive to pathological
changes than astrocytes [25], and the activation of
astrocytes is highly dependent on microglia [82].
This finding indicates the initial role of microglia
and the amplified role of astrocytes in neuroinflam-
mation [83, 84]. In addition, microglia can mediate
the phenotypic conversion of astrocytes. Similar to
microglia, there are Al and A2 astrocytes in AD.
ApB-activated M1 microglia secrete IL-13, TNF-a,
Clq, and NO to induce Al astrocytes [27, 33]. Al
astrocytes have increased release of proinflammatory
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Fig. 2. Microglia mediate neurovascular uncoupling. Firstly, microglia induced by AB secrete ROS and IL-1f to induce neuronal mito-
chondrial dysfunction directly. Then, activated microglia also secrete C1q, TNF-a, TGF-f to activate astrocytes. And activated astrocytes
increase the release of glutamate and C3 to induce neuronal mitochondrial dysfunction. As a result, neuronal mitochondrial dysfunction
induces degeneration of more surrounding neurons by releasing ROS and EVs, finally leading to neurovascular uncoupling. Meanwhile,
microglia are involved in the regulation of neurovascular uncoupling by affecting the function of cerebral vessels. AR induces abnormal
contraction of small arteries by promoting the conversion of VSMCs to hypercontractive phenotype. And A also induces abnormal con-
traction of capillaries by increasing the release of ROS of pericytes. Eventually, microglia aggravate the effects of AP by secreting IL-1{ to

increase the release of AP of neurons.

factors, chemokines and complement to amplify neu-
roinflammation, leading to BBB destruction and
neuronal injury [33-35, 85]. Moreover, IL-1 indi-
rectly enhances the permeability of the BBB in vitro
by suppressing the expression of sonic hedgehog in
astrocytes, which was neuroprotective [43]. IL-1§3
also mediates the destruction of the BBB by increas-
ing the expression of proinflammatory chemokines
and vascular endothelial growth factors in astrocytes
[43, 85]. Moreover, it was reported that chronic neu-
roinflammation induced degeneration and death in
astrocytes [86]. However, as M1 microglia are con-
verted to M2 microglia, they secrete IL-10 to induce
the activation of A2 astrocytes, which increases
the expression of anti-inflammatory factors [25, 87]
(Fig. 3).

Microglia mediate NVU dysfunction via pericyte
impairment

Brain pericytes, which are important cellular com-
ponents of cerebral capillaries, have features similar
to those of VSMCs and form the BBB with BMECs,
astrocytic end-feet and the basement membrane [88].
The coverage ratio of pericytes was proven to be
associated with the permeability of the BBB [39].
Evidence has demonstrated that microglia and neu-
roinflammation can mediate pericyte impairment and
loss in various ways, leading to NVU dysfunc-
tion in AD. First, AB-activated microglia induce
BBB destruction via pericyte-derived MMP-9. AB-
activated microglia secrete TNF-a in AD [26], and
TNF-a promotes pericytes to release MMP-9, which
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Fig. 3. Microglia mediate astrocyte dysfunction. Firstly, activated microglia secrete TNF-a,, C1q, and NO to activate astrocytes. And activated
astrocytes increase the release of C3 to mediate NVU dysfunction by regulating the function of BMEC, microglia, and neuron. Secondly,
microglia secrete TNF-a and IL-1 to increase the expression of BACE-1 in astrocyte to aggravate A accumulation and destroy GJs
between astrocytes to affect normal cellular communication between astrocytes. And TNF-a also increases the expression of PG in astrocyte
to evoke calcium ion-mediated release of glutamate which induces the apoptosis of neuron. Thirdly, microglia-derived TGF-{ increases the
expression of KCa3.1 channel which works together with elevated calcium ion in astrocytes to promote release of glutamate.

leads to BBB breakdown by destroying TJs and
extracellular matrix between BMECs and promot-
ing the migration of pericytes surrounding vessels to
other regions in the brain, leading to pericyte loss
in vitro [36]. Second, microglial cytokines partic-
ipate in pathways that lead to pericyte loss from
cerebral vessels in AD. Pericyte loss contributes to
neurovascular uncoupling and BBB dysfunction. It
was reported that microglia presented A3 to Th1 cells
and promoted Thl cells to secrete IFN-vy in vitro
[37]. Then, IFN-y promoted the phosphorylation,
internalization, and degradation of platelet-derived
growth factor receptor-B (PDGFR-B) in pericytes
to prevent PDGF-BB-associated proliferation and
migration [38], leading to the loss of pericytes. More-
over, TGF-f3, which is mainly derived from microglia,
induced pericyte loss and NVU dysfunction [73,
89]. TGF-B attenuated the phagocytic capacity of
pericytes and increased the expression of classic

proinflammatory factors, leading to pericyte loss
[90]. The loss of pericytes reduced the cerebral cap-
illary response to neuronal activity and increased
basal blood flow rates in cerebral capillaries, pro-
viding less nutrients and oxygen for neurons [59,
91] and destroying the metabolic balance and neu-
rovascular coupling in AD. Moreover, pericyte loss
enhanced the permeability of the BBB in several
ways. In PDGFR-$3 —/— mice, the loss of pericytes
increased paracellular permeability and the migra-
tion of peripheral WBCs by downregulating TJs
and upregulating leukocyte adhesion molecules [39].
Then, in PDGFR- variant mice, the loss of peri-
cyte increased BBB permeability by enhancing the
phagocytosis of BMECs and dysfunction in astro-
cytic end-feet [40]. Moreover, in PDGFR-f ret/ret
mice, pericyte loss mediated endothelial arteriove-
nous zonation, angiogenic quiescence and impaired
functions of the BBB [92]. Third, it was reported
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that activated microglia exacerbated Ap-induced
abnormal pericyte contraction and neurovascular
uncoupling in AD, which has been elucidated [60,
63, 93].

Overall, it has been proven that AR-activated
microglia induce pericyte dysfunction and loss by
releasing TNF-«, IFN-vy, and TGF-B. Pericyte dys-
function and loss lead to BBB breakdown and
neurovascular uncoupling in several ways. How-
ever, evidence is still needed to determine whether
microglia directly mediate NVU dysfunction by reg-
ulating pericyte function in AD.

Microglia mediate NVU dysfunction via injury to
neurons and interneurons

A decrease in neurons is one of the important
factors in the progressively declining cognitive and
memory function of AD patients, which is medi-
ated by microglia through phagocytosis and the
secretion of inflammatory factors, EVs and ROS.
First, abnormal microglial phagocytosis induces neu-
ronal damage in AD. It was reported that enhanced
microglial phagocytosis damaged neuronal synapses
in the early stage of AD in TREM2-variant mice,
but phagocytosis was neuroprotective in the late
stage of AD by engulfing AR [94]. AB-induced
microglial phagocytosis of synapses was proven
to be dependent on the complement pathway [79,
95]. M1 microglia secrete inflammatory factors and
Clq to increase the release of C3 by Al astro-
cytes, leading to the rapid death of neurons [33,
79]. Increased C3 enhances microglial phagocyto-
sis of synapses by binding to C3R on microglia
[95]. Second, microglia-mediated neuroinflamma-
tion and oxidative stress regulate neuronal function.
A-activated microglia have increased release of
TNF-o, glutamate, and ROS, leading to excessive
neuronal activation and death [16, 96-98]. In addi-
tion, AB-activated microglia damage neurons via
Toll-like receptor-2/3 (TLR-2/3) by releasing IL-6,
TNF-a, and ROS [99, 100]. Third, ATP-activated
microglia produce EVs that convert aggregated A3 to
soluble AR, which is more neurotoxic [101]. Finally,
activated microglia affect the function of interneu-
rons and neural networks. In 5XFAD and 3x-TgAD
mice, activated microglia were closely associated
with damage to interneurons in AD [102]. In addi-
tion, damage to interneurons leads to dysfunction of
neural networks and cognition by inducing imbalance
between suppression and excitation in the CNS [103].

Microglia mediate NVU dysfunction via
impairment of other cellular components in the

NVU

First, microglia mediate dysfunction in BMECs
and the BBB in AD by destroying TJs and Als
and increasing the entry of peripheral WBCs into
the CNS. Second, microglia exacerbate AP accu-
mulation [93] to affect the communication between
BMECs and astrocytic end-feet [41], which con-
tributes to neurovascular uncoupling in AD and
alters calcium signaling in BMECs [104]. Third,
microglia mediate the hypercontractive phenotype of
VSMCs by exacerbating AR accumulation, leading
to neurovascular uncoupling in AD. Finally, oligo-
dendrocytes, which are the myelin-forming cells in
the CNS, play a significant role in the conduction of
action potentials and neuronal protection [105]. In
5XFAD mice, TREM2-variant microglia were asso-
ciated with the phagocytosis of myelin and lipid
metabolism in the CNS, and reactive oligodendro-
cytes were always accompanied by damage to axonal
myelin and metabolic imbalance [106—-108]. This
finding indicates the potential correlation between
microglia and oligodendrocytes in AD, although
there is no direct evidence to support it.

POTENTIAL THERAPIES FOR
RESTORING THE FUNCTION OF
MICROGLIA AND THE NVU IN AD

Both AD pathologies and NVU dysfunction are
present much earlier than clinical manifestations
therefore the principle of medication treatment timing
is as early as possible. After innumerable failure of
studies of anti-A[3, aducanumab was approved as the
first disease-modifying drug of AD by FAD in 2021.
However, there is still much controversy concern-
ing the clinical benefits of aducanumab in AD [122,
123]. Because of various risk factors and complex
mechanisms of AD, we believe different therapeu-
tic approaches would be helpful to AD with different
causes [124, 125]. The important roles of microglia
and NVU in AD, and quickly advanced technolo-
gies make them valuable choices [4, 126, 127]. The
potential therapeutics aiming to alleviate AD pro-
gression and improve cognitive function by restoring
microglial and NVU function have been described in
Table 1.

First, inhibiting neuroinflammation is most likely
helpful in improving BBB function to restore



Table 1

Potential therapies for regulating microglia and NVU function

Outcomes Subject and group division Reference
Regulating microglia function
TREM2McAb Improve cognitive function 5xFAD mice [109]
e Promote acute activation of protective microglia. e hTREM2-Ab group (n=9):1 mg/kg hTREM2-Ab once 2 weeks for 3 months.
e Increase phagocytic AP and apoptotic neurons. e hTREM2-Ab group (n=10):10 mg/kg hTREM2-Ab once 2 weeks for 3 months.
e Inhibit chronic neuroinflammation. e hlgG group (n=9):10 mg/kg hIgG once 2 weeks for 3 months.
e PBS sham control group (n=9): PBS once 2 weeks for 3 months.
Pantethine Improve the results of behavior test 1.5-month-old Tg (5XFAD) and age-matched WT male mice [110]
e Suppress activation of microglia and astrocyte. e Tg + pantethine group (n=10): saline + 15 mg pantethine i.p. 3 times a week for 5.5 months.
o Change the expression of genes including e Tg + vehicle group (n=10): saline i.p. 3 times a week for 5.5 months.
inflammation, complement and phagocytosis. e WT + vehicle group (n=10): saline i.p. 3 times a week for 5.5 months.
o Alleviate AP pathology. o WT + pantethine group (n = 10): saline + 15 mg pantethine i.p. 3 times a week for 5.5 months.
AdipoRon Improve spatial memory function 5.5-month-old (£2 weeks) SXFAD mice and age-matched WT C57BL/6N mice, age-matched [111]
APN-deficient SXFAD (5xFAD; APN-/-)
e Lowered plaque and AP levels. e WT group:vehicle daily by oral gavage for 3 months.
e Restore microglial phagocytic capacity. e 5XFAD + AdipoRon group: 50 mg/kg adipoRon daily by oral gavage for 3 months.
e Suppress activation of microglia and astrocyte and o 5xFAD + Vehicle group: vehicle daily by oral gavage for 3 months.
release of proinflammatory factors. o (5xFAD; APN-/-) + AdipoRon group: 50 mg/kg adipoRon daily by oral gavage for 3 months.
e Rescued neuronal and synaptic loss. o (5xFAD; APN-/-) + Vehicle group: vehicle daily by oral gavage for 3 months.
Methystictin Attenuate the long-term memory decline 25-week-old APP/PS1 mice and age-matched WT mice [112]
o Suppress activation of microglia and astrocyte via e APP/PS1mice + Methysticin group (n=6): 6 mg/kg methysticin by oral gavage for 27 weeks.
Nrf2 pathway.
e Reduce microgliosis, astrogliosis and secretion of e APP/PS1 mice + Placebo group (n=6): placebo by oral gavage for 27 weeks.
the proinflammatory cytokines. o WT mice + Placebo group (n=6): placebo by oral gavage for 27 weeks.
e Reduce oxidative damage.
Regulating NVU function
Anserine Improve cognitive function of AD mice Over 18-months old APPswe/PSEN1dE9 mice and age-matched WT mice [113]
o Suppress neuroinflammation. e WT group (n = 10): regular autoclaved drinking water for 8 weeks.
e Increase the vascular coverage ratio of pericytes. o WT + Anserine group (n = 11): autoclaved drinking water + 2.0 g/L anserine for 8 weeks.
e AD group (n=10): regular autoclaved drinking water for 8 weeks.
e AD + Anserine group (n = 10): autoclaved drinking water + 2.0 g/L anserine for 8 weeks.
Sildenafil Improve CBF, CMRO?2 and declines CVR 62—-87-years old AD patients of the early stage [114]
o Increase CBF. o Self before and after the control.
e Restore NVU function. e A single oral administration of 50 mg.
Dendrimer- e Promote microglia M1 phenotype conversion to BV2 murine microglial cell line [115]
tesaglitazar M2.
e Reduce ROS production.
e Increase A phagocytosis and degradation.
(Continued)
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Table 1
(Continued)
Outcomes Subject and group division Reference
Dabigatran Improve cognition, brain perfusion and BBB 2-month-old female TeCRNB8 mice and age-matched WT mice [116]
function
e Reduce phagocytic microglia and infiltrating T e TgCRNBS etexilate group (n=13-18): 5 mg/g etexilate (prodrug of dabigatran) for 22/52
cell. weeks.
o Suppress astrogliosis and neuroinflammation. o WT etexilate group (n=13-18): 5 mg/g etexilate (prodrug of dabigatran) for 22/52 weeks.
e Maintain pericyte function. e TgCRNBS placebo group (n=13-18): placebo for 22/52 weeks.
e Restore AQP-4 in astrocyte end feet to protect e WT placebo group (n=13-18): placebo for 22/52 weeks.
BBB.
o Alleviate AP pathology.
L-Norvaline Decrease BBB permeability 4-month-old male 3xTg-AD mice and age-matched male C57B1/6 mice [117]
e Upregulate iNOS. e WT + control group (n=3): animals’ drinking water for 10 weeks.
e Suppress microglial activation and astrocyte e WT + L-Norvaline group (rn=3): animals’ drinking water + 250 mg/L L-Norvaline for 10 weeks.
degeneration.
e Decrease permeability of BBB. o 3xTg AD + control group (n=6): animals’ drinking water for 10 weeks.
o 3xTg AD + L-Norvaline group (n=6): animals’ drinking water + 250 mg/L L-Norvaline for 10
weeks.
Rapamycin Rescue vascular, metabolic and learning deficits 1-month-old female apoE4 transgenic and age-matched WT mice [118]
o Restores CBE. e WT control group (n=10): control diet for 6 months.
o Restores the integrity of BBB. e Tg control group (n=10): control diet + microencapsulating materials for 6 months.
e Restores glucose metabolism. e Tg rapamycin group (n=10): control diet + 2.24 mg/kg/d microencapsulated rapamycin for 6
months.
Statins Improve memory function and lessen SPs 12-month-old APP transgenic mice and age-matched WT mice [119]
e Decline activity of MMP-9. e WT mice group (n=20): 0.5% methylcellulose (MC).
o Alleviate destruction of basement membrane. e APP vehicle group (n=17): 0.5% MC.
o Suppress astrogliosis and detachment of astrocyte e APP atorvastatin group (n=19): 0.5% MC + 30 mg/kg/day atorvastatin.
end feet and BMECs. o APP pitavastatin group (n=18): 0.5% MC + 3 mg/kg/day pitavastatin
Pinocembrin Improve cognitive function 4-month-old APP/PS1 mice and age-matched WT mice [120]

e Suppress glial neuroinflammation.

e Protect cholinergic system to maintain the
function of NVU.

e WT controls group (n=9): 20% hydroxypropyl-b-cyclodextrin by oral gavage 5 days per week
for 12 weeks.

o WT pinocembrin group (n=9): 40 mg/kg pinocembrin in 20% hydroxypropyl-b-cyclodextrin
by oral gavage 5 days per week for 12 weeks.

o APP/PS1 controls group (n=9):20% hydroxypropyl-b-cyclodextrin by oral gavage 5 days per
week for 12 weeks.

e APP/PS1 pinocembrin group (n=9): 40 mg/kg pinocembrin in 20%
hydroxypropyl-b-cyclodextrin by oral gavage 5 days per week for 12 weeks.
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Quercetin Improve study and memory ability and protect NVU
integrity.
o Suppress the activation of RAGE pathway to
protect BBB.
e Maintain cholinergic neuronal regulation of CBF.

e Reduce the expression of ERK1/2 and nuclear p65
to protect BBB.

o Inhibit RAGE pathway to restore neurovascular
coupling.

AR (25-35)-induced amnestic mice [121]

e The sham group:distilled water containing 20% hydroxypropyl-beta-cyclodextrin without
quercetin once per day for 8 days by oral gavage.

o AB (25-35)-treated group:distilled water containing 20% hydroxypropyl-beta-cyclodextrin
without quercetin once per day for 8 days by oral gavage

e Quercetin group (n=19): 5 mg/kg quercetin + distilled water containing 20%
hydroxypropyl-beta-cyclodextrin once per day for 8 days by oral gavage.

e Quercetin group (n=19): 10 mg/kg quercetin in distilled water containing 20%
hydroxypropyl-beta-cyclodextrin once per day for 8 days by oral gavage

e Quercetin group (n=19): 20 mg/kg quercetin + distilled water containing 20%
hydroxypropyl-beta-cyclodextrin once per day for 8 days by oral gavage.

e Quercetin group (n=19): 40 mg/kg quercetin + distilled water containing 20%
hydroxypropyl-beta-cyclodextrin once per day for 8 days by oral gavage.

TREM2MCcADb, triggering receptor expressed in myeloid cells monoclonal antibody; A3, amyloid-f3; PBS, phosphate-buffered saline; Tg mice, transgenic mice; WT mice, wildtype mice; AdipoRon,
adiponectin receptor agonist; Nrf2,nuclear factor erythroid 2-related factor 2; i.p, intraperitoneal injection; AD, alzheimer’s disease; CBF, cerebral blood fluid; CMRO2, cerebral metabolic rate
of oxygen consumption; CVR, cerebrovascular resistance; NVU, neurovascular unit dysfunction; ROS, reactive oxygen species; BBB, blood-brain barrier; AQP-4, aquaporins 4; iNOS, inducible
nitric oxide synthase; apoE4, apolipoprotein E4; SP, senile plaque; MMP-9, matrix metalloproteinase-9; BMEC, brain microvascular endothelial cell; APP, amyloid precursor protein; APP/PS1
mice, amyloid precursor protein/presenilin 1 mice; MC, methylcellulose; RAGE, the receptor for advanced glycation end products; ERK1/2, extracellular signal regulated kinase1/2.
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NVU function in AD. Annexin Al (ANXAIl)
not only inhibits neuroinflammation by increasing
IL-10 and decreasing TNF-a [128] but also alle-
viates AB-induced BBB breakdown by suppressing
the RhoA-Rock pathway [129]. Second, multiple-
target drugs, including dabigatran, L-norvaline and
quercetin, regulate the function of several types of
cells in the NVU to reduce BBB permeability in AD
mouse models [116, 117, 121]. Third, a clinical trial
demonstrated that resveratrol reduced the concentra-
tion of MMP-9 in CSF to preserve BBB integrity and
improved the cognitive function of AD patients [130].
Finally, rapamycin (mTOR inhibitor) was proven to
upregulate TJs and inhibit the activity of MMP-9 to
maintain BBB integrity in an AD mouse model [131].

Medications have also been designed to restore
neurovascular coupling and increase CBF in AD.
First, NAD+ intermediates have been shown to
restore NAD+ concentrations to alleviate ageing-
associated neurovascular uncoupling. Nicotinamide
mononucleotide (NMN) rescued cerebral vessel
responses to neuronal activity and cognitive function
in a mouse model of aging by increasing endothelial
NO-derived relaxation in cerebral microvessels and
alleviating mitochondrial dysfunction [132]. NMN
has also been reported to be beneficial for the
cognitive function in AD mice by attenuating A3
accumulation, synaptic loss, and neuroinflammation
[133]. Second, the PARP-1 inhibitor PJ-34 was shown
to improve neurovascular coupling and cognitive
function by regulating endothelial-mediated vasodi-
lation in an aging mouse model [134]. Third, twendee
X has been proven to alleviate tau and a-synuclein
pathology and neurovascular uncoupling in APP23+
CCH mice [135]. Furthermore, sildenafil increased
CBF and improved NVU function in AD patients in
clinical trials [114, 136].

Instead of restoring BBB function and neurovas-
cular coupling alone, medications have also been
designed to simultaneously regulate the function of
multiple cells in the NVU to improve NVU function
in AD. First, anserine can improve NVU function
in AD. It was reported that anserine and carnosine
improved brain perfusion and verbal episodic mem-
ory in elderly people [137, 138], although the effect
of anserine on AD patients is still unclear. A recent
study demonstrated the role of anserine in maintain-
ing NVU integrity by suppressing astrocyte-mediated
neuroinflammation and improving the coverage ratio
of pericytes in a mouse model of AD [113]. Sec-
ond, statins, including atorvastatin and pitavastatin,

restored NVU function by inhibiting the activity of
MMP-9 in neurons and attenuating astrogliosis, lead-
ing to improved behavioral memory and a reduction
in senile plaques in an AD mouse model [119].
Third, pinocembrin was reported to suppress neu-
roinflammation and protect the cholinergic system to
restore the function of the NVU [120]. Fourth, adi-
poRon, an adiponectin receptor agonist, enhanced the
effects of adiponectin, whose deficiency was proven
to increase A-induced microglial activation and
neuroinflammation. AdipoRon treatment suppressed
neuroinflammation, restored microglial phagocyto-
sis of AP, rescued neuronal and synaptic function,
and improved spatial memory function in AD mice
[111, 139]. Finally, rapamycin plays a crucial role
in NVU protection. Rapamycin increases CBF,
decreases BBB permeability and maintains neuronal
function in vivo. Moreover, rapamycin alleviates
AP pathology and normalizes glucose metabolism.
Most importantly, rapamycin was demonstrated to
improve the cognitive function of AD mice [118,
131, 140].

Due to the close correlation between microglia
and astrocytes, many medications have been designed
to regulate the function of microglia and astro-
cytes to improve NVU function and delay AD
progression. First, suppressing the activation of
microglia and astrocytes and neuroinflammation may
be helpful in delaying AD progression. For exam-
ple, methystictin activates the nuclear factor erythroid
2-related factor 2 (Nrf2) pathway; Nrf2 is an anti-
inflammatory transcription factor that significantly
reduces microgliosis, astrogliosis, proinflammatory
cytokines, and oxidative stress in APP/PS1 mice
[112]. Low molecular weight glucocorticoid-induced
leucine zipper (GILZ) analogues, which are the
peptide analogues of the p65 binding domain of
GILZ, suppress the NF-«B pathway. GILZ ana-
logues decrease A3 accumulation, reduces activated
microglia and astrocytes, and inhibits inflammatory
cytokines and TLR expression in SXFAD mice [141].
TPPU, a specific small-molecule soluble epoxide
hydrolase inhibitor, improves the concentration and
anti-inflammatory activity of epoxy fatty acids. TPPU
significantly reversed microglia and astrocyte acti-
vation and suppressed neuroinflammation in SxFAD
mice [142]. Second, pantethine not only suppressed
glial neuroinflammation in mice but also suppressed
the expression of complement genes and other inflam-
matory genes in astrocytes [110]. Third, boldine
suppresses the activity of hemichannels between
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microglia and astrocytes without influencing the
function of gap junctions to reduce calcium ion
and ATP-induced glutamate release [143]. Recently,
NLYOI, a GLP-1R agonist, is reported specifically
to inhibit AB-induced microglial activation and the
conversion of reactive astrocytes as well as protect-
ing neurons in AD mice, leading to the improvement
of cognitive function [144].

Medications regulate microglial function to treat
AD in various ways. First, medications sup-
press microglia-associated inflammatory pathways
and cytokines to prevent the progression of AD.
For example, dapansutrile and edaravone sup-
press microglia-mediated neuroinflammation by
inhibiting the NLRP3 inflammasome in AD [145,
146]. Artemether and tiliroside suppress microglia-
mediated neuroinflammation in AD by activating the
anti-inflammatory Nrf2 pathway [147, 148]. Sec-
ond, some medications alleviated the accumulation
of AP and apoptotic cells to maintain NVU home-
ostasis by enhancing microglial phagocytic capacity.
For instance, K161 improves microglial phagocy-
tosis of AP and apoptotic neurons by suppressing
the Pan-SHIP1/2 pathway [149]. Magnolol improves
microglial phagocytosis and the degradation of
AP and suppresses microglia-mediated neuroin-
flammation [150]. TREM2 monoclonal antibodies
improve cognitive function by promoting acute
microglial activation and microglial phagocytosis
of AR and suppressing chronic microglia-mediated
inflammation [109]. Third, microglial phenotypic
transformation from M1 to M2 is also important in
AD. For example, DHCR24, TPP-M0S2QDs, narin-
genin, and Dendrimer-tesaglitazar were reported to
induce M1 microglia to convert to M2 microglia to
suppress neuroinflammation and improve microglial
phagocytosis [115, 151-153]. Eventually, there are
many mutant genes in microglia in AD, and some
have been proven to be associated with AD, including
TREM?2, CD33, PILRA, and CR [154]. Interestingly,
the TREM?2-activated antibody AL0O2c has been
proven to be efficient and safe for delaying the AD in
mouse models and phase 1 clinical trials [155]. The
TREM?2 monoclonal antibody promoted the acute
activation of protective microglia and suppressed
microglia-associated chronic neuroinflammation to
attenuate AD pathology in vivo and in vitro [109].
CLECT7A antibody alleviated microglial excessive
activation and enhance microglial engulfment of A3
by activating Syk which delays the disease pro-
cess and improves cognitive function in AD mice
[156].

CONCLUSIONS: CHALLENGES AND
PERSPECTIVES

In this review, we have discussed the existing
mechanism of microglia-mediated NVU dysfunction
and the advancements in therapeutics for restor-
ing the function of microglia and the NVU in AD.
Microglia, which are critical in neuroinflammation in
AD, mediate NVU dysfunction via various pathways.
Specifically, AB-activated microglia not only induce
BBB breakdown by mediating neuroinflammation,
the infiltration of peripheral WBCs and oxidative
stress but also impair neurovascular coupling by
mediating direct damage to neuronal mitochondria,
inducing abnormal contraction of cerebral vessels
and pericyte loss in AD [16, 60, 93]. Moreover,
microglia-mediated impairment of cellular compo-
nents of the NVU destroys the integrity of the
NVU and leads to NVU dysfunction [4]. Specifi-
cally, microglia-mediated activation and dysfunction
of astrocytes regulates neuroinflammation and the
destruction of the NVU. Pericyte dysfunction and
loss is mediated by microglia and affect the function
of the NVU by destroying the BBB and neurovascu-
lar coupling. Furthermore, microglia induce neuronal
impairment and loss via abnormal phagocytosis, neu-
roinflammation, oxidative stress, the complement
pathway and EVs, subsequently leading to NVU
dysfunction. As aresult, microglia mediate NVU dys-
function by destroying homeostasis in the CNS and
inducing an imbalance in metabolism and neurode-
generation in the early stage of AD. Additionally,
evidence support the role of microglia-mediated
NVU dysfunction in AD. For example, microglia
modulate neurovascular coupling via P2Y 12 pathway
under physiological condition while this process may
be disrupted as significantly decreased expression
of P2Y12 in activated microglia has been found in
brain of AD patients using multispectral immunoflu-
orescence [22, 52]. Recently, NLYOl, a GLP-1R
agonist, is reported specifically to inhibit A-induced
microglial activation and the conversion of reactive
astrocytes as well as protecting neurons in AD mice,
leading to the improvement of cognitive function
[144].

Pericytes play an indispensable role in BBB
impairment and neurovascular uncoupling in AD,
which are important characteristics of NVU dys-
function [59, 157]. It was proven that microglia can
increase the permeability of the BBB by inducing per-
icyte dysfunction and loss. Furthermore, microglia
are involved in neurovascular coupling and metabolic



S348 W. Huang et al. / Microglia-Mediated NVU Dysfunction in AD

balance by inducing pericyte impairment and loss and
exacerbating A3 accumulation. However, we know
little about the mechanism of this process, and it
is still unclear whether pericytes can contract cere-
bral capillaries and impair neurovascular coupling in
AD [64]. In addition, we find that some experiments
on the crucial steps in the mechanism were not per-
formed under AD conditions. For example, a study
used mouse retinal-derived microglia and pericytes to
show that microglia secreted proinflammatory factors
to induce pericytes to release ROS and abnormally
contract capillaries, leading to decreased CBF and
neurovascular uncoupling [58]. However, we do not
know if this process would be the same in AD. There-
fore, in vivo studies in the state of AD are urgently
needed to determine the mechanisms. As pericytes
are involved in AD-associated BBB destruction and
neurovascular uncoupling and the mechanism is still
unclear, we predict that a future research hotspot of
AD is likely the mechanism of microglia mediate
NVU dysfunction by regulating pericyte function.
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