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Abstract. Alzheimer’s disease (AD) is considered to be the most common neurodegenerative disease, with clinical symptoms
encompassing progressive memory loss and cognitive impairment. Necroptosis is a form of programmed necrosis that
promotes cell death and neuroinflammation, which further mediates the pathogenesis of several neurodegenerative diseases,
especially AD. Current evidence has strongly suggested that necroptosis is activated in AD brains, resulting in neuronal death
and cognitive impairment. We searched the PubMed database, screening all articles published before September 28, 2022
related to necroptosis in the context of AD pathology. The keywords in the search included: “necroptosis”, “Alzheimer’s
disease”, “signaling pathways”, “A�”, A�o”, “Tau”, “p-Tau”, “neuronal death”, “BBB damage”, “neuroinflammation”,
“microglia”, “mitochondrial dysfunction”, “granulovacuolar degeneration”, “synaptic loss”, “axonal degeneration”, “Nec-
1”, “Nec-1s”, “GSK872”, “NSA”, “OGA”, “RIPK1”, “RIPK3”, and “MLKL”. Results show that necroptosis has been involved
in multiple pathological processes of AD, including amyloid-� aggregation, Tau accumulation, neuronal death, and blood-
brain barrier damage, etc. More importantly, existing research on AD necroptosis interventions, including drug intervention
and potential gene targets, as well as its current clinical development status, was discussed. Finally, the issues pertaining
to necroptosis in AD were presented. Accordingly, this review may provide further insight into clinical perspectives and
challenges for the future treatment of AD by targeting the necroptosis pathway.

Keywords: Alzheimer’s disease, granulovacuolar degeneration, mitochondrial dysfunction, MLKL, necroptosis, neurode-
generation, neuronal death, RIPK1, RIPK3

INTRODUCTION

Alzheimer’s disease (AD), which is known to be
the most common chronic neurodegenerative dis-
ease, clinically manifests as progressive memory
loss, and cognitive impairment, which ultimately
affects behavior, speech, visuospatial orientation,
and the motor systems [1]. According to the World
Alzheimer’s Disease Report, by 2050, 115 million
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people worldwide have been predicted to suffer from
dementia, placing a heavy burden on societies and
families [2]. To date, no effective treatment to cure or
slow the progression of the disease exist. Neuropatho-
logically, AD is characterized by the extracellular
amyloid-� (A�) deposition, intracellular hyperphos-
phorylated Tau (p-Tau) formation of neurofibrillary
tangles (NFTs), significant neuronal loss, and severe
neuroinflammation [3–6]. However, the underlying
mechanisms of these pathological processes have yet
to be clarified. In light of recent research progress,
the relationship between these pathological processes
and necroptosis has garnered increased attention from
scientists.
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Necroptosis cell morphology resembles necro-
sis and is characterized by the loss of plasma
membrane integrity, organelle swelling, chromatin
fragmentation, and late cell lysis [7]. The execu-
tion of necroptosis involves three core components,
namely receptor-interacting protein kinases (RIPK)1,
RIPK3, and mixed lineage kinase domain-like pro-
tein (MLKL). Death receptors (DRs) activate RIPK1
kinase activity under the conditions of caspase inhi-
bition, which alongside RIPK3 heterodimerization
form amyloid-structured necrosomes and activate
RIPK3 via phosphorylation. Activated RIPK3 sub-
sequently recruits and phosphorylates MLKL, which
leads to oligomerization and translocation of MLKL
as well as the disruption of the plasma membrane,
ultimately leading to necroptosis [8]. Currently,
numerous studies have evidenced the involvement
of necroptosis in AD pathology both in vitro and
in vivo [9], which involved A� aggregation [10,
11], p-Tau and NFTs [12], neuronal death [8],
blood-brain barrier (BBB) damage [13], granulovac-
uolar degeneration (GVD) [14], synaptic loss [15],
restricted O-linked �-N-acetylglucosaminylation (O-
GlcNAcylation) [16, 17], mitochondrial impairment
[18], and neuroinflammation [19] leading to sub-
sequent cognitive impairment [8]. In addition, the
pharmacological and genetic inhibition of RIPK1/3
and MLKL have been shown to effectively amelio-
rate the pathological changes and cognitive deficits
in associated AD models [10, 11, 19, 20].

The present review attempts to discuss the path-
way that activates necroptosis and describes the
mechanism of action of MLKL as an executor of
necroptosis. Next, the mechanism by which necrop-
tosis is involved in the corresponding pathological
changes in AD are explained. More importantly,
existing research pertaining to AD necroptosis inter-
vention are summarized, including drug intervention
and potential gene targets, as well as the current clin-
ical development status. Finally, issues that warrant
further discussion in necroptosis in AD are presented.
The findings of this review may offer insight into the
clinical perspectives and challenges involved in the
future treatment of AD by targeting the necroptosis
pathway.

METHODS

Literature retrieval and analysis were conducted in
the PubMed database. The key words included a sin-
gle search and combination search of “necroptosis”,

“Alzheimer’s disease”, “signaling pathways”, “A�”,
A�o”, “Tau”, “p-Tau”, “neuronal death”, “BBB dam-
age”, “neuroinflammation”, “microglia”, “mitochon-
drial dysfunction”, “granulovacuolar degeneration”,
“synaptic loss”, “axonal degeneration”, “Nec-1”,
“Nec-1s”, “GSK872”, “NSA”, “OGA”, “RIPK1”,
“RIPK3”, and “MLKL”. Considering the novelty of
the study as well as the latest research progress in the
field, the retrieval time was set to be before September
28, 2022.

ACTIVATED PATHWAY OF NECROPTOSIS

In specific conditions, necroptosis is activated by
DRs, including TNF receptor 1 (TNFR1), IFN recep-
tor (IFNR), TRAIL receptors (TRAILR), and Toll
like receptor (TLR)4/3, which upon stimulation by
their cognate ligands, activate RIPK1. The subse-
quent section briefly introduces the activation of
necroptosis according to two aspects of the different
signaling pathways involved as well as the execution
of downstream MLKL.

Different signaling pathways involved

TNF-�-triggered necroptosis is the most widely
studied mechanism of necroptosis, in which TNF-
� binds primarily to two TNF receptor subtypes,
TNFR1 and TNFR2 [21]. Unlike TNFR1, the lat-
ter does not contain the intracellular death domain
(DD) necessary to mediate cell death responses
[22]. Therefore, this review mainly discusses the
TNFR1-mediated death signaling pathway (Fig. 1).
Upon stimulation by TNF-�, TNFR1 interacts with
TNFR1DD to recruit cellular inhibitor of apopto-
sis proteins (cIAP), RIPK1, TNF receptor associated
factor (TRAF) and TNF receptor-associated death
domain (TRADD) to the intracellular portion of
TNFR1, thereby forming complex I [23]. Complex I
then activates NF-κB and AP1 transcription factors in
order to promote cell survival and pro-inflammatory
gene expression [24]. When the ubiquitination of
RIPK1 in complex I is inhibited, RIPK1 dissoci-
ates from the cell membrane and recruits TRADD
and TRADD-FAS-associated DD protein (FADD) to
form complex IIa, which then activates caspase-8
and leads to apoptosis [25]. When caspase activity
is insufficient (via genetic ablation or pharmacologi-
cal inhibition), RIPK1 and RIPK3 interact through
the RIP homology-interacting domain (RHIM) to
form RIPK1-RIPK3 necrosomes while phosphory-
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Fig. 1. Activated pathway of necroptosis. TNF signaling: Upon stimulation by TNF�, TNFR1 interacts with TNFR1 DD to recruit cellular
inhibitor of apoptosis proteins (cIAP), RIPK1, TNF receptor associated factor (TRAF), and TNF receptor-associated death domain (TRADD)
to the intracellular portion of TNFR1 to form complex I and activation NF-κB. When the ubiquitination of RIPK1 in complex I is inhibited,
RIPK1 dissociates from the cell membrane and recruits TRADD, TRADD-FAS-associated DD protein (FADD) to form complex IIa that
activates caspase-8, and leads to apoptosis. When caspase activity is insufficient, RIPK1 and RIPK3 interact through the RIP homology-
interacting domain (RHIM) to form RIPK1-RIPK3 necrosomes and phosphorylate RIPK3 (complex IIb). This is followed by p-RIPK3 which
can phosphorylate MLKL, facilitating its translocation to the plasma membrane where MLKL leads to cell lysis, resulting in Ca2+ influx,
Na+, K+, and Mg2+ efflux, and DAMP release. IFN signaling: Binding of IFN-I to IFNAR1 further leads to PKR necrosome formation by
activating the assembly of the ISGF3 complex, which phosphorylates MLKL to form RIPK1-RIPK3-MLKL for necroptosis. TLR signaling:
TLR3/4 are activated by their respective ligands, and TLRs can activate necroptosis by recruiting RIPK1-RIPK3-MLKL necrosomes by
linking TRIF.

lating RIPK3 (complex IIb) [26]. This is followed by
p-RIPK3, which phosphorylates MLKL and facili-
tates its translocation to the plasma membrane, where
MLKL triggers cell lysis, resulting in lytic cell death
as well as the release of damage-associated molecular
patterns (DAMPs) [24, 27].

IFN signaling is known as a signaling pathway
that can activate necroptosis [28]. The IFN-I recep-
tor consists of a heterodimer of two IFN-� receptor
type I proteins (IFNAR1 and IFNAR2). Moreover,
the binding of IFN-I to ubiquitous IFN receptor 1
(IFNAR1) activates Janus kinase (JAK), which fur-
ther activates signal transducers and activators of
transcription (STAT) 1/2 and interferon regulatory
factor 9 (IRF9) in order to form IFN stimulation of the
gene factor 3 (ISGF3) complexes (Fig. 1). The ISGF3
complex then promotes the transcriptional activation
of interferon-inducible protein kinase R (PKR). Once

activated, PKR recruits RIPK1 and RIPK3 to form
a PKR necrosome, which phosphorylates MLKL to
form RIPK1-RIPK3-MLKL to promote necroptosis
[29]. Notably, PKR necrosomes are negatively reg-
ulated by FADD and caspase, and when FADD is
silenced or when caspase is inhibited, RIPK kinase is
overactivated, and ROS are overproduced and cannot
be efficiently quenched in the mitochondria, leading
to cell necroptosis [30].

Initiators of the TLR signaling pathway, includ-
ing LPS-activated TLR4 signaling and TLR3 (which
is activated by dsRNA in the endosome), are able
to induce necroptosis following caspase inhibition
via downstream TIR-domain-containing adapter-
inducing interferon-� (TRIF). TRIF interacts with
TLR3 or TLR4 through the RHIM domain in order to
recruit RIPK1/3; when caspase is inhibited, necrop-
tosis occurs [31].



S370 R. Zhang et al. / The Potential Role of Necroptosis in AD

The executor of necroptosis: MLKL

To date, MLKL has been identified as a down-
stream target of RIPK3, which further induces
cell death by perforating the cell membrane lead-
ing to leakage of cellular contents and release of
inflammatory factors [32]. Specifically, MLKL con-
tains an N-terminal 4-helix bundle (4HB) domain,
an intermediate brace region composed of two
helices (Brace), and a C-terminal pseudo kinase
domain (PsKD). Activation of MLKL requires
RIPK3 to bind PsKD and phosphorylate MLKL,
thereby inducing the release of the 4HB domain
and formation of homo-oligomers through the Brace
[33–35]. Upon activation, MLKL binds to the cyto-
plasmic membrane via an affinity site that binds
phosphatidylinositol phosphate (PIP), and when
MLKL undergoes translocation to the cytoplasmic
membrane, it disrupts membrane integrity in a dose-
dependent manner [36]. During this process, when
MLKL binds to the cell membrane, its 4HB domain
uses a “flip” mechanism to expose additional high-
affinity PIP-binding sites, which adds another layer
of different PIP-binding sites, making MLKL more
plasma-membrane-bound [37]. Six helices (H1-H6)
in the N-terminal domain following the translocation
of MLKL form a cation channel that is permeable to
Mg2+, Na+, and K+ [38]. Moreover, oligomerized
MLKL binds to transient receptor potential melas-
tatin related 7 (TRPM7), allowing to Ca2+ influx,
thereby leading to cell swelling and plasma mem-
brane rupture in order to release DAMP [39].

NECROPTOSIS CONTRIBUTES TO AD
PROGRESSION IN MULTIPLE
PATHOLOGICAL PROCESSES

Necroptosis had been extensively explored in neu-
rodegenerative diseases research, including multiple
sclerosis (MS) [40, 41], AD [9, 11], Parkinson’s dis-
ease (PD), and amyotrophic lateral sclerosis (ALS)
[42, 43]. The activation of necroptosis has been
detected in AD brains of both humans and mice,
which plays a key role in AD progression in asso-
ciation with multiple pathological processes (Fig. 2).

Necroptosis and Aβ aggregation

A� is deposited in the brain decades before the
manifestation of clinical symptoms and induces
senile plaque formation at a later stage [44, 45],
thereby facilitating neuronal cell death and dementia

[46]. A� is the product of hydrolysis of amyloid-
� protein precursor (A�PP), which is first sorted in
the endoplasmic reticulum (ER) and then transported
from the Golgi apparatus to the trans-Golgi-network
(TGN) [47–49]. Next, a portion of A�PP is trans-
ported as secretory vesicles to the cell surface or
endosomal compartment where it is hydrolyzed by
�-secretase in order to generate neuroprotective
sA�PP� through a non-amyloid pathway [50–52].
The other part is cleaved by �-site amyloid cleav-
age enzyme 1 (BACE1) into �-N-terminal fragment
(sA�PP�) and membrane-bound C99. The latter
acts on the 40/42 amino acid position of the A�
sequence by � secretase to produce a 39–42 amino
acid peptide-A� and another intracellular fragment
A�PP intracellular domain (AICD) [53, 54]. A� pep-
tides exist in the form of monomers, oligomers (A�o),
and fibers/aggregates. A� monomers are relatively
non-pathogenic, though they aggregate into toxic
insoluble fibers that eventually assemble into amy-
loid plaques, of which A�o is the most toxic type of
A� [55–58]. A� insoluble fibers and oligomers often
synergistically produce multiple cytotoxic effects,
leading to neuronal death, immune cell activation,
and inflammatory cascade [53, 59, 60].

Through the activation of necroptosis, the
RIPK1/RIPK3 complex forms amyloid fibril struc-
tures [26]. These cross-�-structured amyloids result
in a rise level of full-length A�PP and sA�PP� at the
cell surface [61, 62] (Fig. 3). Consistent with this, in
A�-treated SH-SY5Y cells, RIPK1 on A�-induced
cell death and endogenous A�PP protein stabil-
ity was demonstrated [63]. Nec-1, the first RIPK1
kinase inhibitor discovered, has been shown to inhibit
the downstream activation of necroptosis by bind-
ing to the hydrophobic pocket between the N- and
C-termini of the RIPK1 kinase domain [64, 65]. Stud-
ies have also shown that Nec-1 small molecules can
dock in several hydrophobic pockets in the A� fibril
structure and may bind to hydrophobic sites to disso-
ciate A� aggregates [11]. This finding indicated that
necroptosis promotes the aggregation of A� through
the formation of insoluble amyloid complexes [61].
Inhibiting RIPK1 kinase activity via pharmacology
and genetic techniques has been found to reduce this
phenomenon in APP/PS1 mice [11, 19].

A� aggregates and A�o, in turn, promote neuronal
necroptosis. Studies have shown that A� aggregates
induce neuronal necrosis through the RIPK1-MLKL
axis and are inhibited by Nec-1 [11, 63]. It has been
hypothesized that A� plaques act as a reservoir for
toxic oligomers, where over time the plaques saturate
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Fig. 2. Multiple influences of necroptosis activation on AD related factors, which may serve as important triggers of cognitive impairment.

and A�o diffuses, exerting toxicity on peripheral neu-
rons [56, 66–68]. This has been found to be consistent
with the findings in which A� plaques frequently
localize around necroptotic complexes [8]. In fact,
A�o has been shown to activate necroptosis and neu-
rodegeneration in microglia through the promotion
of TNF-� release from microglia, with Infliximab
protecting it. Interestingly, no neurodegeneration has
been found in neurons treated with TNF-� alone [10].
Meanwhile, the knockout of MLKL, or pharmacolog-
ical inhibition of RIPK3 (GSK’872), has been shown
to reverse this phenomenon and improve the cognitive
impairment of A�o-induced mice [10]. Therefore,
necroptosis and A� may form a cascading effect
in AD; that is, necroptosis complexes promote A�
aggregation to form plaques, and over time, A�O dif-
fusion further exacerbates neurotoxicity and disease
severity.

Necroptosis and p-Tau

Tau protein is known to serve as a major
microtubule-associated protein (MAPT) in the

mammalian nervous system. In AD, abnormal post-
translational modifications have been shown to give
rise to hyperphosphorylation of Tau (p-Tau) [69, 70].
p-Tau accumulates in neurons in order to form NFTs
at several residues, including Ser393/404, Ser202,
and Thr 205 [71]. This process destroys the micro-
tubule structure of neurons, resulting in a loss of
communication between the neurons. Braak et al.
demonstrated in their clinicopathological correlation
study that AD brain pathological changes can be
divided into six stages, which are referred to as
“Braak stages”, according to the amount of NFT
accumulation and regions involved [72]. In addition,
p-Tau has been detected in the cerebrospinal fluid
and blood of AD patients, with the amount detected
correlating with the degree of cognitive impairment
[73].

In a study on GVDs, the co-expression of
pMLKL and p-Tau in GVD-bearing neurons has
been observed in AD and pre-AD human brains,
suggesting that Tau accumulation may serve as a
key necroptosis-activated trigger [14], which have
been confirmed by recent studies [12]. Specifically,
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Fig. 3. The interaction of necroptosis and A� formation and Tau. Binding of the death receptor TNF and the ligand TNFR1 stimulates the
formation of necrosomes, which consist of RIPK1 and RIPK3 and allow autophosphorylation. Then, p-RIPK3 recruits and phosphorylates
MLKL, promoting its translocation to the plasma membrane, leading to necroptosis. In this pathway, the RIPK1/RIPK3 complex forms
amyloid fibril structures and increases cell surface levels of full-length A�PP and sA�PP�, promoting A� plaque aggregation. Furthermore,
A� plaques act as a reservoir for A�o, and when A�o is released, it stimulates microglia to secrete inflammatory factors, including TNF-�,
and to undergo necroptosis. On the other hand, hyperphosphorylated Tau promotes necroptosis by activating the RIPK1/RIPK3/MLKL axis
and simultaneously activates the NF-κB pathway, leading to M1microglial activation and neuroinflammation.

in three cell lines (HT22 nerve cells, HEK293T
cells, and SH-SY5Y cell line) transfected with p-Tau,
Tau was found to mediate necroptosis and inflam-
mation via activation of the RIPK1/RIPK3/MLKL
and NF-κB pathways in promoting cell death [12]
(Fig. 3). The in vitro findings were then further
validated in separate in vivo studies in TauP301S
mice. Remarkably, Nec-1stable (Nec-1s, a Nec-1 ana-
log) was found to inhibit p-Tau-induced neuronal
death and microglial hyperactivation in TauP301S
mice, significantly downregulate cytokine expres-
sion, and ameliorate cognitive deficits in an AD
model [12]. Similarly, in APP/PS1 mice, Nec-1 has
been shown to reduce p-Tau by blocking p-Tau S199
and inhibiting aggregation through direct interac-

tion [9, 11]. Furthermore, in an AlCl3-induced AD
rat model, treatment with necrosulfonamide (NSA),
a pharmacological inhibitor of MLKL, has been
found to reduce p-Tau levels and improve associated
spatial learning and memory deficits [20]. These find-
ings suggest a close relationship between p-Tau and
necroptosis. Furthermore, pharmacological interven-
tion of RIPK1 and MLKL can reduce p-Tau-induced
cell death and amend cognitive deficits in AD models.

Necroptosis and neuronal death

Neuronal death in the hippocampus serves as the
main pathological hallmark of AD and is closely
related to memory loss. Neuronal loss in certain
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regions, such as layer II of the entorhinal cortex,
Meynert basal ganglia, and locus coeruleus has been
shown to occur even before the onset of AD symp-
toms [74].

Conventional wisdom posits that neuronal death
in AD is usually based on two categories: caspase-
mediated apoptosis and DRs-mediated necroptosis
[75, 76]. Apoptosis is characterized by cell shrink-
age, membrane blebbing, as well as the formation
of apoptotic bodies. In various studies, the caspase-
mediated apoptosis signaling pathway has been found
to be inactive in AD [8, 77, 78]. Instead, these cells
exhibited a necroptotic swollen morphology and were
found to be positive for DNA fragmentation, demon-
strating that apoptosis does not sufficiently explain
neuronal loss in AD. In addition, according to dis-
ease development, apoptosis is acute, and cells are
lost within hours or days after apoptosis, while AD
is a progressive process lasting decade [79, 80].
In terms of cellular immune response, apoptosis is
immune silent, and its activation does not cause an
inflammatory response [81–83]. Necroptosis typi-
cally results in the rupture of the plasma membrane
as well as the subsequent release of cellular con-
tent into the surrounding environment, leading to a
severe inflammatory response that may contribute
to neuroinflammation in AD [84]. In view of these
findings, apoptosis may not serve as the only factor
that can lead to neuronal death as necroptosis is also
involved.

Previous studies have demonstrated that necropto-
sis is activated in AD and that two key necroptosis
proteins, RIPK1 and MLKL, are significantly
increased in the AD postmortem brain, which leads to
decreased neuronal survival and brain weight [8, 9].
Furthermore, TNFR1/RIPK1 signaling and altered
expression of endosomal sorting complexes required
for transport group III (ESCRT III) have been found to
be activated in the AD postmortem brain, which may
serve as a possible mechanism underlying neuronal
necroptosis [8]. The latter has been identified to be an
antagonist of necroptosis as well as a possible mech-
anism by which cells can survive after necroptosis
has been triggered [85]. However, the small molecule
inhibitors of RIPK1, RIPK3, and MLKL have been
observed to significantly reverse this effect [5, 8, 9,
86]. These studies demonstrated that neuronal death
may play a role in degeneration as an independent fac-
tor rather than a downstream product of pathogenic
proteins.

In fact, we do not deny the existence of other types
of programmed cell death in AD including pyropto-

sis, ferroptosis, oxytosis, autophagy, etc. Moreover,
there may be extensive crosstalk between these mech-
anisms in chronic degenerative diseases, where they
may interact with each other intracellularly, with the
dominant mechanism ultimately leading to cell death
and further giving rise to inflammation and contribut-
ing to further neurotoxicity.

Necroptosis and BBB damage

The BBB is mainly composed of continuous
capillary endothelial cells (capECs), continuous
basement membrane, pericytes, and astrocytes, of
which endothelial cells (ECs) are the main com-
ponents of the BBB. This structure has selective
permeability and transport functions for peripheral
substances, protecting neurons from various factors
in the systemic circulation, thereby maintaining a
highly regulated internal homeostasis of the cen-
tral nervous system. A dynamic contrast-enhanced
(DCE) MRI study of individuals with mild cognitive
impairment described BBB injury in the hippocam-
pus, suggesting that BBB damage occurs early in
AD [87]. Studies have shown that BBB damage
and A� act independently and/or synergistically in
order to promote AD progression [88–91]. BBB
injury is also affected by certain factors, such as
genetics (i.e., carrier of apolipoprotein E (APOE �4)
E4 allele), cardiovascular and cerebrovascular dis-
ease (i.e., hypertension, diabetes, and dyslipidemia)
[89].

ECs play a key role in the BBB, and damage to
ECs results in BBB injury with concomitant infiltra-
tion. A recent study has demonstrated that electron
microscopy and immunohistochemistry can reveal
the selective loss of venous and capECs in APP/PS1
mice [13]. Necroptosis in venule ECs and capECs
from AD mice and postmortem human AD brain
samples was found to be a major contributor to EC
loss and BBB leakage. Research has shown that
the inhibition of RIPK1 kinase activity ameliorates
TNF�-induced increases in vascular permeability
in TNF�/Z-ValAla-Asp (OMe)-fluoromethyl ketone
(ZVAD, a caspase inhibitor) treated mice [92]. In
other acute brain injuries, Nec1 has been found to
prevent brain swelling and disruption of tight junc-
tions in subarachnoid hemorrhage as well as avert
BBB injury triggered by necroptosis in mice mod-
els of cerebral ischemia/reperfusion injury [93, 94].
Accordingly, the corresponding studies confirmed
that necroptosis plays an important role in BBB
injury. Furthermore, previous studies have shown
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that necroptosis promotes the aggregation of A� via
the formation of amyloid complexes [11], whereas
A� promotes AD progression synergistically with
BBB injury [95]. Therefore, it is necessary to elu-
cidate how necroptosis-induced A� deposition leads
to BBB damage in other animal models.

Necroptosis and neuroinflammation

Neuroinflammation is a common AD feature.
Microglia, which constitute the main immune cells
of the brain, work with oligodendrocytes and astro-
cytes in order to maintain central nervous system
homeostasis and have been shown to coordinate
neuroinflammation and play a key role [96, 97].
Through the influence of different environments, M1-
type microglia usually exhibit a pro-inflammatory
phenotype, whereas M2-type microglia have an anti-
inflammatory phenotype. In AD, M1-type microglia
release inflammatory factors, such as IL-1, IFN, and
TNF-�, which have been shown to be involved in
neuroinflammation and further lead to peripheral neu-
ronal death [98, 99]. M2-type microglia is induced by
IL-4 and/or IL-10 and are associated with clearance
of A� [100, 101]. Microglial responses have been ini-
tially thought to be serendipitously triggered by A�
amyloid plaques and dystrophic neurites. Genome-
wide association studies have also shown that many
AD risk genomes are highly expressed at or near
genes unique to microglia [97]. Recently, due to
progress in necroptosis research, numerous studies
have illustrated that necroptosis activates microglial
activation.

Specifically, necroptosis has been described to
be active in the microglia and can induce the M1
polarization of microglia/macrophages [102–104].
In rd1 mice with retinal degeneration, as well
as in mice with acute retinal nerve injury,
microglia have been shown to undergo RIPK1-
and RIPK3-dependent necroptosis and release mul-
tiple proinflammatory cytokines and chemokines
via TLR4 signaling pathway [105]. Likewise, in
the macrophages/microglia of mice, MLKL and the
key necroptosis regulator Z-DNA/RNA-binding pro-
tein 1 were found to be mainly induced in M1
but not M2 macrophages/microglia [106]. Ablat-
ing RIPK3 or MLKL could switch the activation of
microglia/macrophages from M1 to the M2 type in
the ischemic cortex [107]. Studies have shown that
RIPK1 is highly expressed in the microglia of AD
patients [19]. By inhibiting RIPK1 kinase expression,
a significant reduction in M1 microglia and levels of

proinflammatory cytokines have been demonstrated.
Specifically, the kinase activity of RIPK1 has been
described to mediate the transcriptional upregula-
tion of Cystatin 7 and Cholesterol-25-Hydroxylase,
leading to the inhibition of cathepsin activity and
impairment in the microglial lysosomal pathway
in AD mice microglia [19]. These studies fur-
ther demonstrate that the activation of necroptosis
mediated the inflammatory response and phagocytic
capacity damage of microglia. Therefore, targeting
necroptosis can promote the transformation of M1
to M2 phenotype and restore the phagocytic func-
tion of microglia, which may potentially serve as a
therapeutic strategy for AD.

Necroptosis and mitochondrial dysfunction

The brain is characterized by high energy
metabolic demands and is extremely dependent on
mitochondria for its energy supply; therefore, it is
extremely sensitive to mitochondrial dysfunction.
Extensive research has demonstrated that mitochon-
drial dysfunction in AD is closely related, which
can manifest in mitochondrial fission-fusion, abnor-
mal mitochondrial dynamics, and oxidative damage
[108–110]. Studies have shown that mitochondria in
AD have decreased activity in all respiratory chain
complexes, having the most significant decrease in
complex IV, which results in increased ROS produc-
tion, decreased ATP production, and DNA damage.
These factors contribute to the processing and aggre-
gation of A�, thus triggering synaptic degeneration
and cognitive decline [111–113]. p-Tau also leads
to mitochondrial dysfunction, affecting the axonal
transport of organelles in AD neurons and ultimately
leading to neuronal dysfunction [114].

Past studies have found that necroptosis is
involved in mitochondrial dysfunction. Specifically,
the mitochondrial protein phosphatase PGAM5 is
a component of the RIPK1/RIPK3 complex and
manifests as two splice variants, PGAM5L (long
form) and PGAM5S (short form). Following the
induction of necroptosis, PGAM5S further induces
mitochondrial fragmentation through the recruitment
of dynamin-related protein 1 (Drp1) and activation of
its GTPase activity by dephosphorylation, which are
key steps in the subsequent execution of necroptosis
[18]. On the contrary, RIPK1/MLKL/PGAM5L inter-
action is blocked by another necroptosis inhibitor,
NSA. A recent study has reported that active necro-
somes are translocated to the mitochondria in an
MLKL-dependent manner, in which RIPK3 directly
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phosphorylates the E3 subunit of the pyruvate dehy-
drogenase complex (PDC) at T135, leading to PDC
activation, and subsequent rise in aerobic respiration
and mitochondrial reactive oxygen species produc-
tion [115]. Interestingly, mitochondrial ROS in turn
induces autophosphorylation of RIPK1 at Ser161,
which is critical for the formation of RIPK1-RIPK3
necrosomes [116, 117]. These results may suggest
that mitochondrial dysfunction is greatly involved or
tends to form a feedback loop in order to induce
necroptosis. Essentially, the inhibition of necropto-
sis was shown to aid in the recovery of mitochondrial
dysfunction in neurons, ultimately alleviating cogni-
tive impairment.

Necroptosis and granulovacuolar degeneration

GVD was first proposed in 1911. When GVD
forms up to 3–5 �m in diameter, a membrane-bound
structure of edged vacuoles with a dense argyrophilic
core is present. In AD pathology, it is often charac-
terized by the presence of abundant GVDs in neurons
with ultrastructural resemblance to lysosomes [118].
These GVDs bodies have been initially and pre-
dominantly found in hippocampal pyramidal neurons
in CA1 and CA2. As AD progresses, the systemic
spread of GVD lesions in the brain, such as the tem-
poral lobe, hypothalamus, and amygdala, has been
observed [119, 120]. Accordingly, in vitro induction
of intracellular aggregation of Tau has been found to
lead to the formation of GVDs in mouse primary neu-
rons [121]. In the AD hippocampus, the number of
neurons with GVDs increases according to the Braak
stage of NFTs, which may participate in the formation
of NFTs [122–125].

Koper’s team was the first to describe the rela-
tionship between necroptosis and GVDs in the
context of AD-associated neuronal loss, proposing
the hypothesis of GVDs as a morphological corre-
late of necrosome activation in AD [14]. In addition,
their study examined areas with significant neu-
ronal loss in pre-AD and AD patient, in which the
presence of large numbers of necrosome-positive
GVDs were found. In other words, GVD-mediated
necroptosis leads to massive neuronal loss in pre-
AD and AD cases. Recently, Koper et al. have found
that hippocampal transactive response DNA bind-
ing protein 43 (TDP-43) inclusion bodies are closely
related to GVD-mediated necroptosis [126]. TDP-
43 inclusion bodies have been frequently detected
in up to 57% of AD cases and have been asso-
ciated with worsening brain atrophy and greater

memory loss in AD patients [127, 128]. Notably,
a large number of necrosome-positive GVDs were
found in the hippocampus of AD patients with
TDP-43 compared with AD patients without TDP-
43 [126, 128]. Consistent with this, in a study
of C9ORF72-mutated ALS/frontotemporal dementia
(FTLD) cases, TDP-43-related necrosome-positive
GVD was also observed in the post-mortem hip-
pocampus [129]. Taken together, TDP-43 aggravates
GVD-mediated necroptosis in AD and ALS/FTLD
cases and leads to more severe dementia. However,
further elucidation of the mechanism by which TDP-
43 activates GVD-mediated necroptosis in AD is
needed.

Necroptosis and other AD pathological events

Synaptic loss
Studies have suggested that between 27% and 42%

of synapses in the frontal cortex of the brain are
lost in AD patients [130–135], in which the absence
of key elements in interneuron communication has
been thought to constitute the main morphological
counterpart of cognitive deficits in AD. Cornel Iri-
doid Glycoside (CIG), the main component of cornus
officinalis, which is widely used in China to treat
age-related diseases and dementia, has been shown
to increase the expression of synaptophysin, postsy-
naptic density-95 (PSD95), and Glutamate receptor
1 (GluR1) in the hippocampus of SAMP8 mice by
inhibiting the RIPK1/MLKL pathway [15]. However,
whether necroptosis inhibitors rescue AD synaptic
damage has yet to be reported as there is a lack of
strong morphological evidence.

Axonal degeneration
Axonal degeneration is another important patho-

logical event of advanced AD [136]. Recent studies
have found that necroptosis is a key mechanism in
axonal degeneration following excitotoxicity [137].
Activation of necroptosis, mitochondrial dysfunc-
tion, and axonal degeneration has been frequently
observed in neurons [136]. Moreover, the pharma-
cological inhibition of RIPK1 has been found to
prevent key steps in the axonal degeneration cascade,
including mitochondrial depolarization, opening of
the permeability transition pore, and Ca2+ dysregu-
lation in the axon. In accordance with this finding,
the same effect was observed for RIPK3 and MLKL
knockdown [118].
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Table 1
Pharmacological intervention of necroptosis in AD animal models

Animal model Drug Administration
route

Duration and dosage Neuron
survival

Abnormal protein Cognitive
function

Other Molecular
mechanisms

Necroptosis
protein

REF

APP/PS1 mice Nec-1 IV 12 weeks
(6.25 mg/kg, 2 times
/week)

↑ ↓soluble and
insoluble
A�1-42
p-Tau and p-S199

Improve ↑ Bcl-2
↓Cytochrome-c and
cleaved-Caspase3

↓pRIPK3 [11]

Aluminum
induced AD mice

Nec-1 ICV 2 �l of Nec-1 at the
concentrations of 2 mM,
4 mM and 8 mM were
bilaterally injected into
each cerebral
ventricle

↑ ↓A� and Tau Improve ↑mGluR2 and mGluR5
↓Caspase-3 and LC3-�

↓RIPK1 [139]

APP/PS1 mice Nec-1 IV 4 weeks
(6.25 mg/kg, 2
times/week)

↑ ↓A� plaques and
p-Tau

N/A ↑Bcl-2
↓Bax

↓pRIPK3 [159]

Prediabetic rat Nec-1 Gavage 8 weeks (1.65 mg/kg/day) N/A ↓p-Tau and Tau Improve ↓p-NF-kB/NF-kB ↓pRIPK1,
RIPK1, and
pRIPK3

[141]

Aluminum
induced zebrafish
AD model

Nec-1 Add Nec-1 to
zebrafish culture
fluid

30 days (15 �moL/L) ↑ N/A Improve ↑ACh Levels ↓RIPK1,
RIPK3,
PARP2, Bmf1,
and Rab25

[140]

APP/PS1 mice Nec-1s PO 30 days (2.5–5 mg/d) N/A ↓A�, soluble
/insoluble
A�1-42

Improve N/A N/A [19]

TauP301S mice Nec-1s Intraperitoneal
injection

12 weeks
(2 times/week, 6.25
mg/kg)

↑ ↓p-Tau Improve ↓IBa1, CD68, IL-6,
IFN�, CCL5
↑ TMEM119

↓RIPK1,
RIPK3, and
MLKL

[12]

5xFAD mice Nec-1s Intraperitoneal
injection plus po

A single intraperitoneal
injection (10 mg/kg)
followed by oral (0.5 mg/
mL) administration for 21
days

↑ N/A N/A N/A ↓MLKL and
pMLKL

[9]

APP/PS1 mice Nec-1s PO 4 weeks (2.5–5 mg/day) N/A N/A N/A ↑vECs and capECs
↓VCAM1 and ICAM1

N/A [13]

(Continued)
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Table 1
(Continued)

Animal model Drug Administration
route

Duration and dosage Neuron
survival

Abnormal protein Cognitive
function

Other Molecular
mechanisms

Necroptosis
protein

REF

A�O induced AD
mice

GSK’872 Intraperitoneal
injection

GSK ’872 was
intraperitoneally injected
(1 mg/kg) on days 0 and 7
and 14 after
intraventricular injection
of A�O.

↑ N/A Improve N/A ↓pMLKL [10]

5xFAD mice OGA
inhibitor,
thiamet-G

Intraperitoneal
injection

3 days (50 mg/kg) ↑ ↓A� plaques,
soluble/insoluble
A�40 and A�42

Improve ↑Synaptophysin ↓pRIPK1
pRIPK3, and
pMLKL

[17]

AlCl3 induced AD
rat

NSA Intraperitoneal
injection

6 weeks (1.65 mg/kg/day) ↑ ↓A� plaques and
p-Tau

N/A ↑Acetylcholine
↓BACE1, GSK-3�,
TNF-�, and
acetylcholinesterase

↓pMLKL [20]

Aged SAMP8
mice

CIG Gavage 2 months (200 mg/kg/d) ↑ N/A Improve ↑PSD95, Synaptophysin,
GluR1, ADAM10, and
sA�PP�

↓RIPK1,
pMLKL, and
MLKL

[15]

A�1-42 induced
AD rat

EGb761 Gavage 23 days (20 mg/kg daily) ↑ ↓A�1-42 Improve ↓p-JNK/JNK, p-STAT3
(Ser 727) and t-STAT3

↓RIPK1,
MLKL, and
pMLKL

[150]

A�25-35-induced
mice

CE Intragastric
injections

77 days (10 or 20
mg/kg/d)

↑ ↓A�1-42 Improve ↑BDNF, FGF2 TrkB/Akt
signaling axis (TrkB, Akt,
Bcl-2), IL-10
↓TNF-�, IL-1�, IL-6

↓RIPK1
RIPK1,
RIPK3,
pMLKL
↑TBK1

[151]

IV, intravenous injection; PO, oral; ICV, lateral ventricle injection; Bcl-2, B-cell lymphoma-2; p-RIPK3, phosphorylated receptor-interacting serine-threonine kinase 3; mGluR2/5, metabotropic
glutamate receptors2/5; LC3II, microtubule-associated proteins 3II; NF-κB, nuclear factor-κB; pRIPK1, phosphorylated receptor-interacting serine-threonine kinase 1; ACh, acetylcholine; Bax,
pro-apoptotic gene; PARP2, poly adenosine diphosphate ribose polymerase; Bmf1, BCL2 modifying factor 1; Rab25, member RAS oncogene family 25; IL-6, interleukin 6; IFN�, interferon beta;
CCL5, C-C motif chemokine ligand 5; TMEM119, transmembrane protein 119; MLKL, mixed lineage kinase domain like pseudokinase; vECs, venous ECs; capECs, capillary ECs; VCAM1,
vascular cell adhesion molecule 1; ICAM1, intercellular cell adhesion molecule-1; BACE1, �-site amyloid cleavage enzyme 1; GSK-3�, glycogen synthase kinase 3 beta; PSD95, postsynaptic
density-95; GluR1, Glutamate receptor 1; ADAM10, ADAM metallopeptidase domain 10; JNK, c-Jun N-terminal kinase; p-JNK, phosphorylated amino-terminal protein kinase; STAT3, signal
transducer and activator of transcription 3; p-STAT3 (Ser 727), phosphorylated signal transducer and activator of transcription; t-STAT3, total STAT3; FGF2, Fibroblast growth factor 2; BDNF,
brain-derived neurotrophic factor; TrKB, Tyrosine Kinase receptor B; AKT, Protein Kinase B, PKB; TBK1, TANK-binding kinase 1; CIG, Cornel Iridoid Glycoside; EGb761, Gingko biloba
extract 761; CE, Coeloglossum viride var. bracteatum extract; Mouse Transmembrane protein 119.
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THERAPEUTIC MEASURES TARGETING
THE AD BRAIN NECROPTOSIS PATHWAY

Pharmacological intervention of necroptosis in
AD animal models (Table 1)

Data from in vivo experiments have indicated that
several compounds inhibit necroptosis and improve
cognitive impairment in AD models. These com-
pounds include necroptosis (RIPK1/RIPK3/MLKL)
inhibitors and other drugs.

RIPK1 inhibitors: Nec-1 is a classic inhibitor in
targeting RIPK1 kinase [138]. To date, Nec-1 has
been shown to have an ameliorating effect on multiple
AD/cognitive deficit-related animal models, includ-
ing APP/PS1 mice [11], aluminum induced-AD mice
[139], aluminum-zebrafish AD models [140], and
prediabetic rats [141]. However, the specificity of
Nec-1 in inhibiting RIPK1 kinase has been widely
debated [142]. This may be due to its inhibitory effect
on indoleamine-2,3-dioxygenase (IDO) [142]. IDO
has been found to be upregulated in inflammation
and plays a major immunomodulatory role [143];
hence, the dual response to RIPK1 and IDO may have
important in vivo effects. Nec-1s is a more specific
RIPK1 inhibitor that lacks the IDO-targeting effect
[142]. The corresponding findings suggested that
Nec-1s improves cognitive deficits in SAMP8 mice
[144], TauP301s mice [12], and APP/PS1 mice [19].
RIPK3 inhibitors: GSK’872 is a RIPK3 inhibitor
that binds to the RIPK3 kinase domain with high
affinity and inhibits kinase activity, which has also
been shown to ameliorate cognitive decline in an
A�O-induced AD model [10]. Although GSK872
has limited research data in terms of AD animal
models, its potential in improving cognitive deficits
from in vitro experiments can be appreciated [8, 106].
For example, GSK’872 was added to human iPSC-
derived glutamatergic neurons and M1 macrophages
induced by TNF-�, SMAC mimic, and ZVAD-fmk
(TSZ, a commonly used in vitro method to induce
necroptosis), which significantly reduced cytotoxic-
ity and increased neuronal survival [8, 106]. MLKL
inhibitors: NSA is a specific inhibitor of necropto-
sis that targets MLKL. The study of Motawi and
colleagues showed that NSA reduced the patholog-
ical changes associated with cognitive decline in an
AlCl3-induced AD rat model given oral administra-
tion of AlCl3 (17 mg/kg/day) for 6 consecutive weeks
[20]. In future studies, the therapeutic effect of NSA
must be validated in further AD models. Recently,
GSK’074 and TAK-632 have been identified as dual

inhibitors of RIPK1 and RIPK3, both of which exhib-
ited extremely low cytotoxicity [145–147]. Although
dual inhibitors have advantages in blocking RIPK1-
dependent and -independent forms of necroptosis,
how effective these dual inhibitors are in AD must
be clarified.

Other related studies have demonstrated that
O-GlcNAcase (OGA) inhibitors can increase
O-GlcNAcylation [17, 148]. Interestingly, O-
GlcNAcylation of RIPK3 has been shown to inhibit
the phosphorylation of RIPK3 as well as its inter-
action with RIPK1, thereby further inhibiting the
activation of necroptosis [16, 17, 149]. Notably,
OGA inhibitors have also been found to ameliorate
cognitive impairment in Tau/APP [16] and 5xFAD
mice model [17] through this effect.

Regarding other drug treatments, CIG has been
reported to increase the expression of synapse-
associated proteins by inhibiting necroptosis and
ultimately improve cognition in aged SAMP8 mice
[15]. Gingko biloba extract 761 has also been shown
to improve cognitive impairment in a A�1-42-induced
AD rat model by attenuating RIPK1-mediated mito-
chondrial dysfunction and ROS [150]. Coeloglossum
viride var. bracteatum extract (CE) is a plant that
grows on snowy plateaus at an average altitude of
4000 meters and possesses antioxidant and anti-
inflammatory properties. CE ameliorates cognitive
impairment in A�25-35 induced AD mice by mod-
ulating RIPK1-driven inflammation and necroptosis
[151].

Potential gene targets of necroptosis in AD
animal model (Table 2)

Recently, the potential gene targets of necropto-
sis in AD have been gradually revealed, and data
from in vivo studies have demonstrated its abil-
ity in improving cognitive impairment in the AD
animal models [10, 13, 19, 152]. For example,
knockout of RIPK1D138N kinase in APP/PS1 mice
has been found to ameliorate cognitive impairment
by reducing microglia-associated inflammation [19].
Furthermore, knockout of MLKL improved cogni-
tion as well as learning and memory in A�o-induced
AD mice models [10]. Murine N-acetyltransferase 1
(mNat1) has been shown to play an important role
in preventing insulin resistance-mediated endothelial
necroptosis, with its deficiency leading ECs vulner-
able to necroptosis [13]. The selective restoration of
mNat1 expression in ECs can inhibit EC necroptosis
and ameliorate BBB damage and cognitive impair-
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Table 2
Potential genetic targets of necroptosis in AD animal models

Animal model Genetic
intervention

Neuron
survival

Abnormal protein Cognitive
function

Other
molecular
mechanisms

Necroptosis
protein

REF

APP/PS1 mice RIPK1D138N
kinase Knock
out

N/A ↓A�, soluble and
insoluble level of
A�1-42

Improve N/A ↓p-S166
RIPK1,
RIPK1

[19]

APP/PS1 mice RIPK1D138N
kinase Knock
out

N/A N/A N/A ↓EC VCAM1
and ICAM1

N/A [13]

MLKL Knock
out mice

MLKL Knock
out

↑ N/A Improve N/A ↓pMLKL [10]

APP/PS1 mice shRNA-
TNFR1

N/A N/A N/A N/A ↓pMLKL [152]

APP/PS1mice mNat1 overex-
pression

↑ ↓A� plaques and
levels of A�1–42

Improve ↑LRP1� and
A20

↓pRIPK3,
pMLKL

[13]

APP/PS1 mice UVRAG over-
expression

↑ N/A Improve ↓P62 ↓pMLKL [152]

APP/PS1 mice shRNA-P62
AVV

↑ N/A N/A N/A ↓RIPK1,
pRIPK1,
pRIPK3,
MLKL,
pMLKL

[152]

EC, Endothelial cells; VCAM1, vascular cell adhesion molecule 1; ICAM1, intercellular cell adhesion molecule-1; LRP1, low-density
lipoprotein receptor-related protein 1; mNat1, murine N-acetyltransferase 1; TSZ, TNF-�, SMAC mimetic, ZVAD-fmk; UVRAG, ultraviolet
irradiation resistance-associated gene; LC3, microtubule-associated proteins, the ratio of LC3II/I can estimate the level of autophagy; P62,
Sequestosome 1; shRNA, short hairpin RNA.

ment in APP/PS1 mice [13]. UVRAG serves as a key
regulator in several steps of autophagic flux. Inter-
estingly, UVRAG overexpression has been found
to inhibit necroptosis by regulating autophagy, ulti-
mately alleviating cognitive impairment in APP/PS1
mice [152]. Previous studies have also identified
p62/SQSTM1, which is a molecule responsible for
the clearance of aggregated proteins, in which RIPK1
directly interacts to activate necroptosis [163]. Xu
et al. showed that p62 is highly expressed in hip-
pocampal CA1 cells of APP/PS1 mice as well as
in the cortical neurons of AD patients. In contrast,
p62 knockdown in APP/PS1 mice has been found
to inhibit necroptosis and alleviate cognitive impair-
ment [152]. In addition, various genes play important
roles in AD necroptosis, such as: A20 [13, 153, 154],
TRAF2 [155], and low-density lipoprotein receptor-
related protein 1 [13]. Given that information on these
genes is admittedly limited in in vitro studies, fur-
ther research is needed in order to demonstrate their
potential as a target for inhibiting necroptosis in AD.

CLINICAL TRIALS TARGETING AD
NECROPTOSIS

Drug developers are now working to move
drug candidates into preclinical studies or clinical

trials by targeting necroptosis. Currently, RIPK1
inhibitors, RIPK3 inhibitors, MLKL inhibitors, and
OGA inhibitors related to necroptosis have been
gradually suggested for the treatment of neurode-
generative diseases such as AD. Therefore, clinical
trials regarding these inhibitors were searched for
using the Informa Pharma Intelligence database
(https://citeline.informa.com/), where five RIPK1
inhibitors and four OGA inhibitors were found for
AD (Table 3). However, it is disappointing that no
RIPK3 and MLKL inhibitors have entered clinical
trials so far.

Clinical trials targeting RIPK1

DNL104 commenced trials in AD/ALS in
September 2016, though further studies have been
discontinued due to post-dose hepatotoxicity that
was observed in six subjects (37.5%) in the multi-
ple escalating dose group. SAR443060 (DNL747)
is a selective, orally bioavailable, and central ner-
vous system (CNS)-penetrant inhibitor of RIPK1.
In two early-stage clinical trials (NCT03757325 and
NCT03757351) in healthy subjects and in patients
with AD or ALS, DNL747 has been shown to be
distributed in cerebrospinal fluid after oral adminis-
tration and decreased pRIPK1 in human peripheral

https://citeline.informa.com/
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Table 3
Clinical trials for AD

Generic Drug Name Sponsor Trial Phase Trial state Target

DNL104 Denali Therapeutics Phase I Clinical Trial Ceased Receptor interacting
serine/threonine kinase 1

DNL747 Denali Therapeutics Phase I Clinical Trial Ceased Receptor interacting
serine/threonine kinase 1

DNL788 Denali Therapeutics Phase II Clinical Trial Active Receptor interacting
serine/threonine kinase 1

SIR-2446 Sironax Phase I Clinical Trial Active Receptor interacting
serine/threonine kinase 1

VRN-04-1 (VRN-04) Voronoi Phase I Clinical Trial Active Receptor interacting
serine/threonine kinase 1

ASN-561 Asceneuron Phase I Clinical Trial Active O-GlcNAcase
BIIB-113 Biogen Phase I Clinical Trial Active O-GlcNAcase
ASN-51 Asceneuron Phase I Clinical Trial Active O-GlcNAcase
LY-3372689 Eli Lilly Phase II Clinical Trial Active O-GlcNAcase

The above data comes from Informa Pharma Intelligence.

blood mononuclear cells. However, the development
of DNL747 has been discontinued due to long-term
nonclinical toxicology findings [156]. Another BBB-
penetrating RIPK1 inhibitor, SAR443820 (DNL788),
demonstrated potent interactions with its target
at well-tolerated doses in Phase 1 clinical trials
(NCT04982991), which may have potential in cer-
tain neurological diseases, such as ALS, MS, and
AD. It is now planned for Phase II clinical trials
for both ALS and MS (NCT05237284). Importantly,
the US FDA has granted Fast Track designation to
SAR443820 for the treatment of ALS. SIR-2446 is
an oral RIPK1 inhibitor being developed by Sironax
for the treatment of AD and MS, which is currently in
Phase I clinical trials. VRN-04-1 (VRN-04) is another
oral RIPK1 inhibitor developed by Voronoi for the
treatment of various autoimmune diseases and neu-
roinflammation diseases, such as AD, PD, ALS, and
MS, which in preclinical trials.

Clinical trials targeting OGA

ASN120290 (ASN-561 or ASN90, developed
by Asceneuron) is used for the treatment of pro-
gressive supranuclear palsy, AD, and tauopathies,
which has already completed testing in three Phase
I studies in healthy young and elderly subjects.
Preclinical data has shown that daily oral admin-
istration of ASN120290 prevents the development
of Tau tangles, functional deficits in motor behav-
ior and breathing, and increased survival [157].
BIIB-113 (developed by Biogen) is currently in
a Phase I clinical trial for AD to evaluate the
safety and tolerability of single- and multiple-
ascending oral BIIB113 in healthy participants

(NCT05195008). ASN-51 (developed by Asceneu-
ron) has also entered Phase I clinical trials for AD.
The safety, tolerability, pharmacokinetics, and phar-
macodynamics of ASN51 have been evaluated in
healthy subjects and AD subjects (NCT04759365).
LY-3372689 (developed by Eli Lilly and Company)
for the treatment of AD has completed safety, tol-
erability, and pharmacokinetic evaluations in 23
healthy subjects (NCT03819270, NCT04106206,
NCT03944031, and NCT04392271). It was well tol-
erated, with no serious adverse events reported and
is currently undergoing recruitment for a Phase II
clinical trial (NCT05063539).

CONCLUSION AND FUTURE
DIRECTIONS

Due to the rapidly aging population, novel disease-
modifying therapies and treatment strategies are
urgently needed for AD. In fact, for decades,
researchers have characterized several aspects of AD
pathology as separate components that may now be
associated with susceptibility to necroptosis. The
existing evidence has demonstrated that necropto-
sis is involved in the neuropathology of AD [8–10,
14, 19, 91, 158]. For these reasons, there is indeed
a broad correlation between AD neuropathology
and the necroptosis pathway. Therefore, the role of
necroptosis in AD is multifaceted, and inhibiting
the activation of necroptosis may serve as a multi-
targeted therapeutic approach for AD.

However, several outstanding questions regarding
AD necroptosis remain to be further addressed. 1)
The above studies show a strong correlation between
necroptosis and AD pathological changes. However,
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as AD is a slowly progressive disease, it is neces-
sary to clarify the degree of necroptosis in AD animal
models at different pathological stages and to find the
optimal treatment time. 2) Nec-1 targets the dissoci-
ation of A� aggregates; however, current evidence
only supports a role in the pre-AD stage. Thus, more
studies are warranted to investigate whether other
dual inhibitors have binding sites for A�, and whether
the treatment is better than Nec-1. 3) The hypoth-
esis of GVDs as the morphological counterpart of
AD necrosome needs to be further validated in vivo.
Furthermore, the mechanism by which TDP-43 acti-
vates GVD-mediated necroptosis in AD should be
elucidated. 4) Synapse loss is considered to be the
main morphological counterpart of cognitive deficits
and memory impairment in AD. Although the inhibi-
tion of necroptosis signaling improves the expression
of synapse-related proteins, more robust morpholog-
ical evidence is required. In conclusion, this review
put forward evidence in regard to the involvement
of necroptosis in AD progression according to AD
neuropathology. However, the role of necroptosis in
AD may only be confirmed when further necroptosis-
based interventions successfully complete clinical
trials.
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