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Abstract.
Background: Detecting early-stage Alzheimer’s disease (AD) is still problematic in clinical practice. This work aimed to
find T1-weighted MRI-based markers for AD and mild cognitive impairment (MCI) to improve the screening process.
Objective: Our assumption was to build a screening model that would be accessible and easy to use for physicians in their
daily clinical routine.
Methods: The multinomial logistic regression was used to detect status: AD, MCI, and normal control (NC) combined with
the Bayesian information criterion for model selection. Several T1-weighted MRI-based radiomic features were considered
explanatory variables in the prediction model.
Results: The best radiomic predictor was the relative brain volume. The proposed method confirmed its quality by achieving
a balanced accuracy of 95.18%, AUC of 93.25%, NPV of 97.93%, and PPV of 90.48% for classifying AD versus NC for the
European DTI Study on Dementia (EDSD). The comparison of the two models: with the MMSE score only as an independent
variable and corrected for the relative brain value and age, shows that the addition of the T1-weighted MRI-based biomarker
improves the quality of MCI detection (AUC: 67.04% versus 71.08%) while maintaining quality for AD (AUC: 93.35%
versus 93.25%). Additionally, among MCI patients predicted as AD inconsistently with the original diagnosis, 60% from
ADNI and 76.47% from EDSD were re-diagnosed as AD within a 48-month follow-up. It shows that our model can detect
AD patients a few years earlier than a standard medical diagnosis.
Conclusion: The created method is non-invasive, inexpensive, clinically accessible, and efficiently supports AD/MCI screen-
ing.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive, neu-
rodegenerative brain disease that causes memory
loss, changes in behavior, and problems with every-
day tasks. AD is the most common form of dementia
and is responsible for 60% to 80% of dementia cases
[1, 2]. The intermediate stage from normal cogni-
tion to dementia is mild cognitive impairment (MCI).
People suffering from MCI have a high rate of pro-
gression to dementia over a relatively short period,
but not everyone will develop AD [3]. Within a 3-
year follow-up period, about 35% of patients with
MCI status progress to AD or dementia [4]. A yearly
conversion rate equals 5%–10% [4].

Early detection of AD and MCI is crucial because
a patient can start treatment to alleviate the symptoms
of the disease, teach how to live with this disease or
take part in medical trials.

This work aims to find easily accessible biomarkers
for AD and MCI to improve the screening process.
The screening should be fast, not expensive, avail-
able in daily medical practice and easy to use by
physicians. An additional challenge is to predict the
diagnosis of AD while a patient is still mildly cogni-
tively impaired.

Many different methods to predict the diagnosis
have been proposed in recent years. These methods
are based on machine learning algorithms [5–13],
regression models [4, 14–18], and other methods
[19–24]. Many different biomarkers are used to clas-
sify AD and MCI. The first group of biomarkers is
based on structural brain atrophy obtained from mag-
netic resonance imaging (MRI) [7–9, 13]. The second
group of biomarkers uses the evaluation of brain
metabolic changes, measured by fluorodeoxyglucose
positron emission tomography (FDG-PET) imaging
[25, 26]. Fluid biomarkers are the third group, and
this is connected with amyloid and tau obtained
from cerebrospinal fluid (CSF) [6, 10, 27]. More-
over, diffusion tensor imaging (DTI) and functional
MRI (fMRI) are also applied for the detection of AD
and MCI [5, 6, 28, 29]. Most studies use multiple
biomarkers in the early diagnosis of AD and MCI and
are based on a combination of two or more following
biomarkers: MRI-based biomarkers, fluid biomarkers
or PET-based markers [5, 6, 10, 24, 30]. The avail-
ability of all three biomarkers (PET and CSF and MRI
or DTI or fMRI) is limited due to the cost, time, and
invasiveness of the methods (PET and CSF) [24, 31].

This article presents a method that improves an
MCI and AD screening process based on easily acces-

sible clinical biomarkers like age and Mini-Mental
State Examination score (MMSE) [32], available in
medical history for almost every patient with sus-
picion of dementia. Our approach strength is the
lack of use of additional biomarkers based on blood,
CSF, PET, or other advanced imaging techniques.
We suggest using the T1-weighted MRI-based dis-
ease progression radiological biomarkers in addition
to those clinical predictors to support the screen-
ing process. In patients suffering from AD, the brain
shrinks, and the space filled with CSF increases [33,
34]. Moreover, this brain shrinkage causes the brain
to be more wrinkled. It means that sulci are notice-
ably widened, and gyri are narrowed. Considering the
cross-section of a brain, we can notice that the shrink-
ing causes the contour of the brain tissue becomes
longer. Because of that, we consider the relative
brain volume and global measure of brain wrinkling
(shrinkage factor, which is defined below) as imaging
biomarkers. First, the cross-section of the brain with
CSF and brain tissue already segmented were con-
sidered. Because of the properties of MRI, where the
cubical voxel represents the volume unit, the brain
surface can be quantified and approximated by the
area of chosen voxel faces. Then, using the gradi-
ent method applied to the segmented brain tissue, we
can identify the contour of brain tissue for a partic-
ular cross-section and calculate the area of the brain
surface related to the particular cross-section by mul-
tiplying the length of the brain outline by the voxel
face area.

T1-weighted MRI is standard medical imaging, not
as expensive as PET or FDG-PET, not invasive, and
it is easily available, so this MRI-based biomarker is
perfect for supporting the screening process.

MATERIALS AND METHODS

Data used in the study were obtained from
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (http://adni.loni.usc.edu) and The
European DTI Study on Dementia (EDSD). The
ADNI was launched in 2003 as a public-private part-
nership led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been
to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of
MCI and early AD. For up-to-date information, see
http://www.adni-info.org. The EDSD is a multicenter
framework created to study the diagnostic accuracy

http://adni.loni.usc.edu
http://www.adni-info.org
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and inter-site variability of DTI-derived markers in
patients with manifest and prodromal AD [35].

The standard analysis dataset of the ADNI-1
project was used (collection name: ADNI1: Complete
1Yr 1.5T; subjects who have both 6- and 12-month
scans available) to build a statistical model for pre-
dicting AD or MCI status [36]. This dataset was
randomly split into five subsets to conduct internal
testing and 5-Fold Cross-Validation [37]. In the sec-
ond stage, the final statistical model was built on
the whole dataset, and that model was tested on the
independent dataset from the EDSD database. The
dataset of the ADNI-1 project includes MPRAGE T1-
weighted 3D scans (1.5 T) and several clinical and
neuropsychological measures acquired from healthy
controls (NC), MCI subjects, and AD.

The second dataset used in the analysis comes from
the EDSD database [35]. The EDSD was started in
2010. The coordinator of this database is the German
Center for Neurodegenerative Diseases (DZNE) in
Rostock, Germany. Since 2013, the EDSD has also
collected the data of subjects with MCI. The dataset
used in the preparation of this article includes data
from subjects who were marked as “not dropout".

Our analysis was based on a T1-weighted MRI.
ADNI and EDSD subjects were scanned on General
Electric (GE) scanners, Siemens scanners and Philips
scanners. Supplementary Tables 1 and 2 show details
of scanners used in ADNI and EDSD, respectively
[35, 38].

ADNI dataset (dataset 1) is a reference dataset,
and the EDSD dataset (dataset 2) is an independent
validation dataset. Its experimental design and patient
clinical characteristics are similar to the ADNI’s and
are available on the project website. Additionally, the
EDSD dataset was divided into two subsets related to
MRI scanning options: 1.5T and 3T.

For the ADNI study, general inclusion/exclusion
criteria are as follows:

1. Normal subjects: MMSE scores between 24–30
(inclusive), a CDR of 0, non-depressed, non-
MCI, and non-demented.

2. MCI subjects: MMSE scores between 24–30
(inclusive), a memory complaint, objective
memory loss measured by education-adjusted
scores on Wechsler Memory Scale 7 Logical
Memory II, a CDR of 0.5, absence of significant
levels of impairment in other cognitive domains,
essentially preserved activities of daily living
and an absence of dementia.

3. AD subjects: MMSE scores between 20–26
(inclusive), CDR of 0.5 or 1.0, and meeting
NINCDS/ADRDA criteria for probable AD
[39].

ADNI provided intensity normalized and gradi-
ent un-warped T1 image volumes [36]. The EDSD
native data were used, and N4 bias field correc-
tion in the N4ITK framework was applied [40].
For both datasets: ADNI and EDSD, skull strip-
ping was achieved in the SPM 12 software package
(https://www.fil.ion.ucl.ac.uk/spm/) [41].

The clinical characteristics of subjects from the
ADNI and EDSD datasets were summarized by the
diagnostic group (NC, MCI, AD) and presented in
Table 1. The following variables were considered at
baseline: age, sex, MMSE, and years of education.
For quantitative measures, values of mean and SD
were calculated, and for categorical variables, the
percentage was presented. The comparisons between
groups were conducted using the nonparametric
Kruskal-Wallis test for quantitative measures (the
Conover test was used in the post-hoc analysis),
and the χ2 test to compare proportions and p-value
is presented in Table 1. Additionally, Table 1 con-
tains effect size η2 (eta-squared) with 95% confidence
interval [42, 43].

Segmentation of CSF was conducted for each sub-
ject separately using the adjusted MiMSeg algorithm
[44]. This procedure was based on the Gaussian mix-
ture model and allowed us to separate CSF from the
brain by finding the threshold on the greyscale.

Two additional descriptors were defined based on
T1-weighted MRI scans to numerically represent
the changes in the brain structure. The first variable
(called ‘relative brain volume’ (RBV) and shown as
a percentage) was defined as the volume of the brain
without CSF (V-CSF) divided by the volume of the
whole brain (V) multiplied by 100%:

RBV = V - CSF/V · 100 (1)

The second variable is the shrinkage factor (SF).
The shrinkage factor was defined as the number of
voxels on the surface of the brain without CSF mul-
tiplied by the face area of the voxel (S-CSF) with
reference to the volume of the brain without CSF
(V-CSF) and multiplied by 100%:

SF = S - CSF/V - CSF · 100 (2)

The additional descriptor is the volume of lateral
ventricles. The Automatic Lateral Ventricle delin-
eatioN (ALVIN) algorithm was used to obtain the

https://www.fil.ion.ucl.ac.uk/spm/
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Table 1
Clinical characteristics of the ANDI and EDSD dataset

Characteristic NC MCI AD Unadjusted p
value

Effect size η2

[95%CI]

ADNI, n 194 311 133 – –
Age, mean (SD) [y] 75.9 (5.08) 74.9 (7.06) 74.7 (7.59) 0.4643∗ 0.0053 [0; 0.0199]
Education, mean (SD)
[y]

16.0 (2.79) 15.7 (3.00) 14.7 (3.11) 0.0003∗
0.0004†
<0.0001‡

0.0253 [0.0057;
0.0523]

MMSE score, mean
(SD)

29.1 (1.03) 27.0 (1.78) 23.5 (1.91) <0.0001∗
<0.0001†‡§

0.6023 [0.5581;
0.6387]

Female [%] 47.9 35.4 48.1 0.0053 –
EDSD, n 194 152 136 – –
Age, mean (SD), [y] 68.7 (5.90) 71.2 (6.76) 72.4 (8.28) <0.0001∗

0.0001‡
<0.0001§

0.0497
[0.0170; 0.0900]

Education, mean
(SD), [y]

13.1 (3.67) n = 173 12.4 (3.35) n = 132 10.3 (3.33) n = 134 <0.0001∗
<0.0001†‡

0.1036
[0.0538; 0.1572]

MMSE score, mean
(SD)

27.4 (6.49) 26.3 (3.14) 20.8 (5.36) <0.0001∗
<0.0001†‡§

0.2198
[0.1569; 0.2793]

Female [%] 51.0 43.4 56.6 0.07854 –

∗Kruskal-Wallis rank sum test; †Conover test: AD versus MCI; ‡Conover test: AD versus NC; §Conover test: MCI versus NC.

Pre-processing

       

Segmentation of CSF Relative brain volume
and Shrinkage factor

Multinomial
logistic regression

Validation

Alzheimer
classification

Fig. 1. The scheme of key steps of data preprocessing and data analysis.

volume of lateral ventricles. ALVIN is a fully auto-
mated algorithm to segment the lateral ventricles
from MRI images (ALVIN works within SPM8) [45].

Multinomial logistic regression was used to predict
disease status. The following independent variables
were considered: age, sex, years of education, MMSE
score, relative brain volume, shrinkage factor, and
volume of lateral ventricles. The dependent variable
was disease status: AD, MCI, and NC (reference sta-
tus). Models with two-way interaction terms were
also analyzed. A 5-fold cross-validation was exe-
cuted. The Bayesian information criterion (BIC) was
used to select the best model [46]. The compari-
son between two nested models was conducted using
ANOVA. Additionally, the Bayes factor (exp(�BIC))
was calculated for two compared models. A maxi-
mum likelihood estimation procedure estimated the
parameters of a multinomial logistic regression (poly-
tomous) model. For coefficient values, the adjusted

odds ratio was calculated with its 95% confidence
interval according to the method proposed by Woolf
[47]. The receiver operating characteristic curve
(ROC), together with the area under the curve (AUC)
for the classification problem, were estimated for both
datasets [48].

The scheme of key steps conducted during data
analysis is presented in Fig. 1 (Supplementary Fig-
ure 1 shows detailed information).

RESULTS

The tests on ADNI clinical characteristics indicate
that the differences between at least two medians are
statistically significant for the following variables:
years of education and MMSE score. For the indepen-
dent EDSD dataset, the differences between at least
two medians are statistically significant for all vari-
ables: age, years of education, and MMSE score. The
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effect size of age is very small for both datasets, ADNI
and EDSD. The effect size of education is small for
ADNI and medium for EDSD, and the effect size of
the MMSE score is large for ADNI and very large
for EDSD. Results of the χ2 test inform that the null
hypothesis, stating that the proportion of females is
the same in NC, MCI, and AD, should be rejected for
ANDI but not for the independent EDSD dataset.

For all cross-validation analyses, the final model
has the same structure. Disease status was best
predicted by the synergy of relative brain volume,
MMSE score, and age, where age has a correc-
tive function. A comparison between the model
without relative brain volume and age as predic-
tors (only MMSE was taken into account) and the
model with the relative brain volume and age added
showed the statistical significance of the differences
(p < 0.00001; BIC = 785.54 for the model with ver-
sus BIC = 809.68 for the model without relative brain
volume and age). The value of the Bayes factor for
compared models is 132646731.7, which indicates
very strong evidence for the model. No interaction
increases the model performance quality.

Supplementary Table 3 presents average values
of coefficients (with a 95% confidence interval)
obtained in 5-fold cross-validation. NC is a reference
group.

For each predictor, the adjusted odds ratio was cal-
culated (see Supplementary Table 4). For each one
percentage point decrease in relative brain volume,
the odds of AD increase by a factor of 1.35 (95% CI
[1.27; 1.44]) and the odds of MCI disease increase by
a factor of 1.19 (95% CI [1.15; 1.24]) in reference to
healthy controls. Among subjects with MCI, for each
one percentage point decrease in relative brain vol-
ume, the odds of AD increase by a factor of 1.13 (95%
CI [1.10; 1.16]). The decrease of 1 point in MMSE
score multiplies the odds of AD by 8.15 (95% [7.53;
8.81]) in reference to healthy controls. The odds of
MCI disease are predicted to grow about 2.65 times
larger (95%CI [2.52; 2.79]) for each reduction of a
point in the MMSE score among healthy controls.
For each 1-point decrease in MMSE, the odds of AD
increase by 3.07 (95% CI [2.99; 3.16]) for subjects
with MCI.

Table 2 contains average values of statistics of pre-
diction (with a 95% confidence interval) obtained in
a 5-fold cross-validation for ADNI.

Values of areas under the ROC curve (AUC) were
very high for classes AD versus others and NC versus
others, and 5-fold cross-validation for ADNI resulted
in 94.18% and 90.01%, respectively. The value of

three classes (AD versus others, NC versus others,
MCI versus others) of balanced accuracy is 76.10%.
A specificity of 94.06% was gained for AD versus
others, and it is the highest value; the sensitivity for
this class is 63.99%. The value of Negative Predictive
Value [%] (NPV) is 90.91% for AD versus oth-
ers, while the value of Positive Predictive Value [%]
(PPV) is 74.41%. The specificity, sensitivity, NPV
and PPV values for NC versus others are 87.84%,
70.08%, 87.13%, and 71.66%, respectively. The pair-
wise analysis gave a very large value of AUC for the
classification of AD versus NC (99.65%). The speci-
ficity, sensitivity, NPV and PPV value for AD versus
NC is 100%.

The chosen multinomial logistic regression model
was also trained on the whole ADNI dataset and tested
on the independent EDSD dataset. Values of model
coefficients are presented in Supplementary Table 5.

As before, for each predictor, the adjusted odds
ratio was calculated (see Supplementary Table 6).
One can notice that for each one percentage point
decrease in relative brain volume, the odds of AD
increase by 1.35 (95% CI [1.25; 1.46]) in reference
to healthy controls and the odds of MCI disease
increase by a factor of 1.19 (95% CI [1.13; 1.26])
which is very similar to the estimates obtained in
the first stage. Among subjects with mild cognitive
impairment, for each one percentage point decrease
in relative brain volume, the odds of AD increase
by a factor of 1.13 (95% CI [1.10; 1.16]). For each
reduction of a point in MMSE score, the odds are pre-
dicted to grow about 8.06 times larger (95%CI [6.48;
10.04]) for AD and 2.64 (95% [2.27; 3.08]) for MCI
in reference to healthy controls. The decrease of 1
point in MMSE score multiplies the odds of AD by
3.05 (95% [2.85; 2.36]) among subjects with MCI
status.

The obtained model was tested on the independent
validation EDSD dataset, and Table 2 presents the
results. Additionally, Supplementary Table 7 contains
results for two subsets of EDSD: 1.5T and 3T.

The validation results for the independent dataset
(EDSD) have shown that values of areas under the
ROC curve (AUC) for classes: AD versus others and
NC versus others are 89.95% and 85.36%, respec-
tively. The value of three classes (AD versus others,
NC versus others, MCI versus others) of balanced
accuracy is 76.83%. Specificity of 90.17%, the sen-
sitivity of 69.85%, NPV of 88.39%, and PPV of
73.64% were gained for AD versus others. The speci-
ficity, sensitivity, NPV and PPV for NC versus others
are 88.19%, 73.20%, 83.01%, and 80.68%, respec-



946 A. Marcisz et al. / MRI & MMSE based diagnosis of MCI and early-stage AD

Table 2
Quality performance indices of prediction system (with 95% confidence interval)

Statistics AD versus others NC versus others AD versus NC MCI versus NC AD versus MCI

ADNI (Expanded model: Status of disease ∼ Relative brain value + MMSE + Age)
Sensitivity [%] 63.99 70.08 100 80.67 63.99

[48.61; 79.37] [61.92; 78.24] [75.63; 85.72] [48.61; 79.37]
Specificity [%] 94.06 87.84 100 70.08 88.22

[90.93; 97.19] [85.17; 90.51] [61.92; 78.24] [81.53; 94.9]
Positive Predictive Value [%] 74.41 71.66 100 79.84 74.41

[65.56; 83.26] [67.12; 76.20] [76.71; 82.96] [65.56; 83.26]
Negative Predictive Value [%] 90.91 87.13 100 71.66 82.71

[87.34; 94.47] [84.19; 90.07] [67.12; 76.20] [76.16; 89.26]
Prevalence [%] 20.84 30.41 38.51 59.13 34.11

[20.42; 21.26] [30.05; 30.77] [34.3; 42.73] [57.50; 60.76] [32.94; 35.29]
BalancedAccuracy [%] 79.02 78.96 100 75.38 76.1

[71.65; 86.4] [75.23; 82.69] [72.10; 78.65] [68.52; 83.69]
AUC [%] 94.18 90.01 99.65 79.30 90.78

[92.09; 96.28] [87.03; 92.99] [99.18;100.00] [74.35; 84.24] [87.45; 94.11]
Cutoff point 0.16 0.30 8.38 47.24 30.13

[0.05; 0.26] [0.20; 0.40] [3.88; 12.87] [35.28; 59.21] [10.32; 49.95]
EDSD (Expanded model: Status of disease ∼ Relative brain value + MMSE + Age)

Sensitivity [%] 69.85 73.20 96.94 75.78 71.43
[62.14; 77.57] [66.96; 79.43]

Specificity [%] 90.17 88.19 93.42 77.17 80.17
[87.04; 93.31] [84.47; 91.92]

Positive Predictive Value [%] 73.64 80.68 90.48 69.78 79.83
[66.04; 81.25] [74.85; 86.51]

Negative Predictive Value [%] 88.39 83.01 97.93 82.08 71.85
[85.04; 91.73] [78.80; 87.21]

Prevalence [%] 28.22 40.25 39.20 41.03 52.36
BalancedAccuracy [%] 80.01 80.70 95.18 76.48 75.80
AUC [%] 89.95 85.36 93.25 71.08 85.74

EDSD (Basic model: Status of disease ∼ MMSE)
Sensitivity [%] 71.32 69.59 97.98 77.78 72.39

[63.72; 78.92] [63.11; 76.06]
Specificity [%] 89.6 89.58 93.10 73.37 79.03

[86.38; 92.81] [86.06; 93.11]
Positive Predictive Value [%] 72.93 81.82 90.65 66.67 78.86

[65.38; 80.48] [75.93; 87.70]
Negative Predictive Value [%] 88.83 81.39 98.54 82.82 72.59

[85.52; 92.13] [77.10; 85.67]
Prevalence [%] 28.22 40.25 40.57 40.65 51.94
BalancedAccuracy [%] 80.46 79.59 95.54 75.57 75.71
AUC [%] 90.19 85.87 93.35 67.04 86.14

AUC, the area under the ROC curve.

tively. The pairwise analysis confirmed the very large
value of AUC for the classification of AD versus NC
(93.25%). A specificity of 93.42% was gained for
AD versus NC, and it is the highest value; the sensi-
tivity for this class is 96.94%. The value of NPV is
97.93% for AD versus NC, while the value of PPV
is 90.48%. Additionally, Table 2 contains the valida-
tion results for the independent EDSD dataset for the
model built on the whole ADNI dataset with the single
independent variable MMSE score. Results confirm
that adding the relative brain volume and age as a
corrective function for natural brain ageing improves
the model. The value of AUC for MCI versus NC
increases from 67.04% (for the model with MMSE

score only) to 71.08% (for the model with the relative
brain volume and age added).

The ROC curve was used to summarize the pre-
diction of the model for ADNI and ESDS datasets
(Fig. 2).

Additionally, the logistic regression model was
built on the complete ADNI dataset to check which
predictors describe the change of disease status from
MCI to AD. The change from the baseline disease sta-
tus MCI to AD (which was the latest available disease
status during 48 months follow-up) was a depen-
dent variable (change from MCI to AD – 1, stable
disease status MCI – 0, the reference level). The fol-
lowing independent variables were considered: age,
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Fig. 2. The ROC curve for classification between AD, MCI, and NC: (a) The ROC curve for classification with average values of 5-fold
cross-validation (ADNI data): AD versus others, NC versus others; (b) The ROC curve for classification with average values of 5-fold
cross-validation (ADNI data): AD versus NC, MCI versus NC, AD versus MCI; (c) The ROC curve for classification using ADNI data as
training data and EDSD data (whole dataset) as test data: AD versus others, NC versus others; (d) The ROC curve for classification using
ADNI data as training data and EDSD data (whole dataset) as test data: AD versus NC, MCI versus NC, AD versus MCI.

sex, years of education, MMSE score, relative brain
volume, shrinkage factor, and volume of lateral ven-
tricles. The progression of disease status from MCI to
AD was best predicted by the following variables: rel-
ative brain volume, MMSE score, and age, where age
has a corrective function. A comparison between the
model without relative brain volume and age as pre-
dictors (only MMSE was taken into account) and the
model with the relative brain volume and age added
showed the statistical significance of the differences
(p = 0.00004; BIC = 402.93 for the model with ver-
sus BIC = 411.80 for the model without relative brain
volume and age). The adjusted odds ratio was also
calculated. For each one percentage point decrease
in relative brain volume, the odds of the progression
from MCI to AD increase by 1.19 (95% CI [1.10;
1.29]) and for each reduction of point in MMSE score,
the odds increases by 1.30 (95% CI [1.13; 1.50]).

During the follow-up, some subjects have con-
verted from MCI status to AD. Table 3 contains the
number and percentage of subjects with changes in
diagnosis during 6, 12, 18, 24, and 36 months of the
follow-up in association with the prediction (ADNI
datasets) and between 6 and 48 months of follow-
up (ADNI and the independent EDSD datasets) for

the models with (the expanded model) and without
the relative brain volume and age (the basic model).
The prediction of the expanded multinomial logis-
tic regression model in 5-fold cross-validation of
the ADNI dataset indicates that 30 subjects with
MCI screening diagnosis are predicted as AD sta-
tus. Among these subjects, predictions are in line
with 12 months of the follow-up diagnosis in 11 sub-
jects (36.67%). A similar calculation was conducted
for 6, 18, 24, 36, and up to 48 months of follow-
up (Table 3). The prediction (the expanded model)
was consistent within 48 months of the follow-up
diagnosis (we take into account the latest available
diagnosis status between 6 and 48 months follow-
up) for 18 subjects (60.00%) among 30 subjects with
MCI screening diagnosis and model prediction of
AD. One subject changed the diagnosis from AD to
MCI during follow-up, and this diagnosis is compli-
ant with the prediction. Fourteen subjects developed
MCI among NC subjects; the diagnosis is compliant
with the prediction for five subjects.

Prediction of the multinomial logistic regression
model on the independent EDSD dataset shows
similar results. Table 3 contains the number and
percentage of subjects with changes in diagnosis
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Table 3
Compliance of the prediction with the change in diagnosis from MCI to AD

Change from MCI to AD Compliance of AD
prediction with the
follow-up diagnosis

AD prediction among
subjects
with MCI screen
diagnosis (only
patients with
follow-up data)

Compliance of AD
prediction with the
follow-up diagnosis

AD prediction among
subjects
with MCI screen
diagnosis (only
patients with
follow-up data)

Follow-up time Number of subjects (%) Number of subjects (%)
Expanded model Basic model

ADNI 6 months 5 (16.67%) 30 (100%) 4 (14.29%) 28 (100%)
12 months 11 (36.67%) 30 (100%) 9 (32.14%) 28 (100%)
18 months 13 (56.52%) 23 (100%) 12 (52.17%) 23 (100%)
24 months 11 (55.00%) 20 (100%) 11 (55.00%) 20 (100%)
36 months 11 (61.11%) 18 (100%) 10 (58.82%) 17 (100%)
Up to 48 months∗ 18 (60.00%) 30 (100%) 17 (60.71%) 28 (100%)

EDSD Up to 48 months∗ 13 (76.47%) 17 (100%) 12 (66.67%) 18 (100%)
∗48 months – we considered the latest available diagnosis status between 6 and 48 months follow-up.

from MCI to AD during four years of follow-up in
association with the prediction (EDSD dataset). The
multinomial logistic regression model (the expanded
model) on the independent EDSD dataset predicts
AD in 24 subjects with MCI screening diagnosis.
Among these 24 subjects, we have follow-up data for
17 patients, 13 (76.47%) patients transited from MCI
to AD status, and they confirmed the expanded model
prediction. The percentage may even be improved as
some patients have not follow-up on their diagnosis.
Additionally, results of the expanded model with the
relative brain volume and age added show that per-
centages of correctly predicted diagnosis status are
higher for 6, 12, 18, and 36 months compared to the
basic model without the relative brain volume and
age. A similar result we have for the EDSD dataset
within 48 months of follow-up. Results confirm that
adding the relative brain volume and age (as a cor-
rective function for natural brain aging) improves the
model. The change in disease status within 6, 12, 18,
24, 36, and 48 months is presented as a Sankey dia-
gram in Fig. 3. For missing data, if data for one of
the later months is available, we take data from the
latest, previous available month; if not, we do not fill
in missing data.

DISCUSSION

Our aim was to improve the classical screening
process based on the MMSE score. We focused on
finding the commonly available biomarker which
improves screening. We obtained that the multi-
nomial logistic regression model was of the same
structure for all cross-validation analyses and based

on the complete ADNI dataset. Disease status was
best predicted by the relative brain volume, MMSE
score, and age. The comparison with the MMSE
score only (the basic model) and the relative brain
volume and age added (the expanded model) shows
that adding the relative brain volume (and age as an
adjustive factor for natural brain aging) improves the
model. The value of the Bayes factor indicates strong
evidence, and we can notice that the quality of MCI
detection increases (AUC: 67.04% versus 71.08%)
while maintaining the quality for AD (AUC: 93.35%
versus 93.25%). The average values of coefficients
of the multinomial logistic regression models for 5-
fold cross-validation and results for the whole ADNI
dataset are very similar, which confirms the homo-
geneity of the training dataset and consistency of the
screening process. Average values of statistics of pre-
diction obtained in 5-fold cross-validation for ADNI
show that we have outstanding results of classifica-
tion AD versus NC and AD versus others, with AUC
equaling 99.65% and 94.18%, respectively. Addition-
ally, the values of AUC for AD versus MCI and for
NC versus others are also very high (90.78% and
90.01%, respectively). The moderate value of AUC
we have for MCI versus NC (79.30%) is still a very
good result if we take into account that the MCI group
is heterogeneous and some patients from this group
develop AD, and some patients have stable MCI sta-
tus. The average value of balanced accuracy for three
classes (AD versus others, NC versus others, and MCI
versus others) is 76.10% for 5-fold cross-validation.
As we aim to develop a supporting screening pro-
cess, detecting patients with the disease is the most
important, so PPV and NPV are the most impor-
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Fig. 3. The Sankey diagram for ADNI database: the change in disease status within 6, 12, 18, 24, 36, and 48 months. The figure includes
the number and percentage of subjects for disease status and time points; additionally, the number and percentage of subjects with changes
in diagnosis from MCI to AD is presented.

tant. The value of NPV and PPV for AD versus NC
is 100%.

We have compared our classification results with
results reported in the literature based on the ADNI
dataset expect one study (13 studies used the ADNI
dataset as a training dataset, one study used the inter-
nal locally dataset as a training dataset and ADNI
dataset as an independent validation dataset, and two
studies used locally datasets as training dataset; 6
studies among 16 used additionally independent val-
idation dataset) (Table 4).

Results obtained for the independent validation
dataset (EDSD) confirm results of cross-validation
analysis for ADNI. Our results for the independent
validation dataset are not worse and, in many cases,
even better than the results from previously pub-
lished studies. Our model achieved the best balanced
accuracy of 95.18% (balanced ACC) for the inde-
pendent validation dataset when the highest value of
balanced accuracy for AD versus NC from reported
studies is 85.5% [10]. Although the highest reported
value of AUC is 96.8, in this study, the decision is
supported by the concentration of amyloid in CSF
[10]. The second top-reported AUC value is 95.74%,

but this study focuses on only two categories: AD
and NC, while we consider MCI as a third one [7].
The third value of AUC is 95.3%. This value is
slightly bigger than ours, but other performance indi-
cators like balanced accuracy, sensitivity, specificity,
PPV, and NPV for AD versus NC are better in our
approach [10]. The lowest value of AUC for AD
versus NC among publications presented in Table 4
is 69% [6]. The highest sensitivity value for AD
versus NC is 95.6% for analysis based on the con-
centration of amyloid in CSF and 94.2% for analysis
without amyloid data, while our estimated sensi-
tivity is better and equal to 96.94% [10]. For the
prediction specificity, the highest value observed is
98.31%, but this study focuses only on two cate-
gories: AD and NC, which means that it is easier
to achieve better results than for three categories
[7]. The second highest reported value of specificity
is 89.8%, which is lower than ours (93.42%) [49].
The lowest value of specificity among publications is
68.33% [6]. Only one study from Table 4 contains the
results of NPV and PPV for AD versus NC, values
of these indicators are 95.3% and 73.4% for anal-
ysis based additionally on amyloid data, and 96.5%
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Table 4
Overview of previous studies based on the ADNI dataset

Studies Sample size Method Input Validation Groups Parameters Results

Agostinho et
al. 2022 [6]

The internal locally
dataset (n = 41): AD
(n = 20), NC (n = 21).

SVM MRI,
PiB-PET
and DTI

Internal locally
dataset and
external dataset
(ADNI (n = 330):
AD (n = 166), NC
(n = 164))

AD,
NC

AUC,
ACC,
SEN,
SPEC,
BACC

Dependent validation: AD versus NC: MRI: AUC = 96%,
ACC = 92.05%, SEN = 86.78%, SPEC = 86.78%, BACC = 92.05%; PiB
PET: AUC = 93%, ACC = 90.53%, SEN = 92%, SPEC = 89.43,
BACC = 90.53%; DTI: AUC = 86%, ACC = 76.84%, SEN = 76.17%,
SPEC = 82.09%, BACC = 79.84%; MRI multimodal: AUC = 99%,
ACC = 95.04%, SEN = 90.04%, SPEC = 99.04%, BACC = 95.04%
Independent validation: AD versus NC: MRI: AUC = 81%,
ACC = 78.02%, SEN = 74.12%, SPEC = 82.29, BACC = 78.20%; PiB
PET: AUC = 81%, ACC = 76.87%, SEN = 87.9%, SPEC = 68.33%,
BACC = 78.12%; DTI: AUC = 69%, ACC = 62.79%, SEN = 54.31%,
SPEC = 71.98%, BACC = 63.15%.

Gao et al.
2022 [7]

1134 subjects: AD
(n = 454), NC
(n = 680).

3DMgNet
(multigrid and
convolutional
neural
network)

MRI 10-fold
cross-validation
and external
in-house dataset
(AD (n = 75), NC
(n = 59))

AD,
NC

AUC,
ACC,
SEN,
SPEC

Dependent validation: ACC = 92.13%, AUC = 94.43%, SEN = 88.42%,
SPEC = 95%.
Independent validation: ACC = 87.91%, AUC = 95.74%,
SEN = 79.73%, SPEC = 98.31%.

Goenka et al.
2022 [8]

769 subjects: AD
(n = 70), MCI
(n = 224), NC (475)

CNN MRI 633 scans from
ADNI dataset

AD,
MCI,
NC

AUC,
ACC

Dependent validation: AD versus NC: ACC = 97.83%, AD versus MCI:
ACC = 98.68%, NC versus MCI: ACC = 99.10%, NC versus MCI
versus AD: ACC = 98.26%. AD versus NC: AUC = 94%, AD versus
MCI: AUC = 97%, NC versus MCI: AUC = 99%, NC versus MCI
versus AD: AUC = 98%.

Tang et al.
2021 [9]

560 subjects: AD
(n = 80), EMCI
(n = 230), LMCI
(n = 110), NC
(n = 140)

SVM, RF, DT MRI 10-fold
cross-validation

AD,
EMCI,
LMCI,
NC

AUC,
ACC,
SEN,
SPEC

RF: NC versus AD: ACC = 96.14%, SEN = 88.14, SPE = 92.81%,
AUC = 92%. NC versus EMCI: ACC = 77.45%, SEN = 79.51%,
SPE = 33.54%, AUC = 59%. NC versus LMCI: ACC = 87.56%,
SEN = 64.71%, SPE = 83.94%, AUC = 81%. EMCI versus AD:
ACC = 90.15%, SEN = 93.51%, SPE = 92.43%, AUC = 85%. LMCI
versus AD: ACC = 84.54%, SEN = 67.91, SPE = 72.46%, AUC = 89%.
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Dyrba et al.
2021 [10]

633 subjects: AD
(n = 189), MCI
(n = 220), NC
(n = 254)

CNN MRI and
PET

1-fold
cross-validation
and three
independent
datasets: ADNI-3
(n = 575), AIBL
(n = 606),
DELCODE
(n = 474).

AD,
MCI,
NC

AUC,
ACC,
SEN,
SPEC,
BACC,
PPV, NPV

Dependent validation: AD versus NC: BACC = 88.9%, SEN = 94.2%,
SPE = 83.6%, PPV = 81.5%, NPV = 95.2% AUC = 94.9%. MCI versus
NC: BACC = 74.5%, SEN = 65.5%, SPE = 83.6%, PPV = 78.1%,
NPV = 74.1%, AUC = 78.5%. amyloid-positive AD versus
amyloid-negative NC: BACC = 94.9%, SEN = 95.6%, SPE = 94.3%,
PPV = 92.7%, NPV = 96.6%, AUC = 98.5%. amyloid-positive MCI
versus amyloid-negative NC: BACC = 86.7%, SEN = 79%,
SPE = 94.3%, PPV = 91.6%, NPV = 96.6%, AUC = 92.5%. Independent
validation DELCODE: AD versus NC: BACC = 85.5%, SEN = 94.2%,
SPE = 76.7%, PPV = 66.2%, NPV = 96.5% AUC = 95.3%. MCI versus
NC: BACC = 71%, SEN = 65.2%, SPE = 76.7%, PPV = 66.9%,
NPV = 75.3%, AUC = 77.5%. amyloid-positive AD versus
amyloid-negative NC: BACC = 83.3%, SEN = 95.9%, SPE = 70.7%,
PPV = 73.4%, NPV = 95.3%, AUC = 96.8%. amyloid-positive MCI
versus amyloid-negative NC: BACC = 72.2%, SEN = 73.7%,
SPE = 70.7%, PPV = 71.2%, NPV = 73.2%, AUC = 84%.

Marzban et al.
2020 [5]

406 subjects: NC
(n = 185), MCI
(n = 106), AD
(n = 115)

CNN MRI and
DTI

10-fold
cross-validation

AD,
NC,
MCI

AUC,
ACC,
SEN,
SPEC

AD versus NC: AUC = 94%, ACC = 93.5%, SEN = 92.5%,
SPEC = 93.9.
MCI versus NC: AUC = 84%, ACC = 79.6%, SEN = 62.7%,
SPEC = 89%

Li et al. 2020
[11]

404 subjects: NC
(n = 268), AD
(n = 136)

SVM MRI 10-fold
cross-validation
and independent
validation dataset
(AD (n = 41), NC
(n = 25))

AD,
NC

ACC,
SEN,
SPEC

Dependent validation dataset: AD versus NC: ACC = 97.03%,
SEN = 94.12%, SPEC = 98.51.
Independent validation dataset: AD versus NC: ACC = 84.85%,
SEN = 85.36%, SPEC = 84%

Bae et al. 2020
[12]

390 subjects: AD
(n = 195), NC
(n = 195)

CNN MRI 5-fold
cross-validation
and independent
validation dataset
(AD (n = 195), NC
(n = 195))

AD,
NC

AUC,
ACC,
SEN,
SPEC

Dependent validation dataset: AD versus NC: AUC = 94%,
ACC = 89%, SEN = 88%, SPEC = 91%.
Independent validation dataset: AD versus NC: AUC = 88%,
ACC = 83%, SEN = 76%, SPEC = 89%

Liu et al. 2020
[13]

449 subjects: AD
(n = 97), MCI
(n = 233), NC
(n = 119)

CNN MRI 5-fold
cross-validation
and independent
dataset (AD
(n = 45), MCI
(n = 46), and NC
subjects (n = 44)).

AD,
MCI,
NC

AUC,
ACC,
SEN,
SPEC

Dependent validation: AD versus NC: ACC = 88.9%, SEN = 86.6%,
SPE = 90.8%, AUC = 92.5%. MCI versus NC: ACC = 76.2%,
SEN = 79.5%, SPE = 69.8%, AUC = 77.5%. Independent validation:
AD versus NC: AUC = 89.8% MCI versus NC: AUC = 72.2%

(Continued)
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Table 4
(Continued)

Studies Sample size Method Input Validation Groups Parameters Results

Zhang et al.
2019 [23]

857 subjects: NC
(n = 322), MCI
(n = 322), AD
(n = 213)

Graph
Analysis

MRI Data are randomly
partitioned into
80% and 20% for
training and
testing.

AD,
MCI,
NC

AUC AD versus MCI + NC: AUC = 73%, NC versus AD + MCI:
AUC = 72%, MCI versus AD + NC: AUC = 69%.

Westman et al.
2012 [24]

369 subjects: AD
(n = 96), MCI
(n = 162) and NC
(n = 111).

Orthogonal
Partial
Least-Squares
(OPLS)

MRI, PET,
CSF

7-fold
cross-validation

AD,
MCI,
NC

AUC,
ACC,
SEN,
SPEC,
PPV, NPV

AD versus NC: MRI with CSF: ACC = 91.8%, SEN = 88.5%,
SPEC = 94.6%, PPV = 93.4%, NPV = 90.5% and AUC = 95.8%. MRI
only: ACC = 87%, SEN = 83.3%, SPEC = 90.1%, PPV = 87.9%,
NPV = 86.2% and AUC = 93%. CSF only: ACC = 81.6%,
SEN = 84.4%, SPEC = 79.3%, PPV = 77.9%, NPV = 85.4% and
AUC = 86.1%. MCI versus NC: MRI with CSF: ACC = 77.6%,
SEN = 72.8%, SPEC = 84.7%, PPV = 87.4%, NPV = 68.1% and
AUC = 87.6%. MRI only: ACC = 71.8%, SEN = 66.7%, SPEC = 79.3%,
PPV = 82.4%, NPV = 62.0% and AUC = 81.5%. CSF only:
ACC = 70.3%, SEN = 66.7%, SPEC = 75.7%, PPV = 80.0%,
NPV = 60.9% and AUC = 74.9%.

Eskildsen et
al. 2012 [49]

808 subjects: AD
(n = 194), NC
(n = 226), pMCI
(n = 161), sMCI
(n = 227)

LDA MRI
(cortical
thickness
and age)

leave-one-out
(LOO) validation

AD,
NC,
pMCI,
sMCI

AUC,
ACC,
SEN,
SPEC

Independent feature sets: AD versus NC: ACC = 85.5%, SEN = 80.4%,
SPEC = 89.8%, AUC = 92%. pMCI versus sMCI: ACC = 67.8%,
SEN = 64.6%, SPEC = 70%, AUC = 68.2%. Dependent feature sets: AD
versus NC: ACC = 87.4%, SEN = 82.5%, SPEC = 91.6%,
AUC = 93.1%. pMCI versus sMCI: ACC = 68.3%, SEN = 67.7%,
SPEC = 68.7%, AUC = 74.7%.

Estévez-Santé
et al. 2020 [50]

148 subjects: AD
(n = 34), amnestic
MCI (n = 66), NC
(n = 48)

Logistic
regression

MRI 10-fold
cross-validation

AD,
amnes-
tic
MCI,
NC

AUC,
SEN,
SPEC

NC versus AD: HV/TIV (the best AUC): SEN = 79.4%, SPEC = 83.3%,
AUC = 89.3% 95%CI [82.6%; 96.0%]; The best SEN: SEN = 85.3%,
SPEC = 79.2%, AUC = 88%; The best SPEC: SEN = 79.4%,
SPEC = 83.3%, AUC = 89.3%. NC versus amnestic MCI: HV/TIV (the
best AUC): SEN = 72.7%, SPEC = 77.1%, AUC = 79.7% 95%CI
[71.6%; 87.8%]; The best SEN: SEN = 77.3%, SPEC = 62.5%,
AUC = 75.5%; The best SPEC: SEN = 60.6%, SPEC = 83.3%,
AUC = 76.3%.
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Martı́nez-
Torteya et al.
2015 [51]

The feature selection
set: AD (n = 48), MCI
(n = 98), NC (n = 48).
The calibration set:
AD (n = 71), MCI
(n = 124) and NC
(n = 74), The test set:
AD (n = 25), MCI
(n = 86) and NC
(n = 25).

Logistic
regression

MRI, PET Calibration set:
1,000 bootstrap
samples; test set:
Subjects
previously
excluded from the
study due to lack
of data (ADNI)

AD,
MCI,
NC

AUC,
ACC,
SEN,
SPEC

Calibration set: NC versus AD: ACC = 87.7% 95%CI [79.2%; 94.8%],
SEN = 84.9% 95%CI [69.6%; 96.4%], SPEC = 90.5% 95%CI [75%;
100%], AUC = 94.5% 95%CI [88.9%; 98.7%]. NC versus MCI:
ACC = 80.2% 95%CI [71.8%; 87.7%], SEN = 86.2% 95%CI [75%;
95.7%], SPEC = 70.4% 95%CI [53.1%; 87.5%], AUC = 86.4% 95%CI
[78.9%; 93.4%]. MCI versus AD: ACC = 83.8% 95%CI [78.1%;
89.2%], SEN = 47.6% 95%CI [28.1%; 68%], SPEC = 94.1% 95%CI
[88%; 98.9%], AUC = 83.8% 95%CI [76%; 91.1%]. Test set: NC
versus AD: ACC = 85.4%, SEN = 91.3%, SPEC = 80%, AUC = 92.2%.
NC versus MCI: ACC = 78.5%, SEN = 80.5%, SPEC = 75%,
AUC = 84.1%. MCI versus AD: ACC = 80%, SEN = 33.3%,
SPEC = 93%, AUC = 81.5%.

Tokumitsu et
al. 2021 [52]

240 subjects (Towada
City Hospital): Early
AD (n = 128), MCI
(n = 112)

Logistic
regression

MRI,
SPECT

- Early
AD,
MCI

AUC MCI versus early AD: MMSE scores alone: AUC = 83.5% 95%CI
[78.4%; 88.6%]. Stepwise selection model: AUC = 87% 95%CI
[82.4%; 91.6%]

Sheelakumari
et al. 2018 [53]

68 subjects (Memory
and Neurobehavioral
Disorders Clinic,
Kerala): AD (n = 15),
amnestic MCI
(n = 33), NC (n = 20)

Logistic
regression

MRI, DTI,
1H MRS

- Early
AD,
amnes-
tic
MCI,
NC

AUC,
SEN,
SPEC

MCI versus NC: T1 weighted MRI: AUC = 77.5%, SEN = 78.8%,
SPEC = 70%. DTI: AUC = 79.8%, SEN = 90.9%, SPEC = 50%. 1H
MRS: AUC = 78.7%, SEN = 87.9%, SPEC = 60.1%. Multimodal (MRI,
DTI, MRS): AUC = 89%, SEN = 93.9%, SPEC = 70%. MCI versus AD:
T1 weighted MRI: AUC = 82.9%, SEN = 90.9%, SPEC = 60.6%. DTI:
AUC = 85.4%, SEN = 72.7%, SPEC = 87.9%. 1H MRS: AUC = 83.6%,
SEN = 81.8%, SPEC = 75.8%. Multimodal (MRI, DTI, MRS):
AUC = 92.6%, SEN = 93%, SPEC = 85.6%.

AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; DELCODE, DZNE multicenter observational study on Longitudinal Cognitive Impairment and Dementia; EMCI,
early mild cognitive impairment; LMCI, late mild cognitive impairment; pMCI, progressive MCI; sMCI, stable MCI; CNN, convolutional neural network; LDA, linear discriminant analysis;
SVM, support vector machine; RF, random forest; DT, decision tree; AUC, the area under the receiver-operating-characteristic curve; ACC, accuracy; SEN, sensitivity; SPEC, specificity; BAAC,
balanced accuracy; PPV, positive predictive value; NPV, negative predictive value; HV, hippocampal volume; TIV, total intracranial volume; PET, positron emission tomography; SPECT, a single
photon emission computed tomography; 1H MRS, Proton magnetic resonance spectroscopy.
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and 66.2% for analysis without amyloid data, respec-
tively [10]. Our results are again better; the value of
NPV is 97.93% for AD versus NC, while PPV is
90.48%.

The comparison of results for 5-fold cross-
validation shows that our model achieves better
results than all reported studies for the classification
task of AD versus NC for the dependent validation
(Table 4) [5, 6–13, 23, 24, 49–53]. The prediction
results of AD versus NC from reported studies show
that the highest AUC is 99% [6], when our result
is 99.65%, the highest accuracy for AD versus NC
is 97.83% [8], when our result is 100% (we have
the balanced ACC). The highest sensitivity and
specificity values are 95.6% [10] and 99.04 [6],
respectively, when our model achieved 100% for
both parameters. Only two studies from Table 4
contain the results of NPV and PPV for AD versus
NC; the highest value of NPV is 96.6% [10] for
analysis based additionally on amyloid data, and the
highest value of PPV is 93.4% [24] when our model
achieved 100% for both parameters.

Most studies used SVM and CNN methods, while
our method is based on multinomial logistic regres-
sion. Four of the studies used binomial logistic
regression as a classification method. The highest
value of AUC for AD versus NC of these stud-
ies (only two of these studies compare AD versus
NC) is 94.5% with 95%CI [88.9%; 98.7%] when our
result is better, and the value of AUC is 99.65% with
95%CI [99.18%; 100.00%] [51]. Moreover, the high-
est value of AUC for AD versus MCI comparison
is 92.6% for the multimodal classification method
(MRI, DTI, 1H MRS), but for the individual modal-
ity, T1 weighted MRI provides the value of AUC:
82.9% while our result is 90.78 with 95%CI [87.45%;
94.11%] [53]. For MCI versus NC, the highest AUC
result reported equals 89% for the multimodal clas-
sification method (MRI, DTI, 1H MRS), but for the
individual modality, T1 weighted MRI, the value of
AUC is 77.5%, while our model achieves 79.30%
(95%CI [74.35%; 84.24%]) [53]. For another study,
based on MRI, the value of AUC for MCI versus
NC is 79.7%, but this value is within our confi-
dence interval [50]. To summarize, our multiclass
model is significantly better for NC or MCI versus
AD comparison, and it is not worse for MCI versus
NC.

Among these four studies mentioned above, the
highest sensitivity value for AD versus NC is 90.5%
for analysis based on the MRI and PET and 85.3%
for analysis based on the MRI and cognitive tests

only [50, 51]. The highest value observed for pre-
diction specificity is 91.3% [51]. Both these results
are lower than ours. For MCI versus NC compari-
son, the highest sensitivity value is 93.3% for analysis
based on the multimodal classification method (MRI,
DTI, MRS) and 78.8% for the individual modality,
T1 weighted MRI, while our estimated sensitivity
is 80.67% with 95%CI [75.63%; 85.72%] [53]. For
another study, based on MRI, the value of sensitivity
for MCI versus NC is 83.3%, but this value is within
our confidence interval [50]. However, the value of
the F1-score for this analysis is 70.16%, while our
estimated value is better and equal to 75.55%. The
highest specificity value is 86.2% for analysis based
on MRI and PET and 77.3% for analysis based on
MRI, while our model achieves 70.08% with 95%CI
[61.92%; 78.24%] [50]. The value of the F1-score for
this analysis is 69.12%, while our estimated value is
better and equal to 75%. For the AD versus MCI com-
parison, the highest value of sensitivity is 94.1% for
analysis based on MRI and PET and 60.6% for anal-
ysis based on MRI, while our value of sensitivity is
63.99% with 95%CI [48.61%; 79.37%] [51, 53]. For
the prediction specificity, the highest observed value
is 93% for analysis based on MRI, DTI and 1H MRS,
and 90.9% for analysis based on MRI, while our esti-
mated specificity is 88.22% with 95%CI [81.53%;
94.9%] [53]. However, the value of the F1-score for
this analysis is 72.72%, while our estimated value
is better and equal to 75.55%. To summarize, our
model is better for the AD versus NC comparison,
and it is not worse for MCI versus NC and AD versus
MCI.

In our work, we compared the predictive model, in
which MMSE is the independent variable, with the
predictive model with an additional MRI-based vari-
able and age (where age has a corrective function).
The third of these publications shows results for a
similar situation: the predictive model with a com-
bination of MMSE, parameters calculated based on
MRI data and additional parameters obtained from
SPECT (a single photon emission computed tomog-
raphy) data in comparison to the model with MMSE
alone [52]. Their result for MCI versus AD compar-
ison is lower than our 95% confidence interval for
AUC, which means that our result is better while our
model is simpler and does not require, e.g., SPECT
as an additional biomarker.

Additionally, among MCI patients predicted as AD
inconsistently with the original diagnosis, 60% from
ADNI and 76.47% from EDSD were re-diagnosed as
AD within a 48-month follow-up.
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Conclusions

Our work shows that the proposed T1-weighted
MRI-based biomarker, combined with MMSE score
and adjusted for age, gives excellent early-stage AD
status predictions. Moreover, our method, as based on
MRI, does not require invasive and expensive labora-
tory tests and, as a classical statistical learning model,
does not require large calculation power.

Most papers focus on the diagnosis process rather
than screening, and only one study contains the
results of NPV and PPV when almost all have sen-
sitivity and specificity results. Our model achieved
better results for NPV and PPV for AD versus NC
and MCI versus NC. Many advanced methods (e.g.,
CNN) with excellent results are published, but these
methods are not easily applicable in daily medical
practice. Moreover, these methods are sensitive to
measurement protocols and preprocessing and have
a problem with replicable, so much time is needed to
use these methods by physicians in their daily clin-
ical routine. Our model is based on easily available
parameters (T1-weighted MRI is standard) and can
be calculated in a simple way, so our method is ready
to use in medical practice.

In this paper, we proved that incorporating the
T1-weighted MRI-based biomarker into the standard
clinical AD predictors leads to a handy model for
daily clinical routine and improves the screening pro-
cess. Additionally, we demonstrated that our model
detects some patients transitioning from MCI to AD
as AD patients a few years earlier before regular
medical diagnosis, it means that T1-weighted MRI
is utility in screening for MCI at risk of progression.
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