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Abstract. Severe acute respiratory disease coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019
(COVID-19) pandemic. Although a primarily respiratory disease, recent reports indicate that it also affects the central
nervous system (CNS). Over 25% of COVID-19 patients report neurological symptoms such as memory loss, anosmia,
hyposmia, confusion, and headaches. The neurological outcomes may be a result of viral entry into the CNS and/or resulting
neuroinflammation, both of which underlie an elevated risk for Alzheimer’s disease (AD). Herein, we ask: Is COVID-19 a risk
factor for AD? To answer, we identify the literature and review mechanisms by which COVID-19-mediated neuroinflammation
can contribute to the development of AD, evaluate the effects of acute versus chronic phases of infection, and lastly, discuss
potential therapeutics to address the rising rates of COVID-19 neurological sequelae.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) emerged in late 2019 as the highly
transmissible and pathogenic coronavirus disease
2019 (COVID-19), resulting in a broad spectrum
of symptoms ranging from fevers to various organ
dysfunctions [1]. Although initially regarded as pri-
marily a respiratory disease, emerging data suggest
that SARS-CoV-2 carries the capacity to invade the
central nervous system (CNS), causing various neu-
rological problems including confusion, headache,
anosmia (loss of smell), ageusia (loss of taste), cere-
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brovascular disease, encephalitis, and demyelinating
pathologies [2–4]. SARS-CoV-2 has an elevated
propensity to damage the CNS through aberrant acti-
vation of immune responses leading directly and
indirectly to neurotoxicity [5]. Recent literature has
also identified that the proteome of SARS-CoV-2
self-assembles into neurotoxic amyloids, suggesting
that these aggregates induce the onset of neurolog-
ical symptoms following infection [6]. Moreover,
during infection, there is augmented risk of chronic
brain damage through cerebral hemorrhage, endothe-
lial and blood-brain barrier (BBB) impairments [7, 8],
and increased levels of pro-inflammatory cytokine
within the CNS [9, 10]. In COVID-19 cases with
severe non-neurologic systemic infection and inflam-
mation, subsequent long-term decline in cognition
and neurodegeneration, and increased atrophy of the

ISSN 1387-2877/$35.00 © 2023 – IOS Press. All rights reserved.

mailto:mark.reed@uhnresearch.ca


2 M. Golzari-Sorkheh et al. / COVID-19 as a Risk Factor for Alzheimer’s Disease

hippocampus were observed; for example, COVID-
19 patients with acute respiratory distress syndrome
(ARDS) had increased levels of cognitive decline
and neurodegeneration [11]. In cases of COVID-19
with clinical manifestations indicating CNS involve-
ment, initial reports from Wuhan, China reported
that almost 25% of hospitalized patients experi-
enced headaches, confusion, and disorientation—all
of which reflect non-specific encephalopathy [12].
Emerging data have also found neurological lesions
in brains of COVID-19 patients, although it is not
known whether this is due to direct viral action or
from the indirect effects of hypoxia, cytokine storm,
or cerebrovascular injury [13–15]. Moreover, a num-
ber of growing case reports and clinical observations
suggest neurological disturbances following COVID-
19 infection [16, 17].

According to the World Health Organization
(WHO), there have been over 500 million global cases
of confirmed COVID-19 [18]. Undoubtedly, that
number may be far greater. The emerging COVID-19
clinical observations combined with the knowledge
that chronic inflammation is now recognized as a
risk factor for Alzheimer’s disease (AD), raises the
important question: Is COVID-19 a risk factor for
AD? Given the worldwide incidence and prevalence
of COVID-19, combined with the devastating per-
sonal health and socioeconomic impact of AD, this
is a connection which would have immense pub-
lic health consequences on a global scale. From
the 500 million confirmed COVID-19 cases, even if
1% of those individuals go on to develop AD, that
adds an additional 5 million cases to the already
growing global burden of AD. In 2020, there were
50 million people living with dementia. Further-
more, considering that the rates of dementia are
estimated to double every 20 years, COVID-19 may
lead to an immediate increase of up to 10% of global
cases.

In this review, we discuss the mechanisms
involved in COVID-19-mediated neuroinflamma-
tion, the relative risk of AD and cognitive
decline following infection, focussing primarily
on the associated pathological mechanisms and
biomarkers.

ACUTE VERSUS LONG COVID-19

Although initially a respiratory disease, a large
volume of evidence now suggests that COVID-19
is a multi-organ disease that can manifest into a

wide range of pathologies [19], lasting weeks beyond
recovery. Recent studies report an increasing number
of patients with extended unresolved symptoms and
abnormalities following the acute phase of COVID-
19 infection [20]. One study found that almost 30% of
COVID-19 patients reported persistent and ongoing
symptoms lasting for up to 9 months post-infection
[21]. While acute COVID-19 is generally defined
as lasting 4 weeks from symptomatic onset, long or
post-acute sequalae of COVID-19 (PASC) diagnoses
include ongoing persistent symptoms and complica-
tions beyond the initial 4 weeks [22]. Long COVID
can be further classified into 2 subcategories: sub-
acute/ongoing COVID-19 that describes symptoms
observed for up to 8 weeks post-acute infection; and
chronic/post-COVID-19 which includes symptoms
persisting beyond 12 weeks from the onset of infec-
tion and which is not explained by separate diagnoses
[20] (Fig. 1).

Not all acute COVID-19 patients develop PASC.
Acute cases may vary in terms of both severity and
length; some cases may appear asymptomatic, others
require hospitalization and/or mechanical ventilation
[25], lasting on average up to 4 weeks [26]. However,
those that have prolonged acute infection then go on
to develop chronic and persistent symptoms [26–28]
which underlie long COVID, post-acute COVID-19
syndrome, or PASC [22].

Based on the global case counts of COVID-19, over
1.1% of confirmed positive patients have died. This
leaves approximately 98.9% of COVID-19 survivors
[18], many of whom have reported numerous neu-
rological [29] and cognitive sequalae post-infection
[30]. Cognitive symptoms are mostly reported in
cases of acute [12] and subacute stages [31] of
COVID-19. As previous coronavirus (SARS and
MERS) infections have also demonstrated similar
reports of ongoing symptoms [32, 33], it is not sur-
prising that a growing body of evidence is emerging
on the acute and chronic effects of COVID-19. Fur-
thermore, as residual symptoms of COVID-19 were
generally found to improve over time, neurological
symptoms have been reported to last longer [34]
and in some cases, develop into secondary illnesses
that catalyze the development of AD [35–37]. Evi-
dence for this comes from a study in which 7 months
following infection, 88% of patients experienced cog-
nitive dysfunction and memory deficits, suggesting
that even by then, neurological symptoms have not
resolved [27]. In addition, the global incidence rate
of neurological complications linked to COVID-19
from both the acute and subacute states ranges from
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Fig. 1. Timeline of COVID-19 infection and associated symptoms. The acute phase describes the average course of infection from onset of
symptoms to the point at which replication-competent SARS-CoV-2 is not detected. At this stage, patients generally experience multi-organ
effects and symptoms of hyposmia, ageusia, respiratory complications leading to severe cough, shortness of breath (from either respiratory or
cardiovascular dysfunction), chest pain, arthralgia, myalgia, muscle weakness [23], and alterations in blood pressure [24]. Next is the long or
postacute sequelae of COVID-19 which underlie the persistence and exacerbation of initial symptoms. Long COVID-19 is then divided into
two categories: 1) sub-acute or ongoing COVID-19 stage (from weeks 4-8) which involves the persistence of symptoms observed in the acute
stage; 2) Post-acute or chronic COVID-19 which involves cognitive deficits and impairments, neurological sequalae, and cerebrovascular
pathologies. These persistent and worsened symptoms often elevate the risk of dementia, and ultimately lead to AD.

35–85% [12, 38–40]. This leaves a major question
begging to be answered: is acute or long COVID-19
a risk factor for AD? Perhaps it may be a culmination
of all stages of infection; or, initial acute phase driving
the start of far-reaching inflammatory responses; or,
subacute/ongoing COVID-19 as a chronic immune
response to the residual effects of SARS-CoV-2 [20];
or, chronic/post-COVID-19 underlying the persis-
tent symptoms affecting brain function and cognition
[26].

In a study evaluating COVID-19 patients in the
sub-acute phase, Hosp et al. identified impaired neo-
cortical function and cognitive decline in a large
proportion of patients [31], suggesting that the risk of
dementia is prevalent up to 4 weeks post-infection.
In a recent longitudinal cohort study, almost 64%
of patients reported neurological deficits without
improvements lasting a year following acute infec-
tion [41]. Furthermore, a large cohort study by Søraas
et al. found that that 8 months following a mild case
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of COVID-19 confirmed by a positive SARS-CoV-2
test, patients reported increased memory problems,
indicative of worsened health and progression of
PASC [42]. These findings contribute to the hypoth-
esis that even in relatively mild illness at onset,
PASC remains as a contributor to the onset of neuro-
logical and neurocognitive complications, ultimately
increasing the risk of AD. Despite the fact that almost
80% of SARS-CoV-2 infected patients have little to
no respiratory manifestations, and do not require hos-
pitalization for pneumonia or hypoxemia [43, 44],
a large proportion of data on cognitive complica-
tions derives from critically ill and/or hospitalized
COVID-19 patients [45]. Yet, patients with mild
cases of COVID-19 report persistent and exhausting
neurological manifestations affecting cognition and
memory, as well as brain fog, headaches, dysgeu-
sia, anosmia, and fatigue [46]. However, like PASC
from mild cases, survivors of severe COVID-19 also
report cognitive deficits, with 1-year follow-up stud-
ies indicating similar cognitive test results as those
diagnosed with moderate traumatic brain injury [45].
Although cognitive impairments are not absolutely
correlated to the development of AD, a long-term
study over 4 years found a 27% increased risk of
mild cognitive impairment and a 14% elevated risk of
dementia in older populations with subjective mem-
ory loss [47]. Moreover, while studies on the different
stages of COVID-19 infection provide insight on the
prevalence of neurocognitive sequalae, it leaves our
question unresolved. It is thus probable that chronic
COVID-19 is relatively independent from the sever-
ity of illness and is more likely explained by the
molecular mechanisms that once initiated during the
course of illness continue to progress to the post-
acute/chronic state.

COVID-MEDIATED
NEUROINFLAMMATION

SARS-CoV-2 enters the host to infect numer-
ous cell types including macrophages, neutrophils,
and dendritic cells [48]. The first immune response
upon infection is the production of type 1 inter-
ferons (IFNs) [49]. IFNs communicate downstream
immune responses depending on the detection of
pathogen or damage associate molecular patterns
(PAMPS/DAMPS) [50]. In the IFN response to
SARS-CoV-2, production of CD8+ cytotoxic T cells
and CD4+ helper T cells mediate downstream B-
cell responses leading to IgM and IgG antibody

production [48]. In SARS-CoV-2-infected cells, acti-
vation of T cells, B cells, natural killer cells, and
macrophages augment the production cascade of pro-
inflammatory cytokines and chemokines, referred to
as hypercytokinemia or a “cytokine storm” [51]. A
number of cytokines are involved in this phenomenon
including tumor necrosis factor (TNF), IL-6, IL-10,
and colony-stimulating factors [52]. Due to the nature
of the cytokine storm, interactions of innate and
adaptive immune systems lead to a pathogenic and
hyperactive immune response, which can ultimately
be fatal [52].

The blood-brain barrier (BBB) consists of endothe-
lial cells that bar passage of pathogens like viruses
from the systemic circulation into the CNS. The BBB
also maintains CNS homeostasis by inhibiting neu-
rotoxic agents from penetrating into the brain [7].
During COVID-19 infection, viral entry into the brain
has been reported to be via the olfactory mucosa [53],
vasculature [54], brainstem [55], or through neu-
roinvasive mechanisms [56]. Interactions of mural
cells, immune cells, glial cells, and neural cells in
the neurovascular unit, mediated by the paracellu-
lar endothelial tight junctions, maintain the barrier
properties of the BBB [57]. In the case of BBB
disruption or breakdown, this leads to entry of micro-
bials from the systemic circulation into the brain
to induce inflammatory immune responses (possibly
initiating the neurodegenerative pathways involved in
AD) [57–59]. Additionally, BBB breakdown is asso-
ciated with neurovascular dysfunction and impaired
cerebral blood flow [57, 60]. Ensuring the integrity
of the BBB is therefore critical for maintaining con-
trol of brain interstitial fluid responsible for synaptic
function and neuronal connectivity [57].

At the molecular level, SARS-CoV-2 enters the
CNS through binding to the angiotensin convert-
ing enzyme 2 (ACE2) receptor on BBB endothelial
cells and infects macrophages and monocytes of
the CNS [61]. These events lead to BBB protective
dysfunction, thereby contributing to neural inflam-
mation via entry of plasma factors into the brain that
activate glial cells and induce immune cell infiltra-
tion [62]. Microglial cells, once active, take on the
pro-inflammatory M1 phenotype [63]. Recent data
suggest that the associated neurological symptoms
of COVID-19 may be a result of chronic changes in
the neurons, glial cells and brain vasculature endothe-
lial cells following infection with SARS-CoV-2 [64].
Moreover, ongoing research suggests that the M1
phenotype contributes to a number of neurodegen-
erative diseases years following infection [65, 66].
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Pro-inflammatory microglia also induce expression
of genes contributing to the onset of neuroinflam-
mation [67], further worsening inflammatory CNS
outcomes.

COVID-19 AND AD

AD is the most common form of dementia [68].
The main pathological hallmarks of AD include the
accumulation of extracellular amyloid plaques com-
posed of amyloid-� (A�) proteins and accumulation
of intraneuronal neurofibrillary tangles (NFTs) of
aggregated hyperphosphorylated tau [69]. One of
early pathological markers of AD, oligomeric A�
accumulation in the brain, occurs more than 20 years
prior to the initiation of clinical symptoms [70]. How-
ever, other markers of dementia are also present by
the time of onset of cognitive impairments, including
the accumulation of tau, glucose hypometabolism,
and synapse loss [71]. Nonetheless, the aging demo-
graphic of patients likely to develop AD but prior to
the onset of symptoms, makes them particularly vul-
nerable to severe COVID-19 outcomes, potentially
exacerbating issues of comorbid dementia [72]. Inter-
estingly, emerging reports on patients diagnosed with
AD suggest that they are at an increased risk of severe
complications and mortality from COVID-19 [73].
Perhaps in diagnosed individuals, the cumulative
effects of existing pathological neuroinflammatory
hallmarks and COVID-19-mediated responses lead
to worsened outcomes post-infection.

Recent research has shown that neuroinflammation
is thought to play a critical role in AD pathogenesis. In
the context of COVID-19 infection, aberrant immune
responses and resulting inflammation are said to
advance degenerative outcomes and increase suscep-
tibility to AD [74] (Fig. 2). Significant commonalities
between COVID-19 and AD include ACE2 receptors
and various markers of inflammation including IL-1,
IL-6, and the APOE4 allele [75]. Furthermore, in the
context of COVID-19 mediated neuroinflammatory
responses, resulting biomarkers also observed in AD
can be further classified according to the ATX(N)
framework: “A” represents biomarkers of A�, “T”
for values of tau, “X” for newly added biomarkers
of inflammatory responses and neuroinflammation,
glial cell responses, synaptic dysfunction, vascular
pathologies, and other pathological changes observed
in AD, and “N” for other neurodegenerative biomark-
ers [76].

MECHANISMS INVOLVED IN AD RISK IN
COVID-19 PATIENTS

Coronavirus-induced Aβ aggregation

One of the most widely studied hypotheses for AD
is the A� hypothesis; accumulation of A� generated
via �- or �-secretase-mediated cleavage of amyloid-
� protein precursor (A�PP) in the brain results in
the formation of neurotoxic pathological oligomers
and senile plaques [77]. During severe COVID-19, a
cytokine storm causes systemic inflammation result-
ing in disruption in the BBB and induction of the
M1 phenotype of microglial cells. Then, arising from
the massive release of pro-inflammatory cytokines
such as IL- IL-1�, IL-6, IL-12, and TNF-� [78],
microglial cells lose their capacity to effectively
phagocytose A�, thereby enhancing A� oligomeriza-
tion and aggregation [79]. Moreover, systemic release
of pro-inflammatory cytokines mediates synaptic
defects, which may additionally play a role in accel-
erating the neurodegeneration of AD [78]. Thus, the
inflammatory response to the virus in addition to
an increase in BBB permeability also exacerbates
neuroinflammation and accelerates neurodegenera-
tive outcomes [80]. In a recent study by Chiricosta
et al., SARS-CoV-2 was found to increase levels
of A�-mediated neurotoxicity and aggravate AD
pathology [81].

There may also be a role for A� as an antimi-
crobial peptide in response to SARS-CoV-2 entry
into brain. The combined cumulative effects of
dysfunctional microglial-mediated clearance of A�
and the role of A� as part of the brain’s immune
response results in activation of the A� cascade with
subsequent amyloid misfolding [82]. However, fur-
ther research to define the precise role of A� in
response to SARS-CoV-2 is critical in both under-
standing the mechanisms involved in neurodegen-
eration following COVID-19 and deriving targeted
therapeutics.

Prior to the initiation of the cytokine storm,
IFNs mediate the initial response to viral infection
[83]. Interestingly, IFNs have demonstrated involve-
ment in AD, particularly through their activation of
microglial cells in the pro-inflammatory response
[84]. Research by Roy et al. found that type 1
IFN responses are upregulated in AD and corre-
lated with the extent of disease pathology [85].
Independent from the animal model of AD used,
they found that type 1 IFN pathway activation
resulted in accumulation of A� plaques, suggesting
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Fig. 2. Mechanisms by which COVID-19 may be a risk factor for AD. Upon infection with SARS-CoV-2, a cytokine storm may be initiated,
leading to the production of pro-inflammatory cytokines. Through various means, COVID-19 could lead to neurological manifestations and
increased risk of AD. Some of the mechanisms by which COVID-19 may contribute to AD include the APOE �4 allele which is a risk factor
for both severe COVID-19 and AD. The genotype is linked to an increased susceptibility to A� fibril accumulation and oligomer formation,
production of NFTs, neuronal death and oxidative stress. Microglial-mediated neuroinflammation because of the pro-inflammatory systemic
response to SARS-CoV-2 can contribute to neural damage. Elevated levels of ACE2 as an entry receptor for SARS-CoV-2 adds to an elevated
viral load and increases levels of A� and tau. Hypoxia or vascular deficits resulting from infection may also be a mechanism underlying
cognitive deficits, and potentially lead to tau hyperphosphorylation and formation of NFTs. Coronavirus-induced A� aggregation may also be
a mechanism by which COVID-19 augments the risk of AD, resulting in A� neuronal accumulation and synaptic loss. Lastly, cerebrovascular
disease resulting from COVID-19 may explain coagulation abnormalities, damaged cerebral blood vessels, vascular dysfunction, and brain
ischemia. These aforementioned mechanisms then cumulatively lead to the clinical observation of AD biomarkers in COVID-19 patients,
including those of inflammation and other markers categorized within the ATX(N) framework.

that type 1 IFNs are critical mediators of neu-
roinflammation in AD models [85]. Furthermore,
they also found plaque-associated microglia to be
a driver of neuroinflammation [85], demonstrat-

ing the role of IFNs including IFN-� in synaptic
degeneration and resulting cognitive impairment
[86]. It can therefore be hypothesized that in
elderly populations afflicted with COVID-19 infec-
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tion, their impaired IFN production contributes to
a loss of immunoregulatory function. As a result,
there is aberrant IFN signaling and consequential
activation of the microglial M1 degenerative phe-
notype that induces downstream pro-inflammatory
responses in addition to IFN-mediated activation of
the complement cascade [85]. Collectively, these
diverse immune events contribute to downstream
synaptic loss and neuronal accumulation of A�,
leading to the neuropathogenic processes associated
with AD.

Microglia-mediated neuroinflammation

Neuroinflammation is recognized as a core fea-
ture of AD. In post-mortem brain analyses of
fatal COVID-19 patients, severe microglial brain
activation was reported [87]. In addition, SARS-CoV-
2-mediated cytokine storm [88] compromises BBB
endothelial function, resulting in the emergence of
disease-associated microglia [89, 90]. Elevated lev-
els of pro-inflammatory cytokines released from M1
activated microglia include IL-1�, IL-6, and TNF-�
[91], which exacerbate neuroinflammation and have
the capacity to contribute to neurodegenerative pro-
gression in AD [92]. When comparing serum between
AD patients to healthy controls, elevated levels of IL-
6 and TNF-� were detected [91]. Moreover, cognitive
capacity of AD patients was reported to be negatively
correlated with plasma levels of IL-6, suggesting
that higher levels of IL-6 in AD may contribute to
abnormalities in cellular processes mediating neu-
ropathology [93]. Further highlighting the role of
inflammatory cytokines, Bialuk et al. demonstrated
that IL-6 knock-outs exhibited enhanced cognitive
performances in numerous behavioral assessments
[94].

The cytokine storm of severe COVID-19 results
in the release of pro-inflammatory cytokines (see
Fig. 2); increased levels of IL-1, IL-6, IL-8, IL-10,
and TNF-� have been detected in patients’ cere-
brospinal fluid (CSF) [95, 96]. Elevated levels of
IL-1 and IL-6 in COVID-19 patients correlate with
a worse prognosis, particularly from a CNS perspec-
tive [96, 97]. Similar to AD, age is likewise a risk
factor in SARS-CoV-2 lethality [98]. In the aged
lung, there is enhanced activation of the nucleotide-
binding domain and leucine rich repeat containing
family, pyrin domain containing 3 (NLRP3) inflam-
masome. As a result of NLRP3 aberrant activation,
downstream levels of caspase-1, IL-1�, and IL-
18 increase [98]. Similar inflammasome activation

has been implicated in AD progression and patho-
genesis through dysfunctional microglial clearance
of A� [66, 99, 100]. It is therefore reasonable to
hypothesize that the inflammatory response triggered
by SARS-CoV-2 in brain may lead to enhanced
neuroinflammatory processes and progression of
neurodegeneration, and ultimately to an increased
risk for AD [101].

CANDIDATE MECHANISMS OF AD RISK
IN COVID-19 INFECTION

ACE2

ACE2 is a peptidase involved in regulating the
renin-angiotensinogen system (RAS) [102]. ACE2 is
highly expressed in the brain in areas associated with
AD pathogenesis including the temporal lobe and
hippocampus, specifically on neurons and microglial
cells [103]. SARS-CoV-2 uses ACE2 as an entry
receptor on target cells through interactions of the
receptor binding domain of the viral subunit 1 (S1)
spike protein. Transmembrane protease serine type 2
(TMPRSS2), then cleaves the S protein into its S1 and
S2 subunits, allowing for the fusion of viral envelope
and cell membrane and subsequent release of viral
ssRNA genomic material into the cytoplasm [104,
105]. The route of SARS-CoV-2 entry and COVID-
19 organ-specific pathogenesis is therefore dependent
on the expression levels of ACE2.

Induction of ACE pathways increases levels of
angiotensin II in the brain, also contributing to
oxidative stress, neuroinflammation, and reduced
cognition. Although postmortem analyses of AD
patient brains revealed an elevated expression of
ACE2 receptors [106] and noted higher levels of
the ACE2 gene to be correlated with severity of AD
[107], levels of ACE2 activity are indeed reduced in
AD in association with increasing levels of A� and
tau [108]. Similarly, an in vivo study found higher
levels of the ACE2 gene in brain samples in an
AD mouse model [107]. To ameliorate the cogni-
tive symptoms of AD, ACE2 therapeutics have been
suggested despite their consequence of increasing
levels of ACE2 [109]. Interestingly, increased ACE2
expression has also been reported to be a contribut-
ing factor to an elevated viral load in AD patients
[106] and may exacerbate consequent neurological
outcomes following COVID-19 infection. While neu-
rodegenerative diseases are thought to be linked to
an enhanced susceptibility to COVID-19, perhaps it
can be hypothesized that in non-AD patients with
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higher viral loads, SARS-CoV-2 binding to ACE2
and subsequent ACE2 downregulation may precede
Alzheimer’s-like pathology.

Moreover, polymorphisms in the human genome,
specifically in that of the ACE2 gene may explain the
differences in COVID-19 symptomatic and morbidity
outcomes [110]. For instance, the ACE deletion-allele
frequently observed in elderly AD patients [111], is
correlated with decreased expression of ACE2 and
therefore found to be protective against COVID-19
[112]. Nonetheless, numerous other variable poly-
morphisms of RAS components resulting in altered
ACE2 gene expression and subsequent COVID-19
presentation have also been associated with AD and
similar neurodegenerations [113].

APOE4

APOE is a 299 amino acid glycoprotein generated
as the product of an 18 amino acid signal peptide
cleavage [114–116]. APOE is generated in cell types
including astrocytes and microglia [117]. Like gene
variations in ACE2, the APOE �4 allele is reported
as a risk factor for AD, while the �2 allele is protec-
tive against AD pathology [118]. The APOE4 allele
is linked to an increased risk of AD and results
in A� fibril accumulation and oligomer formation,
NFT production, neuronal death, and oxidative stress
[119]. It has been noted that homozygous APOE
�4 genotype increases the risk of AD by 15-fold
[120]. This may be a result of its associated effect in
AD patients culminating in reduced cerebral blood
flow and neuroinflammation. In a study by Kuo et
al., APOE �4/�4 allele resulted in an elevated risk
of infection with COVID-19 [121]. Both ACE2 and
APOE gene expression are elevated in type II alveolar
cells of the lungs [122]. It can therefore be hypoth-
esized that individuals with the �4/�4 allele are not
only more susceptible to COVID-19 but also prone
to the resulting long-term neurological effects and
downstream AD development. Arguably, in geneti-
cally susceptible individuals who experience severe
infection, COVID-19 acts as a driving force for neu-
rodegeneration.

Hypoxia

Severe COVID-19 infection often results in ARDS
[123]. This can ultimately manifest as respiratory
failure or myocardial hypoxia [124], requiring hospi-
talization [125]. In surviving patients, post infection
cognitive impairment may be explained by hypoxia

or resulting vascular damage [126]. Through mech-
anisms which are not entirely understood [127],
COVID-19-mediated hypoxia results in dysfunction
of mitochondrial oxidative phosphorylation and res-
piration. This disabled oxygen supply then affects
vascular smooth muscles and neuro-epithelial bodies
[128]. Previous research by Alexander et al. observed
that patients with severe brain hypoxia (including
global ischemia from cardiac arrest) also exhibit
impaired symptoms in many aspects of cognition as
well as deficits in functional outcomes of memory and
psychomotor slowing [129]. The resulting deficits
in cognition may be explained in part due to the
general sensitivity of hippocampal and basal ganglia
brain regions in response to ischemia [130]. In par-
ticular, oxygen-sensitivity of the hippocampus may
exacerbate effects on memory, thereby contributing
to clinical presentations of dementia. Interestingly,
hypoxia due to transient cerebral ischemia has been
shown to cause tau hyperphosphorylation and NFT
formation, both of which are hallmarks of AD patho-
genesis [131]. Furthermore, limited postmortem data
from COVID-19 patients have demonstrated the
occurrence of hypoxic alterations in the brain [132],
as well as vascular and demyelinating pathologies
[133, 134]. In addition, a case study report found
that following COVID-19, a patient developed pro-
dromal AD as defined by a CSF biomarker panel
analysis and the onset of cognitive symptoms [126].
Such findings further suggest that perhaps COVID-
19 hyper-immune responses leading to ischemia
may accelerate the neurodegenerative progression
of AD.

Cerebrovascular disease

In addition to respiratory complications in COVID-
19, acute cerebrovascular disease has also been
reported [135]. In a retrospective study, Yi et al.
found that COVID-19 patients demonstrated both a
heightened inflammatory response and hypercoagu-
lable state as shown by an elevated C-reactive protein
level [135]. Those with underlying comorbidities
such as congestive heart failure, hypertension, and
diabetes are more susceptible to higher mortal-
ity outcomes and infection by SARS-CoV-2 [136].
Moreover, the study by Yi and colleagues noted that
following COVID-19 infection, elderly individuals
with risk factors had a higher rate of developing
cerebrovascular disease (CVD) [135]. Furthermore,
autopsy analyses of patients who died from COVID-
19 demonstrated hyperemic and degenerate neurons
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[12], as well as thrombotic microangiopathy. The
cumulative effect of early cerebrovascular events
and coagulation abnormalities contribute to the
widespread formation of thrombi in both small and
large vessels [3].

CVD and AD share common risk factors and
neuropathological features [137]. Shared risk fac-
tors include the APOE �4 allele [138, 139], diabetes
mellitus [140], hypertension [141], and age [142].
Numerous studies also implicate ischemia struc-
tural vascular pathologies in AD patients [137].
Cerebrovascular neuropathologies in postmortem
AD brain analyses have identified A� amyloid
angiopathy and arteriosclerotic small vessel disease
[143], as well as frank cerebral infarcts [143–146].
Therefore, CVD is a risk factor associated with
concomitant AD neuropathology arising from dam-
aged cerebral blood vessels, vascular dysfunction,
and brain ischemia [147]. Thus, COVID-19-media-
ted neuroinflammation in addition to the chronic
side effects of pulmonary-triggered hypoxia also
causes CVD [148] that in turn contributes to
the amplification of AD-associated neurological
processes.

BIOMARKERS OF AD/COGNITIVE
DECLINE IN COVID-19 PATIENTS

Inflammatory biomarkers

Specific markers of inflammation such as IL-6, IL-
1, galectin-3 (GAL3), and galectin-9 (GAL-9) have
been identified as biomarkers associated with both
COVID-19 and AD (see Fig. 2) [75, 149].

IL-6

As a prognostic predictor of SARS-CoV-2 progres-
sion [150], increased levels of IL-6 are correlated with
increased levels of viral load and disease severity in
critically ill patients with COVID-19 [96, 151]. Upon
SARS-CoV-2 entry into the host, rapid viral replica-
tion induces heightened production of IL-6, thereby
worsening respiratory complications. Elevated serum
levels of IL-6 are a reliable predictor of respiratory
dysfunction in COVID-19 [75, 152]. Interestingly
in AD, elevated levels of IL-6 are also indicative
of worsened disease progression and cognitive per-
formance [93]. In IL-6 knockout mice, enhanced
memory formation and retrieval, as well as cognitive
flexibility have been demonstrated [94]. Furthermore,
it has been demonstrated by Strafella et al. that IL-6

and IL-6R are involved in many pathogenic outcomes
such as COVID-19 severity and neurodegenerative
diseases [153].

As two common biomarkers of AD and COVID-
19, IL-6 and its receptor IL-6R interact with
glycoprotein receptors to activate downstream sig-
naling pathways involved in immunoinflammatory
modulation [154, 155]. Polymorphisms in the IL-6
and IL-6R genes influence their expression lev-
els, binding capacity, and function to ultimately
contribute to the development and progression of
infectious and neurodegenerative diseases, namely
COVID-19 and AD [152, 156–158]. Direct target-
ing of the IL-6R may therefore reduce mortality in
critically ill COVID-19 patients, while also reduc-
ing neuroinflammatory and degeneration processes in
AD. Clinical trial results using the IL-6R antagonists
tocilizumab and sarilumab demonstrated therapeutic
efficacy and increased survival in critically ill hospi-
talized patients with COVID-19 [159]. In a recent
meta-analysis of clinical trials using IL-6 antago-
nists in hospitalized COVID-19 patients, a lower
all-cause mortality was shown [160]. Therefore, IL-6
is a pleiotropic biomarker of COVID-19 and AD, and
efforts towards identifying antagonists targeting this
pro-inflammatory cytokine may provide promising
therapeutic outcomes.

IL-1

SARS-CoV-2 induces a hyperinflammatory state
with the release of pro-inflammatory cytokines
[161–163]. IL-1, a biomarker for COVID-19 progno-
sis, is elevated in patients during infection onset and
progression [97, 164]. Using an IL-1 receptor antago-
nist, anakinra, 72% of severely ill COVID-19 patients
had clinical improvement in respiratory function
[164]. Similarly, levels of the IL-1 family cytokines
including IL-1�, IL-1�, and their antagonist IL-
1Ra are increased in AD [165]. Overexpression of
IL-1 in AD has been directly associated with the
development of pathological alterations such as the
accumulation of A� plaques and NFTs in neurons
[166]. Further evidence of IL-1 as a driver of AD
pathogenesis comes from in vivo work by Sheng et al.
who demonstrated that IL-1� injections into the right
hemispheres in a rat model of AD led to the develop-
ment and accumulation of neurotic A� plaques and
NFTs [167]. In contrast, inhibition of IL-1 signaling
led to enhanced cognition, reduction of tau and partial
decrease in specific forms of fibrillar and oligomeric
A� [168]. IL-1 was also shown to be involved in



10 M. Golzari-Sorkheh et al. / COVID-19 as a Risk Factor for Alzheimer’s Disease

hippocampal-dependent memory processing [169],
whilst inhibition of IL-1 led to enhanced memory
formation and processing [170]. Therefore, eleva-
tion in IL-1 levels following induction of COVID-19
inflammatory responses may lead to the cognitive
deficits that contribute to the symptomatology of
AD [171]

Galectins

Galectins are a family of �-galactoside-binding
lectins that are involved in the modulation of cell
death, cell adhesion [172], immune tolerance, and
inflammation [173]. The most commonly expressed
galectins in the CNS include GAL-3 and GAL-9
[174]. Under normal homeostasis conditions in the
CNS, galectins contribute to the processes of neu-
ronal myelination, neuron stem cell proliferation, and
vesicular transport in neurons. However, in neuronal
disease states and in experimental models of neu-
roinflammation, galectins may play a critical role as
extracellular and intracellular mediators to regulate
and control inflammation and to induce repair pro-
cesses in injured CNS tissues [174]. In animal models
of autoimmune encephalomyelitis, GAL-9 reduces
autoimmune encephalomyelitis while GAL-3 stim-
ulates inflammation. Additionally, in brain ischemic
lesions, GAL-3 stimulates proliferation of microglia,
whilst in models of amyotrophic lateral sclerosis
it aggravates neurodegeneration [174]. Galectins,
specifically GAL-3 and GAL-9, are critical mediators
of homeostasis in the CNS and during neuroin-
flammatory processes. As galectins are involved in
microglial-mediated neuroinflammation [175, 176],
and microglia are subsequently responsible for the
deposition of A� [177], under the ATX(N) frame-
work, galectins would fall under the “X” value as
biomarkers of glial cell activity and neuroinflamma-
tion.

GAL-3

GAL-3 as a �-galactoside binding to lectin results
in the infiltration of neutrophils and production
of pro-inflammatory IL-6 and TNF-� cytokines in
cases of severe COVID-19 [178]. GAL-3 has many
functions in innate immunity, particularly during
inflammatory responses and induction of lung fibro-
sis [179, 180]. GAL-3 has been demonstrated to
bind directly to pathogens through its actions as
both a pattern-recognition receptor and a danger-
associated molecular pattern (DAMP) [181]. It was

also expressed by many inflammatory cell types,
including activated macrophages [182, 183]. The
GAL-3-mediated infiltration of neutrophils further
contributes to airway inflammation [182, 184]; a
clinical characteristic linked to disease severity and
mortality in patients diagnosed with ARDS [185].
Thus, there is strong evidence for the role of GAL-
3 as a prognostic biomarker of COVID-19 disease
severity [186].

During severe COVID-19, levels of GAL-3 are
elevated. High levels of GAL-3 were reported to
promote hyper-inflammatory responses, lung fibro-
sis linked to alveolar destruction, hypoxia, and
progression of infection [180]. Similarly in AD,
levels of GAL-3 are increased, contributing to the
aggregation and accumulation of A� plaques [187].
Additionally, in a mouse model of AD, inhibition
of GAL-3 improved microglial-mediated neuroin-
flammatory pathogenesis [188]. Thus, based on the
role of GAL-3 in viral inflammatory responses [189]
and microglial-mediated neuroinflammation [188],
COVID-19 patients may be at an elevated risk for
the development of AD.

GAL-9

Similar to GAL-3, GAL-9 is also involved in
mediating immune responses associated with viral
pulmonary infection [190]. In COVID-19 patients,
levels of GAL-9 were considerably elevated com-
pared to non-infected controls. GAL-9 is also a
potential diagnostic biomarker being able to dif-
ferentiate SARS-CoV-2 infected from non-infected
controls with a 95% specificity rate [191]. Moreover,
plasma levels of GAL-9 were also positively corre-
lated with a number of pro-inflammatory COVID-19
biomarkers in patients, thereby supporting its role as a
contributor to the cytokine release syndrome in severe
COVID-19 [191]. In in vitro cultures, expression
of GAL-9 was upregulated in microglia, astro-
cytes, and oligodendrocytes [192]. From the same
study, they concluded that stimulation of GAL-9
in the CNS is involved in regulating neuroinflam-
matory pathologies [192]. Moreover, GAL-9 has
also been reported to be upregulated in patients
with AD and mild cognitive impairment and was
shown to be associated with reduced scores on the
Mini-Mental State Examination [193]. Similar to
GAL-3, severe COVID-19 and subsequent elevated
levels of GAL-9 may exacerbate neurodegenera-
tion outcomes and contribute to the risk of AD
development.
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BIOMARKERS OF AD
NEURODEGENERATION IN SEVERE
COVID-19

In a study by Frontera et al., significant ele-
vations in biomarkers of neurodegeneration were
observed in patients hospitalized with COVID-19
[194]. Markers measured included neuronal and glial
specific proteins such as plasma serum total tau
(t-tau), phosphorylated tau-181 (p-tau181), ubiqui-
tin carboxy-terminal hydrolase L1 (UCHL1), glial
fibrillary acidic protein (GFAP), and neurofilament
light chain (NfL) [194]. The levels of biomark-
ers were positively correlated with increasing age
and severity of infection; the highest levels of t-
tau, p-tau181, GFAP, and NfL were observed in
patients with encephalopathy. They also compared
more specific AD pathology biomarkers such as NfL,
GFAP, and UCHL1 and found that serum levels were
much higher in COVID-19 patients compared to non-
COVID-19 controls with mild cognitive impairment
or AD [194]. Additionally, of these biomarkers, both
in severe COVID-19 and AD, levels of UCHL1 [195,
196], GFAP, tau [197], and NfL [198] are also signifi-
cantly elevated following microvascular changes and
BBB impairment [194, 199]. Further highlighting the
residual and ongoing neuroinflammation following
COVID-19 infection, in the case of patients recov-
ering from COVID-19, plasma protein markers of
neuronal dysfunction such as A�, NfL, neurogranin,
total tau, and p-T181-tau were found to be markedly
elevated compared to controls [200].

In recent years, evidence for the role of chronic
inflammation in AD has emerged, with recent lit-
erature in support of the reactive gliosis nature
of AD [201]. The activation and proliferation of
microglia in brain contribute to and exacerbate neu-
ronal and synaptic loss, A� accumulation, and tau
hyperphosphorylation [202]. In the case of SARS-
CoV-2 infection, microglia maintain homeostatic
states during viral entry in the brain, and this may
ultimately lead to its hyperactivated state which is
responsible for the post-COVID-19 neurological out-
comes [64]. Following viral infection, release of
excessive cytokines, PAMPs, and DAMPs and their
binding induces activation of microglial-mediated
inflammatory responses [203]. In rodents, this results
in an increase in protein expression of ionized
calcium-binding adapter molecule 1 (IBA1). Further
evidence in support of glial reactivity in COVID-
19 comes from a recent study that reported an
elevated number of glia cells in the cerebral cor-

tex of COVID-19 patients and up-regulation of
Iba1+ microglia cells and GFAP+ astrocytes [204].
Additionally, a different study observed a surge in
Iba1+ immune cells in the olfactory mucosa of
COVID-19 patients experiencing persistent loss of
smell [54].

The triggering receptor expressed on myeloid cells
2 (TREM2) is associated with AD pathogenesis,
with variants in the TREM2 gene almost tripling
the risk of AD [205]. Interestingly in the con-
text of AD, TREM2 amplifies and contributes to
immune inflammatory pathways [205] and affects
microglial responses to A� and tau [206]. In COVID-
19, TREM2 levels elevate and induce T cells of
the lung and blood to interact with the M protein
of SARS-CoV-2, thereby activating CD4+ T cells
and proinflammatory responses [207, 208]. In cases
of severe COVID-19, TREM2 has been associated
with fibrotic processes [209]. Hence, as TREM2
is associated with both worsened pathogenic out-
comes in COVID-19, and inflammatory signaling
in AD, perhaps through mechanisms which are not
yet delineated, exacerbated outcomes amplify neu-
roinflammation and ultimately increase the risk of
developing AD.

In a subset of fibrogenic macrophages, the
GAL-3 gene was found to be increased in associ-
ation with TREM2 [209, 210]. Thus, GAL-3 has
been demonstrated to play a crucial role in the
microglial inflammatory response and subsequent
lung fibrosis through its interaction with TREM2
[211].

Another marker of cognitive function includes
brain-derived neurotrophic factor (BDNF) which is
involved in the regulation of synapses [212] and in
learning and memory [213]. As a mediator between
inflammation and neuroplasticity, BDNF has been
shown to regulate neurotransmitter release. How-
ever, as AD progresses, levels of BDNF in the brain,
blood, and CSF decrease. Impaired BDNF signaling,
partly in response to A�-induced truncation of the
BDNF receptor TrkB (tropomyosin receptor kinase
B) [214], is associated with A� accumulation, tau
phosphorylation, and induction of neuroinflamma-
tory processes [215]. In contrast, increasing serum
BDNF is linked to enhanced cognition in AD [215].
In a study by Wang et al., ACE2 knockout in mice led
to a reduction in BDNF levels in the hippocampus,
with resulting cognitive dysfunction as compared to
wild-type [216]. Alternately, inhibiting angiotensin II
type 1 led to an upregulation in BDNF and subsequent
prevention of memory deficits [217]. SARS-CoV-
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2 infection in brain results in elevated levels of
angiotensin II via inhibition by ACE2 [218]. Subse-
quent downstream pro-inflammatory pathways then
reduce levels of BDNF, yielding negative neurolog-
ical outcomes including deficits in cognition [219].
Interestingly, studies have shown that levels of BDNF
during COVID-19 infection correlate with disease
severity [220]. COVID-19 patients with lower cir-
culating levels of BDNF had worse outcomes [221],
while recovery from infection was found to be asso-
ciated with restoration in BDNF levels [220]. Thus,
BDNF also serves as a common biomarker of neu-
rodegeneration in AD and reflects the prognosis of
SARS-CoV-2 infection.

In severe SARS-CoV-2 infections, elevated lev-
els of adhesion molecules such as intracellular
adhesion molecule-1 (ICAM-1) reflect inflamma-
tion and dysfunction of the endothelium [222].
Endothelial dysfunction contributes to a coagula-
tive state, worsening COVID-19 outcomes [223].
Moreover, a separate study also evaluated the same
serum biomarkers of neuronal injury and inflam-
mation, namely NfL, t-tau, UCHL1, GFAP, and
pTau-181, and found that levels significantly cor-
related with neurological symptoms in COVID-19
patients as compared to non-neurological symp-
tomatic patients [224]. Thus, these findings indicate
that in patients with severe COVID-19 and neurolog-
ical symptoms, there is evidence for the progression
of AD pathogenesis [224]. Several brain imaging
studies from computed tomography (CT), positron
emission tomography (PET), and magnetic reso-
nance imaging (MRI) reported abnormalities such
as white matter hyperintensities, hypoperfusion, and
ischemia particularly in the cerebral hemispheres
[225]. MRI scans from severe COVID-19 patients
show an increase in leptomeningeal spaces; MRI of
asymptomatic patients showed that some had signs
of small acute lacunar ischemic strokes [226]. Fur-
thermore, in a PET study assessing neurological and
cognitive symptoms in acute COVID-19 patients,
cerebral glucose hypometabolism accompanied by
cognitive decline were documented [31]. A recent
longitudinal study using MRI brain imaging data
from UK Biobank participants, comparing COVID-
19 infected and non-infected, found reductions in
grey matter thickness in orbitofrontal cortex and
parahippocampal gyrus regions, tissue damage in the
olfactory cortex, and reduction in brain size following
infection [11]. These COVID-19 associated imag-
ing abnormalities are similar to those documented
in AD.

A trial in the Netherlands has attempted to
measure in vivo neuroinflammation using TSPO-
binding PET employing a radioligand that targets
the Translocator Protein elevated in activated
microglia in recovering COVID-19 patients expe-
riencing fatigue and cognitive deficits [227]. A
similar study is using a longitudinal design with
a series of serially performed assessments to gen-
erate a dataset derived from severe COVID-19
patients with delirium to evaluate neuroinflammatory
and neurodegenerative complications. Assessments
include repeated SARS-CoV-2 testing, systemic and
central immune responses evaluated using biomark-
ers of CNS damage from peripheral blood and
CSF, in vivo brain PET-TPSO scans, functional
and structural MRI scans, and multi-domain neu-
rocognition evaluations [228]. Ongoing longitudinal
clinical trials using structural and functional imag-
ing techniques are urgently needed to evaluate the
pathological CNS changes induced by SARS-CoV-
2, and to facilitate the development of targeted
therapeutics.

THERAPEUTICS

Despite growing concerns and emerging cases of
COVID-19 mediated neurological outcomes, there
are currently no ongoing clinical trials addressing
this important brain-focused phenomenon. The best
therapy for such neurological sequelae is there-
fore prevention or early treatment, through either
mass vaccination efforts or antiviral approaches using
paxlovid [229], molnupiravir [230], or fluvoxamine
[231]. However, vaccination is mostly effective at
reducing severity and mortality outcomes while pro-
viding short-term protection against infection and
may not be fully effective against newer strains of
SARS-CoV-2 [232, 233]. In addition, oral antiviral
therapies like paxlovid include the risk of COVID-19
rebound syndrome [234] and elevate susceptibility
for resistance-causing mutations in the case of mol-
nupiravir [235, 236].

An alternative therapeutic approach could address
COVID-19-mediated neurodegeneration via target-
ing of neuroinflammatory mechanisms [237–240].
Building on data suggesting that BBB dysfunc-
tion is associated with neuroinflammation and AD
[241], an ongoing clinical trial is using transcrip-
tomic analyses and microglial modeling to evaluate
neuroinflammation in AD to identify causative fac-
tors [242]. Moreover, an interventional early Phase
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1 trial is assessing brain inflammation and cere-
bral amyloidosis in AD patients using PET/CT
imaging techniques [243]. Although there are few
trials evaluating neuroinflammation in the context
of COVID-19, one ongoing Phase II/III study is
attempting to quantify neuroinflammation using PET
imaging in recovered COVID-19 patients in relation-
ship to psychiatric and cognitive symptoms [227].
As the need for an immediately available therapeu-
tic is urgent, repurposing already approved drugs
may be a promising approach. Furosemide, a loop
diuretic approved by The Food and Drug Adminis-
tration (FDA) for the treatment of edema following
congestive heart failure, liver failures, or renal failure
[244], is also capable of broadly inhibiting pro-
inflammatory cytokines like IL-6, IL-8, and TNF-�
[245], all of which induce hypercytokinemia and pul-
monary tissue destruction [246]. Based upon this, a
randomized double-blinded and placebo-controlled
Phase II/III trial is investigating nebulized furosemide
for treatment of pulmonary inflammation and res-
piratory failure in hospitalized COVID-19 patients
[246–248]. Interestingly, furosemide has been shown
to prevent the release of proinflammatory cytokines
TNF-�, IL-6, and nitric oxide, and has capacity to
reduce microglia M1 phenotype while upregulating
M2 [249], thereby suggesting potential as a neuroin-
flammatory therapeutic in AD. These data along with
a number of studies demonstrating loop diuretics are
associated with a reduced risk of AD and demen-
tia [250–252], presents an interesting opportunity to
develop these class of molecules to treat neuroinflam-
mation.

CONCLUSION

Over 55 million people worldwide are living with
AD [253], and 10 new million cases of dementia are
reported yearly [254]. However, these statistics do not
consider the potential added burden from COVID-
19 neurological manifestations. Out of more than
500 million confirmed COVID-19 cases, one third
of patients develop neurological symptoms in the
acute stage alone, ranging from headaches [255] to
neuronal degeneration, including 25% of symptoms,
which are a result of direct CNS involvement [11].
Moreover, growing reports of PASC and evidence
of systemic inflammation as a driver of cognitive
decline and neurodegeneration [256, 257] suggest
that survivors of COVID-19 are at an elevated risk
of developing AD. COVID-19 is therefore an imme-

diate threat to not only our healthcare systems, but
also to the growing pandemic of AD.

Estimates from the United Nations suggest that
global rates of AD may exceed 150 million by 2050
[258]. Combined with the lack of breakthrough phar-
macological therapeutics for AD, and the unknown
mechanisms by which COVID-19 may contribute to
its development, 150 million may be a gross underes-
timate. Greater research is urgently needed to assess
and evaluate the symptoms and neurological sequelae
of COVID-19 survivors. Out of the third of sur-
vivors developing CNS complications and the recent
emergence of reports from long COVID-19 patients
experiencing neurological manifestations [259], how
likely is it that all, or a large fraction thereof, may
go on to develop AD? Is it the severity of illness or
rather acute vs long COVID-19 that are the major
contributors to AD? To date, no study has provided
conclusive answers.

A large body of evidence has suggested an asso-
ciation between severe COVID-19 infection and
dementia [260, 261]. Dementia patients diagnosed
with COVID-19 were reported to have worsened
clinical outcomes, elevated hospitalization rates, and
overall higher mortality [194, 262, 263]. While the
fatality of COVID-19 is higher in dementia patients
due to old age, immune dysfunction, and comorbidi-
ties, limited data exist on the risk of AD in COVID-19
patients. The continuous rising incidence and preva-
lence of COVID-19, combined with a dramatic rise
in AD cases and mortality [264] poses significant
personal and socioeconomic impacts. In 2020, the
healthcare costs for AD treatment were estimated at
$305 million and expected to reach over $1 trillion
[265]. These values do not consider the socioeco-
nomic and personal burdens associated with indirect
costs of care such as quality of life and private
caregiving [265]. Furthermore, the COVID-19 pan-
demic has had tremendous global economic burdens.
COVID-19 as a risk factor for AD is therefore an
association with great public health consequences,
and which remains a critical unmet global medical
need.

In addition to the lack of research on the associ-
ation of COVID-19 infection and AD, limited data
exists regarding the pathological mechanisms by
which SARS-CoV-2 affects the CNS. However, based
on current literature, mechanisms involved in the
pathogenesis of AD are thought to be implicated in
COVID-19, with interchangeable inflammatory and
AD biomarkers being noted in recovering patients.
Greater initiatives are required to accelerate research
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on neurological outcomes following COVID-19 and
to develop preventative or therapeutic approaches to
ameliorate the neurological sequelae that lead to an
elevated risk for AD.
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N, Armon C, Wolfson S, Cotelli MS, Bianchi E, Riahi A,
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B, Scheibe F, Körtvélyessy P, Reinhold D, Siegmund B,
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