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Abstract.
Background: Insulin-like growth factor (IGF)-1 plays an important role in Alzheimer’s disease (AD) pathogenesis and
increases disease risk. However, prior research examining IGF-1 levels and brain neural network activity is mixed.
Objective: The present study investigated the relationship between IGF-1 levels and 21 neural networks, as measured by
functional magnetic resonance imaging (fMRI) in 13,235 UK Biobank participants.
Methods: Linear mixed models were used to regress IGF-1 against the intrinsic functional connectivity (i.e., degree of
network activity) for each neural network. Interactions between IGF-1 and AD risk factors such as Apolipoprotein E4
(APOE4) genotype, sex, AD family history, and age were also tested.
Results: Higher IGF-1 was associated with more network activity in the right Executive Function neural network. IGF-1
interactions with APOE4 or sex implicated motor, primary/extrastriate visual, and executive function related neural networks.
Neural network activity trends with increasing IGF-1 were different in different age groups. Higher IGF-1 levels relate to
much more network activity in the Sensorimotor Network and Cerebellum Network in early-life participants (40–52 years
old), compared with mid-life (52–59 years old) and late-life (59–70 years old) participants.
Conclusion: These findings suggest that sex and APOE4 genotype may modify the relationship between IGF-1 and brain
network activities related to visual, motor, and cognitive processing. Additionally, IGF-1 may have an age-dependent effect
on neural network connectivity.
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INTRODUCTION

Alzheimer’s disease (AD) is an irreversible, pro-
gressive neurodegenerative disease [1] characterized
by profound brain atrophy and neuronal death [2].
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AD hallmarks include amyloid-� (A�) oligomeriza-
tion and hyperphosphorylated tau [3]. Despite over
a hundred years of research [4], we still do not have
treatments which can stop or slow disease onset and
progression [5]. Therefore, it is necessary to continue
identifying potential biomarkers or mechanisms that
contribute to AD neuropathology. In recent years,
metabolic dysfunction has emerged as a potential
contributing factor which is related to brain atrophy
[6], regional amyloid [7], and regional tau [8]. Most of
this work has focused on insulin resistance, as well
as insulin-like growth factor-1 (IGF-1) which is an
upstream effector that may play an important role in
AD etiopathogenesis [9].

IGF-1 can be produced in many peripheral organs
[10] and is essential in nervous system develop-
ment and function [11]. Through the IGF-1 receptor
(IGF-1R), IGF-1 can activate Akt and ERK path-
ways to promote neuronal differentiation, survival,
and synapse formation [12]. IGF-1 also mediates neu-
roprotection [13] and regulates neurogenesis [14].
IGF-1 is transported into the central nervous sys-
tem (CNS) through the choroid plexus from plasma
[15], and it can also be produced locally in the
CNS to a limited extent [16]. Even among AD
patients without diabetes, insulin signaling disrup-
tion has been observed postmortem. Indeed, insulin
resistance is an early and common feature in the
AD brain which is accompanied by IGF-1 resis-
tance [17]. Evidence suggests that IGF-1 and insulin
work separately through different cognate receptor
signals that lead to their pleiotropic effects. Specif-
ically, for AD cases without diabetes, responses
to insulin and IGF-1 of the hippocampal forma-
tion (HF) and to a lesser degree cerebellar cortex,
are abrogated through the IR−→IRS-1−→PI3K
and IGF-1R−→IRS-2−→PI3K signaling pathways
respectively [17].

IGF-1 is also important in regulating AD pathol-
ogy biomarkers. Carro et al. found that serum IGF-1
could regulate brain A� protein levels with greater
IGF-1 reducing A� burden [18]. IGF-1 signaling in
some AD mice models can delay A� accumulation
and toxicity [19]. Additionally, studies have shown
that IGF-1 inhibits phosphorylation of abnormal tau
and A� deposition, both in vivo and in vitro [9]. In
the aging brain of IGF-1 knockout mice (Igf1–/–),
tau phosphorylation was significantly increased on
Ser-396 and Ser-202 residues, which are target sites
for glycogen synthase kinases [20]. Insulin/IGF-1
activated PI3K/Akt/GSK-3� signaling may also be
involved in some tauopathies [21]. In mice, the pro-

atherosclerotic diet inhibits insulin/IGF-1 signaling,
increases insulin resistance, and leads to tau phos-
phorylation [22]. Therefore, insulin and IGF-1 are
considered promising therapeutic targets for cogni-
tive decline and AD [12].

However, the role of IGF-1 in the brain is still
complicated and controversial [23]. Westwood et al.
suggested that adults with lower levels of IGF-1
in serum are at a higher risk of developing AD-
related dementia [9]. Conversely, another study found
that lower serum IGF-1 levels may be protective
against cognitive impairment in older adult women
[24]. Spatial memory accuracy was improved, and
more immature neurons were observed in the den-
tate gyrus of the hippocampus of 28-month-old
Sprague-Dawley female rats, after 18-day intracere-
broventricular IGF-I gene therapy [25]. This area is
critical for learning and memory.

While brain atrophy typifies AD, it is also use-
ful to look at brain biomarkers that are sensitive
to IGF-1 and may reflect earlier disease processes.
Resting-state functional magnetic resonance imag-
ing (fMRI) extrapolates brain neural networks [26],
which can predict cognitive or emotional behavior
[27]. More importantly, fMRI has been used to detect
early changes in brain activity for AD-related cogni-
tive impairment [28]. There is generally a stepwise
decrease in the intrinsic functional connectivity of
neural networks (i.e., degree of network activation) in
older adults with AD and mild cognitive impairment
(MCI) [29]. However, some independent component
analysis studies have reported inconsistencies in this
trend for adults with MCI or AD [30]. Specifically,
some MCI patients showed less connectivity in the
posterior default mode network (DMN), but more
connectivity in the ventral and anterior DMN [31].
Another study reported some MCI patients showed
less activity in the bilateral precuneus/posterior cin-
gulate cortex, the right inferior parietal lobule, and the
left fusiform gyrus, but more activity in the left pre-
frontal cortex, the inferior parietal lobule, and middle
temporal gyrus [32].

Several key AD risk factors, such as apolipopro-
tein E4 (APOE4) [33], AD family history [34], age
[35], and sex [36] are related to AD-like effects on
neurovascular coupling, which reflects brain activity.
Utilizing fMRI allows one to assess how these risk
factors impact the brain from the asymptomatic phase
to more observable neuropsychological changes. We
hypothesized that these risk factors may interact with
IGF-1 to show different association patterns in brain
network connectivity. There is evidence suggesting
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that with aging, primary sensory and cognitive net-
work would decline and network connectivity would
reduce [37]. A Mayo Clinic Study of Aging reported
that higher IGF-1 levels would be associated with
better cognitive and functional performance among
mid-age to old female compared with male [38]. IGF-
1 signaling alterations were reported to be related
with increased dementia incidence in APOE4 carri-
ers [39]. These association effect of IGF-1 on brain
network connectivity may be differed by, age, sex,
and APOE4 status.

Therefore, using a large, cognitively unimpaired
middle-aged to early aged cohort from the UK
Biobank [40], we examined if IGF-1 alone or in
conjunction with AD risk factors was related to dif-
ferences in neural network connectivity that reflect
AD-like changes. While most studies have focused
on the DMN [29] in the context of AD, less is known
about other networks that govern relevant processes
like executive function or auditory processing. Thus,
we systematically explored these association in a
latent set of 21 non-noise neural networks.

MATERIALS AND METHODS

Cohort and participants

The UK Biobank cohort includes more than
500,000 middle-aged and older adults at base-
line from 22 assessment centers across the United
Kingdom [40]. Data collection began in 2006 and
is currently ongoing in a subset of participants.
UK Biobank encompasses sociodemographic, health,
biological, lifestyle, cognitive, neuroimaging, and
genetic measures. Informed consent was completed
prior to baseline examination. A sub-cohort of total
13,235 participants with MRI, the IGF-1 serum
marker, and demographics data were examined in
the present study. Analyses with genetic data were
limited to 8,989 participants with complete data.

To minimize confounding effects of disease on
neural network outcomes, we excluded partici-
pants with neurological disorders as classified by
ICD-10 codes. Specifically, we excluded adults
with one or more central nervous system diseases
(G00–G99), cerebrovascular diseases (I60–I69), and
mental and behavioral disorders including mood
disorders and neurodegenerative diseases such as
dementia (F00–F99).

As described in the Supplementary Material, par-
ticipants who had central nervous system disorders,

cerebrovascular diseases, and any of the dementias
were excluded.

Resting state fMRI: Acquisition and processing

One of three Siemens Skyra 3T units with a
32-channel RF receiver head coil (Siemens Medical
Solutions, Erlangen, Germany) was used to scan par-
ticipants as described [41]. Briefly, during scanning,
participants were asked to keep their eyes open and
focus on a crosshair without thinking about anything
specifically. Each scan took 6 min and 10 s, resulting
in the acquisition of 490 images (TR = 735 ms;
TE = 39 ms; 2.4 × 2.4 × 2.4 mm voxel resolution;
88 × 88 × 64 matrix, multiband factor = 8, in-plane
acceleration factor = 1, flip angle 52◦). FSL tools
were used to grand mean intensity normalize, high-
pass temporal filter with sigma = 50.0 s, and motion
correct the 4D dataset. Then, the EPI and GDC
were unwarped and denoised by using ICA+FIX
processing. In total, twenty-one spatially orthogo-
nal, non-noise, distinctive Independent Components
(ICs) were derived through FMRIB’s MELODIC that
resulted in distinct resting neural networks. These
ICs can be visualized online using the Papaya viewer
provided: https://www.fmrib.ox.ac.uk/ukbiobank/gr
oup means/rfMRI ICA d25 good nodes.html. To
derive intrinsic functional connectivity for each par-
ticipant, a given IC was spatially backprojected onto
their EPI scan. The mean degree of activation was
derived from their original T-value map, then con-
verted to a Z-score for easier interpretation. The mean
degree of activation for each participant was then
used in statistical analyses. More specific details are
in UK Biobank white papers (https://biobank.ctsu.ox.
ac.uk/crystal/crystal/docs/brain mri.pdf). The neural
networks were described by an expert (AAW) after
viewing the activation maps (see Supplementary
Table 1).

Insulin-like growth factor 1 (IGF-1)

Approximately 45 mL of blood was collected from
each participant, and aliquots were processed and
stored as described [42]. IGF-1 was measured in
serum using chemiluminescent immunoassay and
is expressed as nmol/L. Samples were collected at
the baseline visit (∼2008) and a subsequent visit
(∼2012). The average IGF-1 levels between the two
visits were used for analytic purposes.

https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html
https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf


S312 T. Li et al. / Associations of IGF-1 and Neural Networks

Table 1
Characteristics of participants

Characteristic

Baseline Age, mean (SD), y 55.11 (7.51) Range: 40–70
Female, % 52.62
APOE �4 Status, % 26.12a

Family History of AD, % 23.97
Smoking Status, %

Never 60.36
Previous 33.11
Current 6.53

Alcohol Status, %
Never 2.52
Previous 2.12
Current 95.36

Arterial Stiffness, mean (SD) 9.67 (3.65) Range: 1.54–308.37
IGF-1, mean (SD), nmol/L 21.90 (5.49) Range: 2.81–85.89

AD, Alzheimer’s disease; APOE, apolipoprotein E; IGF-1, insulin-like growth factor 1. All
measures were obtained at baseline with the exception of arterial stiffness (collected over
three visits and averaged) and IGF-1 (collected over two visits and averaged). aSub-sample
of 8,989 participants.

Apolipoprotein E (APOE) status

Genotyping was completed via the UK BiLEVE
Axiom or UK Biobank Axiom array [43]. The sin-
gle nucleotide polymorphisms (SNPs) rs7412 and
rs429358 were used to determine the APOE �2, �3,
and �4 isoforms. Participants were classified as being
�4 non-carriers or carriers. Participants with the �2/�4
haplotype were excluded from analyses.

Covariates

Covariates included age at baseline (in years) and
sex (male versus female). Additionally, risk factors
or markers for vascular damage were used as covari-
ates. This included alcohol status, smoking status,
and arterial stiffness. Alcohol status was categorized
as never, previous, or current drinker. Smoking status
was categorized as never, previous, or current smoker.
Arterial stiffness was determined by the time between
peaks of the waveform (the peak-to-peak time) and
the person’s height.

Statistical analyses

All analyses were completed using SPSS for Win-
dows version 20 (IBM Corp., Armonk, NY). Linear
mixed models were used to regress IGF-1 against
each resting state IC. This approach was agnos-
tic and exploratory because of the large number of
comparisons made. The rationale was to system-
atically look at associations in not just the DMN,
but other networks that underlie executive function

and memory [29]. Nonetheless, to limit type 1 error,
omnibus MANCOVA testing was first done for main
effects and interaction tests. A significant omnibus
test ensures that there is an overall effect of interest
among dependent variables, with a family-wise error
rate of p ≤ 0.05 [44].

Initial analyses tested the main effect of IGF-1 on
each neural network with covariates previously listed.
Interactions were also explored with age, sex, and
APOE4 status, to see if these variables moderated the
relationship between IGF-1 and neural network con-
nectivity strength. Analyses with genomics data were
limited to 8,989 participants with complete data. Sig-
nificance was considered at p < 0.05 for main effects,
while interactions had an alpha = 0.10 to compensate
for the loss of statistical power [45, 46].

RESULTS

Demographics and data summaries

Demographics and baseline characteristics are
listed in Table 1. Supplementary Table 1 lists and
describes all 21 non-noise derived neural networks.

IGF-1 main effects

The omnibus test for the main effect of IGF-1 was
non-significant. Subsequently, results are exploratory
in nature. Higher IGF-1 levels were only associ-
ated with more intrinsic functional connectivity in
the right Executive Function neural network (IC 13;
� = 0.0013, SE = 0.0006, p = 0.040).
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IGF-1 by APOE4 status interactions

The omnibus test for the interaction of IGF-1
and APOE4 genotypes was non-significant, rendering
results exploratory. In general, higher IGF-1 levels
were associated with greater network activity for both
non-APOE4 carriers and especially APOE4 carriers
(see Table 2). This was apparent in the Primary Visual
(IC 8), Sensorimotor (IC 12), and Motor Execution
(IC 11) networks. More diffuse networks included
left Executive Function (IC 5) and a network pairing
the “what” pathway with prefrontal cortex (IC 21).
For example, in Fig. 1 showing IC21, higher IGF-1
corresponded to positive slope in APOE4 carriers for
neural network functional connectivity strength.

IGF-1 by sex interactions

The omnibus testing for the interaction of IGF-
1 and sex was non-significant. Thus, results should
be interpreted with caution. Significant sex by IGF-
1 interactions showed that relative to women, higher
IGF-1 levels in men corresponded to more activity
in neural networks such as Extrastriate Visual (IC
4), Fronto-Cingular (IC 14), and posterior Primary
Visual (IC 19). Table 2 lists Beta estimates by sex,
while Fig. 2 shows that men with higher IGF-1 had
more Fronto-Cingular network activity, whereas no
association existed for women. Network connectivity
of IC 4 and IC 19 were presented in Supplementary
Figures 1 and 2.

IGF-1 by age interactions

The omnibus test for the interaction of IGF-1 and
age was non-significant. Thus, results are exploratory.
An IGF-1 × Age interaction was found for Senso-
rimotor Network and Cerebellum Network (IC 12
and IC 15; Table 2). To better assess the effects per
year increase in age, participants were split to ter-
tile groups: early midlife (40–52 years old), midlife
(52–59 years old), and late midlife (≥59 years old).
Figure 3 shows that higher IGF-1 was linked to more
activity only in early midlife.

DISCUSSION

In the present study, we explored relationships
between IGF-1 levels and neural network activity
(i.e., intrinsic neural network functional connec-
tivity). Further, different AD risk factors, APOE4
genotype, sex, and age, were tested as moderators.

The main effects we observed included IGF-1 lev-
els associated with more network connectivity in the
Right Executive Function neural network located in
the prefrontal region. This positive association may
be beneficial for cognitive tasks involved with plan-
ning and adequately processing stimuli [47]. Insulin
infusion has been associated with increased regional
cerebral glucose metabolic rate (CMRglu) in pre-
frontal cortices, an area that plays an important role
in memory [48]. Insulin resistance is also associ-
ated with prefrontal hypometabolism at baseline (i.e.,
less CMRglu) [49]. Taken together, IGF-1 and down-
stream effectors like insulin may play a role in
maintenance of the executive function network.

APOE4 carriers with higher IGF-1 levels showed
more connectivity in many neural networks, includ-
ing Left Executive Function (IC 5) and a network
described as the ‘what’ pathway with coverage in
prefrontal cortex (IC 21). These implicated networks
correspond to AD-like hypometabolism or atrophy
in APOE4 carriers, including parietotemporal, frontal
areas [50], and medial temporal lobe [51]. Some stud-
ies suggest that the APOE4 genotype could contribute
to CMRglu abnormalities independent of insulin
resistance [49]. Rodent models have demonstrated
that APOE4 inhibits glucose metabolism through glu-
cose transporters and glycolysis [52]. In a recent
study, APOE4 carriers with higher levels of IGF-1
stimulation had a greater risk of developing dementia
[53].

Our results suggest that men had greater activity
with increasing IGF-1 levels for Extrastriate Visual,
Fronto-Cingular, and Posterior Primary Visual neu-
ral networks. The lack of association with women
was curious, as a recent study suggested that higher
IGF-1 levels among women are related to better atten-
tion, visuospatial, and global cognitive performance
[38]. Other reports suggest worse cognitive outcomes
[54]. However, these discrepancies could be due to
differences in age [38].

Aging itself is regarded as a complex process in
which multiple conditions could potentially emerge,
including metabolic dysregulation that has been tied
to AD risk [55]. Both sensory and cognitive networks
show evidence of age-related decline [37], therefore
IGF-1 may be linked with network activity strength
due to age effects. For instance, our results suggest
differential effects of IGF-1 by age. For the Sensori-
motor and Cerebellum networks, only early midlife
participants showed IGF-1 level associations with
greater network activity. Recent research has sug-
gested that lower serum IGF-1 has shown different
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Table 2
Estimates by group for IGF-1 interactions with AD risk factors

Component APOE Status Sex Age

APOE4– APOE4+ Women Men Early-Life Mid-Life Late-Life
Beta SE Beta SE Beta SE Beta SE Beta SE Beta SE Beta SE

IC1 0.0070 0.0003 0.0086 0.0005 0.0064 0.0003 0.0080 0.0003 0.0022 0.0002 0.0014 0.0001 0.0009 0.0002
IC2 0.0026 0.0002 0.0067 0.0004 0.0012 0.0002 0.0045 0.0002 0.0007 0.0002 –0.0021 0.0001 –0.0004 0.0002
IC3 0.0054 0.0002 0.0078 0.0004 0.0050 0.0002 0.0060 0.0003 0.0016 0.0001 0.0004 0.0002 0.0027 0.0001
IC4 0.0054 0.0003 0.0099 0.0005 0.0038 0.0003∗∗ 0.0076 0.0004∗∗ 0.0015 0.0002 –0.0012 0.0001 –0.0006 0.0002
IC5 0.0046 0.0002∗∗ 0.0097 0.0004∗∗ 0.0053 0.0002 0.0057 0.0003 0.0035 0.0002 0.0005 0.0001 0.0015 0.0001
IC6 0.0050 0.0002∗ 0.0090 0.0004∗ 0.0052 0.0002 0.0050 0.0002 0.0014 0.0002 0.0022 0.0001 0.0026 0.0002
IC7 0.0030 0.0002 0.0055 0.0003 0.0031 0.0002 0.0048 0.0002 0.0011 0.0001 –0.0016 0.0001 0.0005 0.0001
IC8 0.0080 0.0004∗∗ 0.0178 0.0007∗∗ 0.0073 0.0004 0.0112 0.0005 0.0056 0.0003 0.0013 0.0002 –0.0008 0.0003
IC9 0.0045 0.0003 0.0069 0.0004 0.0029 0.0002 0.0039 0.0003 0.0001 0.0002 0.0005 0.0002 0.0010 0.0002
IC10 0.0060 0.0003∗ 0.0119 0.0005∗ 0.0042 0.0002 0.0051 0.0002 0.0042 0.0003 0.0006 0.0004 0.0042 0.0004
IC11 0.0043 0.0002∗∗ 0.0110 0.0004∗∗ 0.0041 0.0001 0.0046 0.0002 0.0030 0.0003 0.0018 0.0003 0.0052 0.0003
IC12 0.0056 0.0002∗∗ 0.0120 0.0004∗∗ 0.0055 0.0002 0.0065 0.0002 0.0062 0.0002 0.0009 0.0002∗∗ 0.0024 0.0002
IC13 0.0043 0.0001∗ 0.0074 0.0002∗ 0.0048 0.0001 0.0037 0.0002 0.0024 0.0001 0.0014 0.0001 0.0032 0.0001
IC14 0.0039 0.0002 0.0053 0.0003 0.0030 0.0002∗∗ 0.0047 0.0002∗∗ 0.0021 0.0001 –0.0003 0.0001 0.0008 0.0001
IC15 0.0042 0.0002 0.0059 0.0003 0.0037 0.0001 0.0044 0.0002 0.0034 0.0001 0.0002 0.0001∗∗ 0.0006 0.0001
IC16 0.0065 0.0003 0.0102 0.0005 0.0065 0.0003 0.0058 0.0003 0.0042 0.0002 0.0008 0.0002 0.0020 0.0002
IC17 0.0063 0.0003∗ 0.0113 0.0005∗ 0.0059 0.0003 0.0063 0.0003 0.0037 0.0003 0.0007 0.0003 0.0028 0.0003
IC18 0.0046 0.0002 0.0064 0.0003 0.0054 0.0002 0.0044 0.0002 0.0025 0.0001 –0.0006 0.0001 0.0017 0.0001
IC19 0.0042 0.0003∗ 0.0104 0.0005∗ 0.0022 0.0003∗∗ 0.0076 0.0003∗∗ 0.0032 0.0002 –0.0007 0.0002 –0.0011 0.0002
IC20 0.0035 0.0002∗ 0.0067 0.0004∗ 0.0037 0.0002 0.0046 0.0002 0.0016 0.0001 –0.0021 0.0001 –0.0006 0.0001
IC21 0.0039 0.0002∗∗ 0.0106 0.0003∗∗ 0.0041 0.0002 0.0052 0.0002 0.0016 0.0001 0.0009 0.0001 0.0025 0.0001
∗p < 0.10; ∗∗p < 0.05.
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Fig. 1. The association between IGF-1 levels and intrinsic func-
tional connectivity (i.e., neural network activity) in adults without
or with an APOE4 genotype (“positive”, “negative”). Blue circles
and red stars respectively represent APOE4 negative and APOE4
positive participants. ∗p < 0.05.

Fig. 2. The association between IGF-1 levels and Fronto-Cingular
network (i.e., neural network activity) in adults in different sex
(“Female”, “Male”). Pink squares and blue triangles respectively
represent Female and Male participants. ∗p < 0.05.

effects on cognitive function. In participants over 90
years old, it was shown to be beneficial [24]; how-
ever with adults around the age of 70, the effect was
unfavorable [56].

This is the first study to analyze brain network
activities, the marker of metabolic function IGF-1,

Fig. 3. The association between IGF-1 levels and localized net-
works like Sensorimotor (i.e., neural network activity) in adults in
different ages (“Early Mid- life”, “Mid-life”, and “Late Mid-life”).
Blue circles, red circle and green circles respectively represent
early mid-life (40–52 years), mid-life (52–59 years) and later-life
(≥59 years) participants. ∗p < 0.05.

and several different AD risk factors (as moderators)
together. This study is based on a large population
sample, and the pattern of results offer more insights
than focusing on only the DMN. There are some lim-
itations in this study. Associations that we discovered
were not longitudinal. IGF-1 associations were mod-
est in effect size, where longitudinal data may help to
confirm robustness and utility of different relation-
ships. According to other research, neural network
activity may substantially differ in mid-life, late-life,
and “oldest old” people (over 90 s) [24]. Therefore,
the ages range (40–70 years old) of our study may
not be wide enough. Finally, due to the exploratory
nature of this study into all latent neural networks, it
was not feasible to correct for type 1 error using Bon-
ferroni or other test-level corrections. While we tried
to use MANCOVA omnibus analyses to control type 1
error, the number of outcomes made it unlikely these
omnibuses would be significant. Therefore, results
should be interpreted with caution.

In conclusion, higher IGF-1 showed modest pos-
itive relationships with several neural networks as
modified by APOE4 status, age, and sex.
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