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Abstract.
Background: We previously introduced a machine learning-based Alzheimer’s Disease Designation (MAD) framework for
identifying AD-related metabolic patterns among neurodegenerative subjects.
Objective: We sought to assess the efficiency of our MAD framework for tracing the longitudinal brain metabolic changes
in the prodromal stage of AD.
Methods: MAD produces subject scores using five different machine-learning algorithms, which include a general linear
model (GLM), two different approaches of scaled subprofile modeling, and two different approaches of a support vector
machine. We used our pre-trained MAD framework, which was trained based on metabolic brain features of 94 patients
with AD and 111 age-matched cognitively healthy (CH) individuals. The MAD framework was applied on longitudinal
independent test sets including 54 CHs, 51 stable mild cognitive impairment (sMCI), and 39 prodromal AD (pAD) patients
at the time of the clinical diagnosis of AD, and two years prior.
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Results: The GLM showed excellent performance with area under curve (AUC) of 0.96 in distinguishing sMCI from pAD
patients at two years prior to the time of the clinical diagnosis of AD while other methods showed moderate performance
(AUC: 0.7–0.8). Significant annual increment of MAD scores were identified using all five algorithms in pAD especially
when it got closer to the time of diagnosis (p < 0.001), but not in sMCI. The increased MAD scores were also significantly
associated with cognitive decline measured by Mini-Mental State Examination in pAD (q < 0.01).
Conclusion: These results suggest that MAD may be a relevant tool for monitoring disease progression in the prodromal
stage of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
cause of dementia. In 2020, it was estimated that
58.66 million people suffer from dementia, and this
number is expected to increase to 152 million by
2050 [1]. AD can be definitively diagnosed after
death by testing brain tissue in an autopsy and iden-
tifying the pathological hallmarks of AD, such as
amyloid plaques and neurofibrillary tangles [2]. Prob-
able and possible diagnosis can be made based on
clinical assessment [3]. However, these clinical indi-
cators emerge in the later disease stages, and the
clinical diagnosis of AD is modestly sensitive, but
remarkably nonspecific under a wide range of evalu-
ation criteria (sensitivity: 70.9%–87.3%, specificity:
44.3%–70.8%) when compared to postmortem diag-
nosis [4].

The ability to monitor the progression of AD
in clinical practice has important consequences
for patient care. Not only would identifying those
patients with MCI who are at risk of developing
AD allow for a judicious prescription of disease-
modifying pharmaceuticals (such as aducanumab
[5]), but a paradigm of early detection and diag-
nosis can allow the time required for the effects
of non-pharmaceutical approaches in delaying the
onset or severity of symptoms to manifest, such as
the purposeful maintenance of cognitive reserve or
social stimulation therapy [6]. A number of neu-
roimaging studies have shown that the changes
in levels of amyloid-�42, levels of phosphorylated
tau, and temporoparietal hypometabolism on 18F-
fluorodeoxyglucose (18F-FDG) positron emission
tomography (PET) can be considered as complemen-
tary AD diagnostic markers [7], which may be able
to diagnose AD a couple years prior to clinical symp-
toms.

18F-FDG is the most widely used radiotracer for
PET, which can monitor the glucose metabolic activ-

ity in different regions of the brain in vivo. It has been
suggested that 18F-FDG-PET can identify functional
changes before anatomical changes occur [8]. The
pattern of hypometabolism in the posterior cingulate
gyrus, parahippocampal gyrus, posterior parietal cor-
tex, middle and inferior temporal gyri regions have
been consistently reported in 18F-FDG-PET studies
in AD, compared to age-matched cognitively healthy
individuals [9, 10]. A systemic review suggested that
using 18F-FDG-PET can achieve moderate level of
sensitivity (78–98%) and specificity (78–99%) for
early detection of AD [11].

Recent development of machine learning tech-
niques showed promising potential in aiding
18F-FDG-PET readings with improved prediction
performance (i.e., classification accuracy: 85% to
100%) [12]. Previously, we developed a machine
learning-based Alzheimer’s Disease Designation
(MAD) algorithm that summarizes the whole-brain
metabolic activity into a single value (i.e., MAD
score) using different machine-learning algorithms
such as a general linear model (GLM), scaled subpro-
file modeling (SSM), and a support vector machine
(SVM) [13]. MAD reliably classified patients with
early-stage AD versus age-matched healthy controls
with high sensitivity (84%) and specificity (95%) in
10-fold cross-validation. A higher MAD score would
imply an AD-related metabolic pattern and advanced
cognitive impairment [13]. The MAD score was used
as an informative metric for early detection of AD
conversion at cross-sectional analysis [13]. However,
it has not been tested if MAD can also be used to mon-
itor disease progression (e.g., would a non-increasing
MAD score in response to anti-AD treatment suggest
that disease progression has been deterred?).

In this study, we sought to test the reliability of
the MAD framework for monitoring AD progression
in the prodromal stage (i.e., mild cognitive impair-
ment, MCI). MCI is a stage before the mild AD
stage, where a patient can maintain most of daily
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functions independently while cognitive abnormal-
ities can be detected with comprehensive clinical
testing. It is the earliest stage when symptoms may be
evident. To this end, we applied our pre-trained MAD
framework, as developed in [13], on a set of longi-
tudinal 18F-FDG-PET scans that we have identified
from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI; https://adni.loni.usc.edu/) database.
We tested if MAD scores can discriminate MCI
patients who progress to AD (pAD) versus who
do not (sMCI). We validated the performance of
five different prediction models included in MAD
for monitoring the AD progression. We have also
assessed if the prospective changes in MAD scores
are correlated with the changes in cognitive deterio-
rations in the MCI stage of AD progression.

MATERIALS AND METHODS

Machine learning-based Alzheimer’s disease
Designation (MAD)

The details about the development of MAD
have been described elsewhere [13]. Briefly, to
train the MAD classifiers, we used 111 cogni-
tively healthy (CH) individuals (mean age ± sd:
75.3 ± 6.4, age range: 63–94, 55 female, Mini-
Mental State Examination (MMSE): 29.0 ± 1.1) and
94 patients with AD (mean age ± sd: 75.5 ± 8.3,
age range: 56–90, 35 female, MMSE: 24.2 ± 1.8)
from the ADNI dataset. All 18F-FDG-PET image
pre-processing was performed using Statisti-
cal Parametric Mapping (SPM) toolbox version 12
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).
As described in [13], we used the “old spatial nor-
malization” routine with the PET template available
in SPM12. Next, the 18F-FDG-PET images were
smoothed using an 8-mm full width at half maximum
Gaussian kernel. Finally, intensity normalization
was conducted by dividing the PET values by the
mean of whole-brain activity. The performance of
the MAD framework was assessed based on the
GLM, SSM, and SVM classification methods. Two
different approaches were used in the SSM, where a
principal component analysis (PCA) is used to derive
the dominant brain metabolic patterns that explain
the majority of the metabolic covariance [14].
SSM/PCA1 uses the single principal component
(PC) that provides maximum separation between
two groups. SSM/PCA2 uses a stepwise regression
to combine relevant PCs to produce the optimal
spatial metabolic pattern that separates the two

groups. For the optimization routine in SVM (i.e.,
the most widely used machine learning technique for
neuroimaging-based biomarker development [12]),
we employed the iterative single data algorithm
(ISDA) and sequential minimal optimization (SMO).
All five prediction models exhibited a desirable
classification accuracy for distinguishing AD
patients and CHs through 10-fold cross-validation
(i.e., sensitivity >0.75, specificity >0.75), while
the best performance was achieved by SVM-ISDA
model (sensitivity = 0.84, specificity = 0.95). Further
details related to the MAD framework can be found
in [13], and the MAD software is available at:
https://www.kolabneuro.com/software1.

Subject selection

The data used in this study was obtained from
the ADNI. The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investi-
gator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic
resonance imaging (MRI), PET, other biological
markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of
MCI and early AD. The ADNI database comprised
over 2600 subjects. For up-to-date information, see
https://www.adni-info.org.

We queried the ADNI database for CH and MCI
with 18F-FDG-PET availability resulting in 261 CH
and 461 MCI. Quality assurance of the images was
performed (e.g., inclusion of the entire cerebellum).
Patients who were diagnosed with AD at baseline
were not considered for the purpose of this study. Par-
ticipants who were consecutively scanned (2 times for
CH and 3 times for MCI) and were not included in
the original MAD development [13] were included.
MCI patients were divided into prodromal AD (pAD)
versus stable MCI (sMCI), depending on the AD
diagnosis during the follow-up period. pAD without
at least two years of scans prior to the AD diagno-
sis were excluded. As a result, we included 54 CH,
51 sMCI, and 39 pAD in this study (Supplementary
Figure 1). For pAD, Year 0 was defined as the year of
AD diagnosis, and thus the prior scans were defined
as Year –1 and Year –2. To use the consistent nomen-
clature and to simplify the result presentation, the first
scan was defined as Year –2 for CH and sMCI as well.
The details have been described elsewhere [15].

Demographic information of all participants is
presented in Table 1, which include five neuropsychi-
atric exam scores: MMSE (a short screening tool for

https://adni.loni.usc.edu/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.kolabneuro.com/software1
https://www.adni-info.org
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Table 1
Demographic information and clinical follow-up data

CH (N = 54) sMCI (N = 51) pAD (N = 39) p∗ p∗∗

Year 0$ Males/females 30/24 25/26 26/13 0.24 0.09
Age mean (SD) 75.81 (5.87) 74.97 (5.68) 73.84 (7.46) 0.33 0.41

MMSE mean (SD) 28.80 (2.10) 28.12 (2.57) 24.74 (2.89) <0.001 <0.001
CDR (SD) 0.03 (0.11) 0.35 (0.37) 0.57 (0.18) <0.001 <0.001
GDS (SD) 0.63 (1.33) 1.43 (1.23) 2.33 (1.84) <0.001 0.01
FAQ (SD) 0.15 (0.56) 3.69 (5.76) 10.03 (5.45) <0.001 <0.001

NPI-Q (SD) 0.23 (0.33) 2.22 (2.92) 3.56 (3.26) <0.001 0.03
Year –1 MMSE mean (SD) n/a 28.29 (2.10) 26.13 (2.56) <0.001 <0.001

CDR (SD) n/a 0.32 (0.28) 0.55 (0.15) <0.001 <0.001
GDS (SD) n/a 1.43 (1.50) 2.03 (1.75) 0.09 0.09
FAQ (SD) n/a 2.61 (4.32) 6.18 (5.32) <0.001 <0.001

NPI-Q (SD) n/a 2.16 (2.91) 2.54 (2.93) 0.54 0.54
Year –2 MMSE mean (SD) 28.91 (1.37) 28.29 (1.57) 26.87 (1.54) <0.001 <0.001

CDR (SD) 0.02 (0.09) 0.30 (0.25) 0.50 (0.00) <0.001 <0.001
GDS (SD) 0.50 (1.12) 1.18 (1.22) 1.67 (1.36) <0.001 0.07
FAQ (SD) 0.07 (0.33) 2.10 (3.24) 5.32 (4.22) <0.001 <0.001

NPI-Q (SD) 0.30 (0.94) 1.29 (2.34) 2.49 (2.60) <0.001 0.03

CH, cognitively healthy; sMCI, stable mild cognitive impairment; pAD, prodromal Alzheimer’s disease; MMSE, Mini-Mental State Exam-
ination; N, number of subjects; CDR, Clinical Dementia Ratio; FAQ, Functional Assessment Questionnaire; GDS, Geriatric Depression
Scale; NPI-Q, Neuropsychiatric Inventory Questionnaire; n/a, not available, SD, standard deviation. ∗statistical test among three groups.
∗∗statistical test between MCI and pAD. The sex ratio is compared by the chi-square test. $For AD, this is the time that the subjects were
clinically diagnosed with AD.

assessing overall cognitive impairment, score ranges
from 0 (worst) to 30 (best)) [16], Clinical Dementia
Rating Scale (CDR; a screening tool for dementia,
score ranges from 0 (best) to 3 (worst)) [17], Geri-
atric Depression Scale (GDS; a self-report scale for
symptoms of depression, score ranges from 0 (best)
to 15 (worse)) [18], Functional Activities Question-
naire (FAQ; measuring the complex activities of daily
living, score ranges from 0 (best) to 20 (worse)) [19],
and Neuropsychiatric Inventory Questionnaire (NPI-
Q; psychopathology assessment including delusions,
anxiety, hallucinations, dysphoria, lability, euphoria,
disinhibition irritability, apathy, agitation/aggression,
and aberrant motor behavior factors, score ranges
from 0 (best) to 36 (worse)) [20].

Statistical analysis

MAD scores using five different approaches were
estimated for all participants as described above.
MAD scores represents z-scores relative to the mean
and standard deviation of 111 control subjects that
were used in MAD classifier training [13]. The area
under curve (AUC) of receiver-operating character-
istic (ROC) curve analysis was used to compute the
performance of MAD and other clinical variables in
discriminating pAD versus sMCI subjects at base-
line. Differences in MAD scores between groups (i.e.,
MCI versus AD) over time were assessed with gen-
eral linear model with repeated measures (GLM-RM)

with sex and age at baseline as covariates followed by
post-hoc Bonferroni test. As a reference, the longitu-
dinal changes of MAD scores in CH was separately
analyzed with paired t-test. The associations between
longitudinal changes in MAD scores and changes in
clinical measurements (MMSE, GDS, NPI, and FAQ)
were assessed by a multiple linear regression analy-
sis with dummy variables for subjects. Secondarily,
to examine whether the association between other
clinical variables (GDS, NPI, and FAQ) were mainly
driven by cognitive impairment, the multiple lin-
ear regression analysis was repeated with including
MMSE as a covariate. The p-values were corrected
for multiple comparisons using a false discovery rate
method, which is denoted by q-values. For all statisti-
cal tests, p (or q) <0.05 was considered as significant.
All statistical analyses were conducted with the Sta-
tistical Package for the Social Sciences (IBM-SPSS
Statistics, version 27) and Matlab 2017b (Mathworks,
Inc., Natick, MA).

RESULTS

Discrimination of sMCI from pAD patients at
MCI stage (baseline)

Although the means were statistically different
between the sMCI versus pAD (Table 1), the ROC
curve analysis of clinical variables showed rela-
tively low AUC for separating the two groups at
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Fig. 1. The ROC curves for discrimination of sMCI subjects from those that progress to AD subjects at Year –2. A) clinical variables, B)
MAD scores.

Year –2, ranging from 0.50 to 0.69 (Fig. 1A). The
imaging-based discriminations (i.e., MAD) generally
produced higher AUC (>0.7) while the GLM showed
the best performance of AUC = 0.96. The other meth-
ods showed moderate performance (AUC: 0.7–0.8)
(Fig. 1B).

Longitudinal changes in MAD scores

To examine whether all five MAD scores were
affected by the longitudinal changes in brain
metabolic activity occurring in pAD prior to the AD
diagnosis, we conducted a 2 × 3 GLM-RM analysis
(Group: sMCI versus pAD × Time: Year –2, –1, and
0). Significant interaction effects were observed in all
five MAD scores (GLM: F (1, 89) = 41.31, p < 0.001;
SSM/PC1: F (1, 89) = 16.26, p < 0.001; SSM/PC2:
F (1, 89) = 30.85, p < 0.001; SVM/ISDA: F (1,
89) = 46.35, p < 0.001; SVM/SMO: F (1, 89) = 42.82,
p < 0.001), while the SVM/ISDA showed the most
significant effects. This result is in line with our previ-
ous study reporting that SVM/ISDA showed the best
performance in predicting the future development of
AD from MCI state [13].

Post-hoc analyses confirmed significant increase
of MAD scores over time within pAD contrasting
the year of AD diagnosis versus 1 or 2 years prior, in
all five different approaches (p < 0.001). In the earlier
stage (contrasting Year –2 versus –1), four different
MAD approaches showed significant increase over
time (p < 0.01) but not for SSM/PCA1 (p = 0.18). On
the contrary, sMCI patients showed relatively sta-
tionary MAD scores over time when compared for
1 year apart (p > 0.08). When compared for 2 years

apart in sMCI cohort (Year 0 versus Year –2), a
small but significant increment was observed in MAD
scores when assessed with SSM/PCA2 (p = 0.02),
SVM/ISDA (p = 0.04), and SVM/SMO (p = 0.04), but
not with GLM (p = 0.14) or SSM/PCA1 (p = 0.17).
For details of post-hoc analysis results, see Fig. 2
and the Supplementary Material. As expected, CH
group also showed relatively stationary MAD scores
over 2 years (p > 0.85) except for the GLM-based
scores (t(53) = 2.92, p = 0.02, paired-sample t-test)
(Fig. 2).

Clinical relevance of longitudinal changes in
MAD scores

We utilized a multiple linear regression analysis to
determine whether the changes in MAD scores over
time correlated changes in clinical scores in sMCI and
pAD groups, respectively. The summary of results is
displayed in Fig. 3.

In the pAD group, changes in the overall cognitive
performance measured by MMSE were signifi-
cantly correlated with longitudinal changes in MAD
scores in all five algorithms (q < 0.01), i.e., GLM
(t(77) = –3.91, q < 0.001), SSM/PCA1 (t(77) = –2.73,
q < 0.001), SSM/PCA2 (t(77) = –3.44, q < 0.001),
SVM-ISDA (t(77) = –3.17, q < 0.001), and SVM-
SMO (t(77) = –2.93, q = 0.009). In the sMCI group,
we observed a weaker but significant correlation
between changes in MMSE and with changes in
SSM/PCA2 scores (t(101) = –2.43, q = 0.029), while
other prediction algorithms (i.e., GLM, SSM/PCA1,
SVM-ISDA, and SVM-SMO) did not show any sig-
nificant correlation (q > 0.10).
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Fig. 2. Box plots representing the results of MAD scores on CH, sMCI, and pAD groups at different time points (i.e., Year –2, Year –1, and
Year 0) calculated using different MAD approaches. A) GLM, B) SSM/PCA1, C) SSM/PCA2, D) SVM-ISDA, and E) SVM-SMO. Group
(sMCI versus pAD) × time (Year –2, –1, and 0) comparison was analyzed with GLM-RM with age and sex as covariates, followed by post
hoc Bonferroni test. The effect of time in CH was evaluated using paired t-test. These results show a significant annual increment of MAD
scores prior to dementia diagnosis in pAD by all five prediction models. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Weaker, yet significant associations were observed
between changes in depressive symptoms mea-
sured by GDS and MAD scores estimated by the
SSM/PCA1 (t(77) = 2.56, q = 0.023) and SSM/PCA2
(t(77) = 2.72, q = 0.015) in the pAD group. No sig-
nificant association was observed in sMCI (q > 0.5).
Similarly, changes in neuropsychiatric symptoms
measured by NPI were also significantly corre-
lated with changes in MAD scores estimated by
SVM-ISDA (t(77) = 2.47, q = 0.028), and SVM-SMO

(t(77) = 2.57, q = 0.023), but not by other algorithms
(q > 0.05). In the sMCI group, we observed a sim-
ilar correlation with NPI scores over time with
MAD scores estimated by SSM/PCA1 (t(101) = 2.18,
q = 0.047) and SSM/PCA2 (t(101) = 2.28, q = 0.040),
but not by other prediction algorithms (q > 0.05). Of
note, these correlations were abolished when cor-
rected for MMSE in both pAD and sMCI (q > 0.18).

In pAD, changes in the overall daily activities
measured by FAQ were associated with changes in
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Fig. 3. Longitudinal association across neuropsychological measures and MAD scores within each group, determined by multiple regression
analysis. A) sMCI group, B) pAD group. MMSE: Mini-mental state examination; GDS: Geriatric Depression Scale; FAQ: Functional
Assessment Questionnaire; NPI-Q: Neuropsychiatric Inventory Questionnaire. ∗q < 0.05, ∗∗q < 0.01, ∗∗∗q < 0.001 corrected for multiple
comparisons using false discovery rate. The color bar stands for t-test values, whereas the numbers inside the cells are beta values obtained
from a multiple linear regression analysis. These results show strong correlations between changes in MAD scores and cognitive performance
in pAD.

MAD scores estimated by all five different algo-
rithms (GLM, t(77) = 3.52, q = 0.001; SSM/PCA1,
t(77) = 2.77, q = 0.014; SSM/PCA2, t(77) = 3.69,
q = 0.001; SVM-ISDA, t(77) = 3.83, q < 0.001; and
SVM-SMO, t(77) = 3.53, q = 0.001). In the sMCI
group, a correlation was observed between changes
in FAQ and MAD scores estimated by SSM/PCA2
(t(101) = 3.38, q = 0.002), SVM-ISDA (t(101) = 2.32,
q = 0.003) and SVM-SMO (t(101) = 2.32, q = 0.003),
but not by GLM or SSM/PCA1 (q > 0.08). These cor-
relations were abolished, however when corrected for
MMSE in both pAD and sMCI (q > 0.18).

DISCUSSION

As expected, we found that MAD in general shows
superior AUC than other clinical variables (Fig. 1).
Most notably, GLM method showed AUC of 0.96.
However, this result should be interpreted with cau-
tions because the sample size was further reduced
from our previous study [13], i.e., we previously
included all MCI patients with baseline FDG PET
scans, then stratified them according to their clinical
follow-up diagnosis, which resulted in higher num-
ber of subjects (pAD: n = 55; sMCI: n = 186). This
resulted in moderate sensitivity (0.655) and speci-
ficity (0.720) [13]. In the present study, however,

we applied different inclusion criteria for pAD (at
least two FDG PET scans prior to AD diagnosis) and
sMCI (at least three consecutive FDG PET scans),
resulting in much lesser sample size (pAD: n = 39,
sMCI: n = 51), which may have introduced an unspe-
cific bias, e.g., most sMCI patients showed negative
MAD-GLM scores (Fig. 2A). Further work using
GLM and 18F-FDG-PET is required to confirm this
finding.

We have confirmed that the MAD scores increased
annually prior to dementia diagnosis in pAD by all
five prediction models (Fig. 2). Greater increment
was observed when it was closer to the time of diagno-
sis (Year –1 versus Year 0), then the prior years (Year
–2 versus Year –1). The effect size was the great-
est when SVM-ISDA was used, which also showed
the greatest group differentiation (AD versus CH)
in cross-sectional analysis [13]. In sMCI and CH,
no significant increase was observed when assessed
annually. When compared for two years apart, there
was a significant increase of MAD scores in sMCI
with SSM/PCA1, SVM-ISDA, or SVM-SMO, and
in CH with GLM. This was in line with our pre-
vious study where we showed that age, one of the
most significant risk factors for AD development,
was correlated with MAD scores in CH and sMCI
[13]. Older age has also been associated with other
neuroimaging-based markers for AD such as hip-
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pocampal volume [21], white matter hyperintensities
[22], whole-brain structural MRI patterns [23], and
cortical atrophy patterns [24].

It is yet unclear whether the abnormal glucose
metabolic pattern that we see in FDG-PET is specific
to AD or it merely reflects accelerated aging pro-
cess in AD. Unlike other tracers that bind to specific
proteins that characterizes AD such as florobetapir
[25], florbetaben [26], flutemetamol [27], and flor-
taucipir [28], the FDG uptake level represents overall
“health” of the brain regions, the decline of which
is potentially associated with neuronal loss, mito-
chondrial dysfunction, loss of synaptic activities, or
a combination of these [29]. In fact, we have recently
demonstrated that MAD scores were also elevated in
some patients with other types of dementia such as
dementia with Lewy bodies, frontotemporal demen-
tia, and primary progressive aphasia, suggesting the
non-specificity of FDG-PET-based markers for AD in
non-AD dementia [30]. And, it has been previously
demonstrated that AD patients also show an accel-
erated pattern of morphological [31] and metabolic
[32] changes associated with healthy aging itself. In
addition, cognitive decline due to normal aging has
been linked to the presence of some pathological
features (such as lipofuscin, argyrophilic grains, neu-
romelanin, tau pathology, and corpora amylacea) that
are related to AD [33].

Of note for the current study, the yearly increments
of MAD scores were significantly correlated with
worsening of cognitive symptoms in pAD that was
confirmed in all five prediction models (Fig. 3). Other
clinical variables (depression, psychiatric symptoms,
and daily activities) were also correlated with MAD
scores, although it may have been primarily driven
by cognitive decline, i.e., inclusion of MMSE as
a covariate abolished the statistical significance.
Interestingly, changes in MAD score determined by
SSM/PCA2 was correlated with changes in MMSE
in sMCI, albeit there was only 0.17 points decrease
in MMSE over 2 years (compared to 2.13 points
decrease in pAD).

GLM showed the best association with clinical
symptom progression (i.e., MMSE) in pAD (Fig. 3).
This is not surprising because GLM finds a beta-
map (a “reference” vector) that maximizes the group
differences of its dot-products with each subjects’
vectorized FDG-PET scans. And thus, the most
“progressed” patients may have greater impact on
beta-value definition. This is similar in SSM meth-
ods, except that the patterns are defined to maximize
the variance-accounted-for in the spatial covariance

across the whole-brain. On the other hand, SVM-
based scores are estimated by the dot-product of
residual images of each subject and the orthonor-
mal vector to the hyperplane. And SVM’s hyperplane
(i.e., the optimal line or decision boundary in the
SVM algorithm that separates groups) was trained to
maximize the margins between support vectors (i.e.,
the vectorized FDG-PET scans of subjects whose dis-
tance was the closest to the hyperplane). Therefore,
the scale of dot-product is not meant to be relevant
while the sign of it determines the label of the classi-
fier (AD versus NL). Consequently, it is not surprising
that the z-scores of SVM-based scores are much more
variable than GLM- and SSM-based scores (Fig. 2).

It should be noted that MAD topology is not
exclusively characterized by hypometabolism, but
a large hypermetabolic area including the cerebel-
lum, thalamus, and paracentral lobule, also consist
of its topology [13]. Using graph theory, we have
previously demonstrated that these hypermetabolic
regions are the key brain regions with higher between-
ness centrality (or hub of information flow) in the
GLM-based AD-related brain metabolic network
[15]. In pAD, these “hub” regions showed annually
increasing FDG uptake prior to the diagnosis of AD
while no further decrease of hypometabolism was
observed [15]. In the current study, we demonstrated
that increasing MAD scores were associated with
cognitive decline prior to dementia diagnosis, poten-
tially suggesting that the hypermetabolism identified
in pAD and AD may also be detrimental (albeit its
potential role as a compensatory mechanism cannot
be ruled out).

Conclusion

This study was conducted to validate our MAD
framework for longitudinal studies in the prodromal
stage of AD. To this end, we applied a MAD frame-
work on a set of longitudinal 18F-FDG-PET scans
acquired from 54 CHs, 51 sMCI, and 39 pAD sub-
jects at the time of the clinical diagnosis of AD, and
two years prior. All five MAD scores successfully dif-
ferentiated pAD versus sMCI. An annual increment
of MAD scores were confirmed through five differ-
ent machine-learning algorithms. Changes in MAD
scores were also significantly correlated with worsen-
ing clinical symptom severity in pAD. These results
suggest that MAD may be a relevant tool for moni-
toring disease progression in the prodromal stage of
AD.
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