
Journal of Alzheimer’s Disease 90 (2022) 1771–1791
DOI 10.3233/JAD-220551
IOS Press

1771

Investigating Tissue-Specific Abnormalities
in Alzheimer’s Disease with Multi-Shell
Diffusion MRI

Diana L. Giraldoa,b,c, Robert E. Smithd,e, Hanne Struyfsf , Ellis Niemantsverdrietf , Ellen De Roeckf,g,
Maria Bjerkef,h, Sebastiaan Engelborghsf,i, Eduardo Romeroa, Jan Sijbersb,c and Ben Jeurissenb,c,j,∗
aComputer Imaging and Medical Applications Laboratory - Cim@Lab, Universidad Nacional de Colombia,
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Abstract.
Background: Most studies using diffusion-weighted MRI (DW-MRI) in Alzheimer’s disease (AD) have focused their
analyses on white matter (WM) microstructural changes using the diffusion (kurtosis) tensor model. Although recent works
have addressed some limitations of the tensor model, such as the representation of crossing fibers and partial volume effects
with cerebrospinal fluid (CSF), the focus remains in modeling and analyzing the WM.
Objective: In this work, we present a brain analysis approach for DW-MRI that disentangles multiple tissue compartments
as well as micro- and macroscopic effects to investigate differences between groups of subjects in the AD continuum and
controls.
Methods: By means of the multi-tissue constrained spherical deconvolution of multi-shell DW-MRI, underlying brain tissue
is modeled with a WM fiber orientation distribution function along with the contributions of gray matter (GM) and CSF to
the diffusion signal. From this multi-tissue model, a set of measures capturing tissue diffusivity properties and morphology
are extracted. Group differences were interrogated following fixel-, voxel-, and tensor-based morphometry approaches while
including strong FWE control across multiple comparisons.
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Results: Abnormalities related to AD stages were detected in WM tracts including the splenium, cingulum, longitudinal
fasciculi, and corticospinal tract. Changes in tissue composition were identified, particularly in the medial temporal lobe and
superior longitudinal fasciculus.
Conclusion: This analysis framework constitutes a comprehensive approach allowing simultaneous macro and microscopic
assessment of WM, GM, and CSF, from a single DW-MRI dataset.

Keywords: Alzheimer’s disease, cerebrospinal fluid, cognitive dysfunction, dementia, diffusion MRI, gray matter, white
matter

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative
brain disease that causes cognitive impairment and
is the most common cause of dementia. In the AD
continuum, when individuals exhibit symptoms of
cognitive dysfunction but their activities of daily liv-
ing are not affected, they are diagnosed with mild
cognitive impairment (MCI). Brain atrophy is rec-
ognized as one of the pathological features most
proximate to cognitive decline [1]. Early observa-
tional studies using magnetic resonance imaging
(MRI) identified hippocampal [2] and medial tempo-
ral lobe atrophy [3] as macroscopic landmarks of the
disease [4], which are nowadays accepted as biomark-
ers for disease staging and risk assessment [1, 5].

Several studies have investigated the effect of AD
on brain anatomy using MRI, most of them focused
on gray matter (GM) degeneration and cortical atro-
phy patterns [6–18]. In contrast to structural MRI,
diffusion-weighted MRI (DW-MRI) allows revealing
microstructural effects of AD, mostly in the white
matter (WM) where the diffusion of water is shaped
by the architecture of axonal membranes and myelin
sheaths. Most diffusion studies in AD and MCI
have used the diffusion tensor model and its derived
metrics, such as fractional anisotropy (FA) and
mean diffusivity (MD), to detect WM degeneration
induced by the disease. Consistent findings across
tensor-based studies reveal a widespread increase
of MD in the WM and decrease of FA in certain
WM areas including the splenium, cingulum bundle,
superior longitudinal fasciculus, uncinate fascicu-
lus, and parahippocampal gyrus [19–24]. Research
in the early stages of AD has suggested that WM
microstructural degeneration is not always secondary
to neuronal loss [25] and may be an early pathologi-
cal feature preceding detectable hippocampal atrophy
[26, 27].

Some studies have also reported a counter-intuitive
increase of FA in crossing fiber areas such as the corti-

cospinal tracts for AD patients compared to controls
[20, 21, 28]. The increase of FA can be explained
by the partial loss or degeneration of specific fiber
populations in WM regions where multiple fiber
bundles with different directions meet, which are
both highly prevalent in the human brain WM [29]
and cannot be faithfully represented by the diffusion
tensor model. More complex models are therefore
needed to infer fiber-specific information from dif-
fusion MRI. Constrained spherical deconvolution
(CSD) was introduced to overcome that limitation
by modeling the WM in each voxel as a continuous
fiber orientation distribution function (fODF) [30]. To
estimate these fODFs, traditional CSD requires high
angular resolution DW-MRI acquired with a constant
non-zero diffusion weight (b-value), also referred to
as a single-shell acquisition. Fiber-specific measures
derived using CSD on single-shell data have been
recently used to investigate WM differences between
healthy controls and patients with AD, finding degen-
eration along specific fiber pathways such as the
splenium of the corpus callosum (CC), the cingulum
bundle in its posterior and parahippocampal aspects,
the uncinate fasciculus, and the arcuate fasciculus
[31].

Given the limited spatial resolution of DW-MRI,
the observed diffusion signal in a voxel might
originate from multiple tissue types and/or the sur-
rounding cerebrospinal fluid (CSF). These partial
volume effects (PVE) can affect diffusion measures
of microstructural integrity [32]. For instance, when
the PVE due to CSF contamination is corrected in
the GM, differences in MD between controls and AD
patients are attenuated [33], suggesting that previ-
ously reported diffusion abnormalities in GM areas
[34] were likely due to CSF contamination caused
by macroscopic atrophy rather than a change in
GM microstructural properties. The PVE also affects
traditional “single-shell” CSD, where the diffusion-
weighted signal is modeled solely as WM content
and thus spurious features and biases in quantitative
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parameters are produced in the presence of GM or
CSF [35].

The contribution of each tissue type to the signal
can be quantified by exploiting their distinct dif-
fusion signal dependency on the b-value. As CSF
signal decays much faster than GM and WM sig-
nals, it is possible to distinguish between CSF signal
and tissue signal using only one non-zero b-value in
conjunction with the corresponding b = 0 data. There-
fore, diffusion measures can be corrected for CSF
contamination at interfaces between WM/CSF and
GM/CSF in studies using single-shell data [31, 33,
36]. However, to reliably discriminate between WM,
GM, and CSF signal profiles, more than one non-
zero b-value is needed. When DW-MRI is acquired
with a multi-shell scheme, it is possible to separate
the observed signal in a voxel into the contributions
from each tissue type. Multi-shell multi-tissue con-
strained spherical deconvolution (MSMT-CSD) [35]
uses the different tissue signal dependencies on the b-
value to improve fODF estimation by quantifying the
portion of the signal attributed to each macroscopic
tissue type (WM-, GM-, and CSF-like). Therefore, in
addition to effectively correcting for PVE in the WM
modeling, this approach provides diffusion-derived
measures of tissue-like content within each voxel.

In this work, we aimed to exploit the advan-
tages of MSMT-CSD to investigate AD-related brain
changes using multi-shell diffusion MRI. Tissue-
specific microstructural properties are represented
by a multi-tissue model composed of the PVE-
corrected WM fODF along with the contributions
of GM and CSF to the diffusion signal. Macro-
scopic changes in brain anatomy are captured by the
deformation fields involved in spatial normalization
of multi-tissue information to a study-specific tem-
plate. Differences between control subjects, patients
with MCI, and dementia due to AD are interro-
gated by comparing fiber-specific measures of WM
integrity, local tissue-like decompositions, and local
volumetric changes. Linear relations between these
measures and CSF biomarkers were also explored in
a small sub-sample of the data. The analyses herein
presented integrate the strategies of Fixel-Based
Analysis (FBA) [37, 38], Voxel-Based Morphome-
try (VBM), and Tensor-Based Morphometry (TBM)
[39–41]. The simultaneous use of these strategies
helps to disentangle micro- and macroscopic effects,
while the employed diffusion-derived measures allow
to gain some insight into the nature of observed dif-
ferences between symptomatic stages along the AD
continuum.

MATERIALS AND METHODS

Study participants

Patients with MCI due to AD (n = 29) and AD
dementia (ADD) (n = 23), as well as cognitively
healthy controls (n = 27) were included in the study
(see Table 1). The diagnosis of MCI due to AD
and ADD was done according to the NIA-AA
research criteria [42] while taking into account clini-
cal data, neuropsychological examination, structural
MRI, and, in some cases, CSF biomarkers using
validated cutoff values [43, 44]. Control group con-
sisted of volunteers for biomarker research having
a normal neuropsychological examination and no
evidence of central nervous system pathology after
extensive investigation [45]. The study was approved
by the local ethics committee and all subjects gave
written informed consent.

All tools for data pre-processing, modelling, and
statistical analysis are available as part of the
MRtrix software package (https://www.mrtrix.org/).
The MRI data that support the findings of this study
are not publicly available due to restrictions imposed
by the administering institution and the privacy of the
participants.

Image acquisition and pre-processing

Data were acquired on a Siemens 3T MRI scan-
ner with a (32)-channel head coil using a multi-slice,
single-shot EPI, spin-echo imaging sequence. Diffu-
sion weightings of b = 0, 700, 1000 and 2800 s/mm2

were applied in 10, 25, 40, and 75 directions, respec-
tively. Other imaging parameters were: voxel size of
2.5 × 2.5 × 2.5 mm3, matrix size of 96 × 96, and 40
axial slices. During the study, the gradient set of the
MRI scanner was upgraded from 40 to 80 mT/m; fol-
lowing this upgrade, the sequence TR and TE were
changed from 6000/116 ms to 5900/83 ms, with all
other parameters remaining fixed. The acquisition
time was approximately 16 min. A T1-weighted MR
image was additionally acquired with a voxel size of
1 × 1 × 1 mm3.

Each DW-MRI dataset was pre-processed using
a state-of-the-art pipeline. Data were first denoised
using random matrix theory, thereby increasing the
signal-to-noise ratio (SNR) without spatially smooth-
ing the data [46]. Then, Gibbs-ringing artifacts were
suppressed [47], head motion and eddy current-
induced distortions were corrected [48, 49], and
inhomogeneities of the B1 field were accounted
for [50]. Finally, images were up-sampled to

https://www.mrtrix.org/


1774 D.L. Giraldo et al. / Investigating AD with Multi-Shell DW-MRI

Table 1
Description of data per group: cognitively healthy controls (CO), patients with mild cognitive impairment (MCI) due to AD, and AD dementia

(ADD)

Group Total no. of
subjects

No. of subjects
across sexes
(F/M)

Age, y mean
(sd)

No. of subjects
with CSF
biomarkers

No. of subjects
with abnormal
A�1–42

No. of subjects
before/after
upgrade

CO 27 12/15 70.3 (3.8) 8 0 19/8
MCI 29 16/13 72.0 (3.6) 19 9 15/14
ADD 23 10/13 71.4 (4.0) 10 4 19/4
All 79 38/41 71.3 (3.8) 37 13 53/26

The fourth column corresponds to the subjects for whom cerebrospinal fluid (CSF) biomarkers were examined within 3 months before/after
MRI acquisition, from this subset, patients with abnormal CSF levels of A�1–42 (<638.5 pg/mL) are presented in the fifth column. The final
column indicates the number of subjects in each group for which data were acquired before versus after the scanner hardware upgrade. Sd,
standard deviation.

1.25 × 1.25 × 1.25 mm3 to improve the accuracy of
subsequent spatial normalization [51, 52]. Prepro-
cessing was performed using MRtrix3 (version 3.0.2)
[53] (https://www.mrtrix.org/). Note that the MRtrix3
scripts invoke the “eddy” tool from FSL [48] and
“N4BiasFieldCorrection” from ANTs [50]. The T1 -
weighted image was used to compute the intracranial
volume (ICV) with SPM12 [54].

CSF biomarkers

From the 79 individuals, 37 underwent a lum-
bar puncture less than 3 months before or after
image acquisition. This subset included 8 controls,
19 patients with MCI due to AD, and 10 patients
with ADD. CSF biomarker analyses were performed
with single parameter ELISA (Fujirebio, Belgium)
kits following standard procedures [44]. CSF lev-
els of amyloid-� of 42 amino acids (A�1–42), total
tau (T-tau), and phosphorylated tau at threonine 181
(P-tau181) were considered to investigate linear rela-
tions of these biomarkers with measures derived from
multi-shell DW-MRI.

DW-MRI processing

The methodology in this work can be divided
into three parts. First, diffusion signal information
in each image voxel is decomposed into the full
WM fODF as well as the CSF and GM contributions
using MSMT-CSD. Second, the tissue decomposi-
tion maps were spatially normalized across the study
subjects by calculating a study-specific template and
transforming all the subjects’ data to this template
using a multi-channel registration method. Tissue
constituency was described with a set of measures
extracted from spatially normalized tissue maps,
while local morphology was described examining the
changes induced by the spatial normalization. In the

third step, all information was analyzed with non-
parametric hypothesis tests. A schematic overview
of the pipeline is presented in Fig. 1. All steps
were performed using MRtrix3 (version 3.0.2) [53]
(https://www.mrtrix.org/).

Multi-tissue decomposition
A multi-tissue model was obtained by applying

MSMT-CSD to each DW-MR dataset. To perform
MSMT-CSD, a representative signal response for
each of WM, GM, and CSF was estimated using an
unsupervised method based on specific tissue diffu-
sivity properties [55]. Average tissue responses were
obtained across subjects (separate average responses
were calculated for the scans acquired before the
upgrade and for those acquired after the upgrade to
facilitate consistent tissue decompositions before and
after the upgrade), and then, using these averaged
tissue responses, MSMT-CSD was applied to each
dataset. To assure WM fODF, GM, and CSF contribu-
tion maps were comparable across subjects they were
intensity normalized with a multi-tissue informed
approach [56, 57]. The resulting multi-tissue decom-
position consists of the WM fODF along with the
GM and CSF contributions to the signal, the WM
contribution map is extracted from the WM fODF as
l = 0 term of the spherical harmonic (SH) expansion
[58]. The minimum contribution of each tissue-like
component was set at 1e–8.

Spatial normalization
A study-specific template was built from a set

of 24 cases including 12 controls, 6 patients with
MCI, and 6 patients with AD. These sub-groups were
age-matched and balanced by gender. This multi-
tissue population template was constructed with an
iterative atlas building framework [59] that used a
multi-channel nonlinear diffeomorphic registration
algorithm [60] to align the fODFs as well as the GM

https://www.mrtrix.org/
https://www.mrtrix.org/
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Fig. 1. Methodology overview. In the first step, a multi-tissue decomposition is obtained from the multi-shell diffusion data. In the second
part, the information is spatially normalized to a population template calculated for the study population. In template space, each sub-
ject is represented by a set of diffusion-derived measures that capture: fiber-specific morphology (Fixel-Based Morphometry), underlying
tissue-like composition (Voxel-Based Morphometry), and local volumetric changes with respect to the population template (Tensor-Based
Morphometry). Finally, statistical analyses are conducted following non-parametric inference strategies for fixel- and voxel-wise measures
in parallel.

and CSF-like contribution maps (see Fig. 2). After-
wards, the same registration algorithm was applied to
align the multi-tissue decompositions for all partici-
pant scans to the population template.

Diffusion-derived measures
The fODF is a continuous function represented in

the SH basis, which can represent multiple fiber pop-
ulations crossing within a single voxel. To facilitate
quantification and statistical analysis, these are seg-
mented to estimate within each voxel a finite number
of discrete fiber populations [61]. The term fixel is
used to refer to a specific population of fibers oriented
in a specific direction within a voxel [62]. The inte-
gral of the fODF ascribed to each fixel is proportional
to the volume of fibers aligned in the corresponding
direction; this measure is known as apparent fiber
density (AFD) [51] and it has been demonstrated to
effectively quantify specific fiber integrity in cross-
ing fiber regions [63]. The AFD values extracted from
the fODF can be mapped to their respective fixels as
shown in Fig. 3.

During the spatial normalization process, the
multi-tissue model is warped to match the population
template. When applied to voxel maps, the warping
causes expansion or contraction of regions in the spa-
tially normalized image. In a particular voxel, this
volumetric change (with respect to the population
template) is captured by the determinant of the Jaco-
bian matrix J . This concept has been extended to the
fixel-based analysis framework by accounting for the
effect of the Jacobian transformation along different
fiber directions [37, 51]. Given a unitary vector f

specifying a fiber direction (also known as a ‘fixel’)
the change in scale along this direction is ‖Jf‖, and
the total volumetric change is the product between
‖Jf‖ and the change in the area perpendicular to f;
the latter of these is a measure of the variation in fiber
bundle cross-section (FC) [37, 51] and is calculated
as:

FC(f ) = det(J)

‖Jf‖ (1)
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Fig. 2. The study-specific population template is composed of a white matter fiber orientation distribution function (WM fODF) template
along with the voxel-wise templates containing the tissue-like contributions for GM and CSF.

Fig. 3. The fiber orientation distribution functions (fODF) can encode multiple fiber populations within a single voxel; each of these fiber
populations is described with directional elements called “fixels". In the bottom row, each fixel is here colored according to the value of
apparent fiber density (AFD).

The determinant of the Jacobian as well as the
fiber bundle cross-section measure are not absolute
measures of volume or area but rather measures
of morphological changes relative to the population
template. When one of these measures is smaller than
one, the corresponding features are smaller in the sub-
ject space than in the template space, and vice-versa.

In some neuroimaging analysis pipelines, a mod-
ulation step is carried out to adjust for the effects
of spatial normalization by combining the model-

derived spatially normalized measures with the
macroscopic changes induced by the deformation.
Although this step was conceived to capture both
mesoscopic and macroscopic abnormalities, it has
been shown that the use of modulated measures for
hypothesis testing can lead to decreased sensitivity,
probably due to the introduction of multiplicative
noise [64]. In our analyses, we treated model-derived
measures and deformation-derived measures sepa-
rately.
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To ensure model-derived measures (tissue-like
contributions and AFD) represent true fractions of
the signal, they were divided by the sum of the three
tissue-like contributions at each voxel. In template
space, each subject is described by two fixel-wise and
four voxel-wise measures. The fixel-wise measures
are the two fiber-specific measures: AFD and the FC
area. The voxel-wise measures are the three tissue-
like fractions and the determinant of the Jacobian
matrix.

Statistical analysis

Hypothesis testing to detect differences of mea-
sures between controls, MCI, and ADD patients was
done using the General Linear Model (GLM) frame-
work including age, gender, ICV, and scanner version
(before versus after update) as covariates. Analyses
of fixel- and voxel-wise measures were performed
separately and each one involved two steps: first, an
omnibus F-test was employed to detect any group
effect in any of the investigated measures. Then, post
hoc t-tests were used to identify directed pairwise
group differences for each measure only within the
brain areas that showed significant effects accord-
ing to the initial F-test. In both steps, family-wise
error (FWE) corrected p-values were calculated in a
non-parametric way using random permutations to
compute the empirical null distributions associated
with the enhanced test statistics [65–67]. In this study,
permutation testing was conducted with 5000 permu-
tations and the significance level for all tests was set
at � = 0.05.

Analyses of fixel- and voxel-wise measures fol-
lowed the principles of FBA [37, 68], VBM, and TBM
[39–41], respectively. These approaches are closely
related and include equivalent steps: data smoothing,
enhancement of the test statistic map, and calculation
of p-values with correction for multiple comparisons.
The FWE correction used in this work addresses mul-
tiple testing problems that arise from testing each
hypothesis in many fixels/voxels (MTP-I), and from
testing the multiple hypotheses that arise due to the
presence of multiple groups and multiple measures
(MTP-II) [66, 67].

Analysis of fixel-wise measures
Smoothing and statistical enhancement of fixel-

wise quantitative parameters were based on a
fixel-fixel connectivity matrix, encoding fractional
connectivity between fixels based on streamlines trac-
tography. A whole-brain tractogram of 10 million

streamlines was generated from the population fODF
template using the iFOD2 algorithm [69]; from this,
a subset of 2 million streamlines was extracted using
the Spherical-deconvolution Informed Filtering of
Tractograms (SIFT) method [61] to reduce density
biases in the reconstruction. Elements of the fixel-
fixel connectivity matrix are calculated as the fraction
of streamlines intersecting one fixel that also inter-
sect another fixel [62]. These data were used both for
smoothing of fixel-wise measures weighting a Gaus-
sian kernel with FWHM = 10 mm, and for performing
statistical enhancement via Connectivity-based Fixel
Enhancement (CFE), for which the default param-
eters were used (E = 2; H = 3; C = 0.5). The initial
omnibus F-test was performed to detect any group
effect across the two fixel-wise measures: AFD and
FC (log-transformed for normality). Post hoc analysis
consisted of testing 12 contrasts in the GLM (3 pairs
of groups × 2 measures × 2 effect directions) while
applying strong correction for multiple comparisons
[66].

Analysis of voxel-wise measures
Statistical analysis of the three tissue-like frac-

tions {Tcsf , Tgm, Twm} should take into account the
compositional nature of this data: 0 < Ti < 1 and
Tcsf + Tgm + Twm = 1. The latter implies the three
tissue-like fractions are linearly dependent with only
two degrees of freedom, therefore projecting them
to a 2-dimensional space is more appropriate for the
statistical analysis than treating the three measures
independently. At each voxel, the tissue-like fraction
values were mapped into a 2-dimensional space using
the isometric log-ratio (ilr) transformation [70], an
approach that was recently adopted to study the tissue
composition of lesions in AD using DWI [71]. The
two independent and unbounded isometric log-ratios
were calculated as follows:

ilr1 = 1√
6

ln

(
Tcsf × Tgm

T 2
wm

)
(2)

ilr2 = 1√
2

ln

(
Tcsf

Tgm

)
(3)

The isometric log-ratios can capture changes in
the relation between the three tissue-like fractions.
Increasing ilr1 values could reflect: a decreased WM-
like fraction, accompanied by the increase of GM or
CSF-like fractions, or an unchanged WM-like frac-
tion with an increased product of GM and CSF-like
fractions. Increases in ilr2 reflect an increase in the
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CSF-like fraction relative to the GM-like fraction.
Before statistical analysis, voxel maps containing the
ilr were smoothed using a 3D Gaussian kernel with
FWHM = 5 mm (voxel maps are smoothed with a nar-
rower Gaussian filter than the spatial kernel used for
fixels due to the latter being additionally constrained
by fixel-fixel connectivity).

Voxel-wise analysis of ilr serves the purpose of
comparing local tissue compositions, which is the
original objective of VBM [39, 40], with the differ-
ence that, in this case, tissue-like maps are obtained
from the observed diffusion signal and not from a
probabilistic segmentation of structural MRI. Mean-
while, analysis of the Jacobian determinant is the
most common form of TBM, which aims to iden-
tify regional volumetric differences [40]. An initial
omnibus F-test was performed to detect any group
effect across the three voxel-wise measures: two
isometric log-ratios and Jacobian determinant (log-
transformed for normality). Post hoc testing for
pairwise differences included strong correction of
p-values over the 18 tests (3 pairs of groups × 3
measures × 2 effect directions). Enhancement of test
statistics was done using Threshold-Free Cluster
Enhancement (TFCE) method applied with default
parameters (E = 0.5 and H = 2) [41].

Linear correlations with CSF biomarkers
Possible relationships between CSF biomarkers

and tissue degeneration were explored by testing the
linear correlations of levels of CSF A�1–42, total tau,
and P-tau181 with the extracted fixel- and voxel-wise
measures. The CSF levels of each biomarker were
considered as a continuous regressor in a GLM that
also included age, gender, ICV, and scanner as covari-
ates. In these analyses, the relation of each biomarker
with diffusion-derived measures was tested with two
omnibus F-tests, one for fixel-wisel measures, and
one voxel-wise measures. If any significant effects
were detected, post hoc testing was performed while
applying strong FWE correction across tests. Effects
were considered significant when the FWE corrected
p-values associated with the alternative hypotheses
are below the significance level (� = 0.05).

RESULTS

Differences in fixel-wise measures

The integrity of WM fibers was evaluated using
two fixel-wise measures: AFD and FC. The initial
omnibus F-test identified an extensive set of fixels

where the fiber measures differ across disease stages
(FWE-corrected p < 0.05), Fig. 4 shows the stream-
line segments corresponding to those fixels where
significant effects were detected. Effects are present
in the splenium of the CC, the inferior longitudinal
fasciculus (ILF), the uncinate fasciculus, the thalamo-
occipital projection, the cortico-spinal tract (left), the
cingulum bundle (right), the parahippocampal part
of the cingulum bundle (left), and the left arcuate
fasciculus.

From post hoc analyses, differences in AFD and
FC were detected between MCI and controls, and
between ADD and controls. Patients with MCI and
ADD show less AFD than controls in the splenium
of the CC (see Fig. 5), while FC decreases in both
groups of patients (compared to controls) are present
also in the splenium, and in other white matter tracts
such as the left corticospinal tract, left uncinate fas-
ciculus, and right ILF. For ADD patients, decreased
FC is also detected in the right cingulum, left arcu-
ate fasciculus, left parahippocampal gyrus, and left
thalamo-occipital projections (see Fig. 6). Many of
these fiber tracts overlap with the areas resulting from
the F-test shown in Fig. 4, explaining most of the
significant effects in the omnibus test.

Differences in voxel-wise measures

Widespread significant group effects for the three
voxel-wise measures (2 ilr parameters and the Jaco-
bian determinant) were identified by the omnibus
F-test covering a large portion of the template anal-
ysis mask. As shown in Fig. 7, voxel-wise measures
differ across disease stages in 44.1% of the analyzed
brain area.

Post hoc analyses resulted in significant differences
of all three voxel-wise measures between MCI and
controls, and between ADD and controls. Also, the
first isometric log-ratio (ilr1 in Equation 2) was the
only one of the analyzed measures that showed signif-
icant differences between ADD and MCI. Increases
of ilr1 were detected in MCI and ADD patients com-
pared with controls, and in ADD compared with MCI.
The increment of this ratio indicates the reduction
of WM-like fraction accompanied by increased CSF
or GM-like fractions, or the increased product of
CSF and GM-like fractions while WM-like remains
constant. Significant increases of the second isomet-
ric log-ratio (ilr2 in Equation 2) were revealed for
both MCI and ADD patients when compared to con-
trol subjects. Increased ilr2 could be the result of
decreased GM-like fraction with increased or con-
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Fig. 4. Streamline segments in the population template tractogram corresponding to fixels where the disease stage has a significant effect
on any of the two fixel-specific measures (FWE-corrected p < 0.05). Streamlines are colored according to their orientation.

Fig. 5. Section of the corpus callosum where AFD is significantly reduced in both groups of patients compared to control subjects (strong
FWE-corrected p < 0.05). Color corresponds to the value of the difference between the mean AFD for patients and the mean AFD for controls.

stant CSF-like fraction, or increased GM-like fraction
with also increased CSF-like and therefore decreased
WM-like fraction. Figures 8–10 show the group
differences of tissue-like fractions in areas where sig-
nificant increases in ilr1 or ilr2 were detected. When
MCI subjects are compared against controls, signifi-
cant changes in tissue-like composition are detected

in the intersection between the insular cortex and
planum polare, in the cingulate cortex, amygdala, hip-
pocampus, and caudate, revealing decreased GM-like
fraction (see Fig. 9, top row) with increased CSF-like
fraction (see Fig. 10, top row). There are also some
areas such as the cingulum and inside the temporal
lobe surrounding the ILF where the differences in ilr
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Fig. 6. Streamline segments corresponding to fixels where FC is significantly reduced in patients compared to controls (strong FWE-corrected
p < 0.05). Color corresponds to the percentage of change in each group of patients compared with the control group.

Fig. 7. Brain areas where the disease stage has a significant effect on any of the three voxel-wise measures: the two isometric log-ratios and
the Jacobian determinant (FWE-corrected p < 0.05).

are due to reductions of WM-like fraction (see Fig. 8,
top row). In the case of ADD patients when compared
to controls, all of the changes in MCI patients are
recapitulated and expanded, along with differences
in the CC, superior and inferior longitudinal fasci-
culi, parahippocampal gyrus of the cingulum, and
thalamic radiations. These differences in WM areas

come from reductions of WM-like fraction (see mid-
dle row of Fig. 8) accompanied by increased GM-like
fraction (red areas in Fig. 9, middle row). Significant
differences in tissue-like composition between ADD
and MCI patients were also detected in the inferior
temporo-occipital region of the right temporal lobe
where WM-like fraction decreases (see Fig. 8, bottom
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Fig. 8. Differences of mean WM-like fraction in brain areas where at least one of isometric log-ratios is significantly different (strong
FWE-corrected p < 0.05) between pairs of groups.

row) while GM-like fraction increases (see Fig. 9,
bottom row).

The absolute differences of the three tissue-like
fractions for the three pairs of groups can be seen
simultaneously in a color-coded visualization shown
in Supplementary Figure 1.

Differences in local volume
Significant differences in local volume were

detected in both MCI and ADD patients groups
when compared with controls. Figure 11 shows the
resulting pairwise differences in the determinant of
the Jacobian matrix, which accounts for volumetric
changes induced by spatial normalization. For both

groups of patients, ventricles are expanding and there
is a significant shrinkage of the anterior part of the
left temporal lobe. For ADD patients, the significant
reduction of the local volume in the temporal lobe
was detected in both hemispheres, reaching the angu-
lar gyrus where the posterior parts of the middle and
inferior longitudinal fasciculus are located.

Correlation between CSF biomarkers and
diffusion-derived measures

Significant effects of A�1–42 in fixel- and voxel-
wise measures were detected with the omnibus
F-tests. From post hoc testing negative correlations
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Fig. 9. Differences of mean GM-like fraction in brain areas where at least one of isometric log-ratios is significantly different (strong
FWE-corrected p < 0.05) between pairs of groups.

between A�1–42 level and the fixel/voxel-wise mea-
sures of macroscopic area/volume change relative to
the template were found in the interface between
the ventricles and the genu of the CC (shown in
Fig. 12). The negative regression coefficient, in this
case, means that the lower the CSF A�1–42 levels, and
thus the more pathological, the greater the volumet-
ric change caused by the registration to the population
template.

Interestingly, but not surprisingly, a significant lin-
ear correlation between A�1–42 level and ilr2 was
found in the left hippocampus, and also in the anterior
part of the cingulate cortex, in the left dorsal ante-
rior insula, and in the genu of the CC (see Fig. 13).

From the F-tests for the other two CSF biomark-
ers, total tau and P-tau181, no significant correlations
were detected between them and diffusion-derived
measures.

DISCUSSION

In this work, we presented a comprehensive anal-
ysis framework for the study of AD effects in brain
tissue by comparing a set of measures derived from
multi-shell DWI between groups of subjects belong-
ing to the AD continuum and cognitively healthy
controls. This framework integrates the strategies
of fixel-, voxel-, and tensor-based morphometry to
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Fig. 10. Differences of mean CSF-like fraction in brain areas where at least one of isometric log-ratios is significantly different (strong
FWE-corrected p < 0.05) between pairs of groups.

detect differences in fiber specific properties, tissue
composition, and macrostructural changes, respec-
tively. One novel aspect of this work is the use of
MSMT-CSD to model the complex underlying WM
fiber configuration while allowing to account for par-
tial volumes by estimating the contributions of each
tissue type to the diffusion signal.

Differences of fixel-wise measures

To study WM integrity, fiber-specific measures,
namely AFD and FC, were investigated following the
FBA approach [37]. The integration of the MSMT-
CSD within the FBA pipeline allows improving the

estimation of the mentioned fiber measures because it
gives a more precise fODF in voxels where WM/GM
and WM/CSF signals are mixed [35]. After apply-
ing the strong FWE correction to post hoc pairwise
one-sided comparisons in two directions, decreased
AFD was detected in the splenium of the corpus cal-
losum for both MCI and ADD patients compared to
controls (Fig. 5), while macrostructural decreases of
fiber bundle cross-section were found in several WM
tracts (Fig. 6). A previous investigation applied the
FBA framework to study the WM integrity in AD and
MCI patients using single-shell diffusion data [31]
finding specific fiber tracts with significant decreases
of the WM integrity measures in AD patients when
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Fig. 11. Brain areas where the Jacobian determinant is significantly different (strong FWE-corrected p < 0.05) in patients compared to
controls. The colormap represents the percentage of change in local volume compared to the control group. Analogous to FC, analyses for
this value were performed in the log domain therefore this percentage of change was calculated as exp(�PT) – 1 where �PT represents
the difference between the mean value of the logarithm of the Jacobian determinant for MCI/AD patients and the mean of those values for
controls.

compared to healthy controls. There are common
findings such as reduced AFD in the splenium and
reduced FC in the right cingulum, uncinate fascicu-
lus, and ILF. Mito et al. [31] also reported a larger set
of fibers tracts with decreased AFD in ADD patients,
those tracts include the parahippocampal cingulum,
inferior fronto-occipital fasciculus, and left fornix.

Some of the tracts in which we were able to
detect significant reductions of FC, but not of AFD,
correspond with tracts that have previously been
reported to show differences in diffusion-based mea-
sures such as FA and MD. The study of voxel-based
metrics derived from the diffusion tensor and diffu-
sion kurtosis models has also reported reduced WM
integrity measures in the cingulum, uncinate fascicu-
lus, arcuate fasciculus, and ILF [20–22, 43, 72]. In the
corticospinal pathway, previous works have reported
reduced mean kurtosis, increased free-water index,
and increased FA in regions where the corticospinal
tracts cross with other ones [20, 28, 32, 36, 43], which

can be observed when WM degeneration occurs in
a subset of crossing fiber populations. This hypoth-
esis is consistent with the results herein presented,
which show degeneration specifically along some
fiber bundles in the corticospinal tract in AD patients.
One possible explanation of why fiber-specific dif-
ferences outside the splenium were captured by the
measure of macrostructure rather than by the measure
of microstructure is that those differences, previ-
ously attributed to microstructural changes, could be
macroscopic effects captured by diffusion tensor met-
rics due to PVE [73].

Differences in voxel-wise measures

Differences of tissue-like composition as well as
macroscopic differences of volume (with respect to
the template) were detected in both groups of patients
when compared to controls. Detected changes in
tissue-like composition in the ILF, cingulum, tha-
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Fig. 12. Brain areas where there is a significant linear relation between CSF biomarker for A�1–42 and measures of macroscopic change
relative to the population template. Color corresponds to the percentage of change in these measures for a 100 pg/mL increase in biomarker
value. Given that analyses for fiber cross-section and Jacobian determinant were performed in the log scale, the color-coded effects in
significant areas were calculated as exp(� × 100) – 1 where � is the GLM coefficient of A�1–42 for the corresponding measure.

lamic radiations, and superior temporoparietal areas
correspond to a reduction of the WM-like fraction
(see Fig. 8), these changes are concordant with pre-
viously reported decreased FA and increased MD
in such areas [20, 22, 23] suggesting a widespread
degeneration of diffusion barriers in WM. It is worth
mentioning that WM-like reduction in temporal and
parietal structures coincides with a significant reduc-
tion of the local volume (see Fig. 13), meaning that
the WM degeneration is also detectable at the macro-
scopic level and might be more advanced than the
degeneration observed in the frontal areas where no
volumetric differences were detected.

When looking at the GM-like fraction differences
between groups (see Fig. 9), the decreases detected
in the cortical and subcortical areas are consistent
with the widely reported landmarks of the disease:
hippocampal atrophy and cortical atrophy in the tem-
poral lobe. Therefore, these differences most likely
correspond to actual GM degeneration. Some of the
observed changes in tissue-like composition inside

WM areas, manifested as increases in ilr, are the result
of increased GM-like fraction; from the calculation
of ilr we know that there must be an increase of the
CSF-like fraction too, and therefore a reduction of the
WM-like fraction; as this effect is mostly observed in
WM areas such as the longitudinal fasciculi (bright
areas in Fig. 8), this is a change that indicates degen-
eration of diffusion barriers in WM as a result of
demyelination, axonal loss or gliosis. Those findings
are consistent with the reported tissue-like compo-
sition of white matter hyperintensities observable in,
e.g., T2-weighted FLAIR MR images [71]. Increased
CSF-like fraction accompanying WM degeneration
(see Fig. 10) is also compatible with recent research
reporting differences of the free-water index between
AD and MCI compared to controls [36]. Although
their analyses use a different diffusion model, the
CSF-like signal fraction obtained in this work is con-
ceptually close to the free-water index, both being
related to the part of the signal produced by isotropic
unrestricted diffusion.
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Fig. 13. Significant linear relation between CSF biomarker for A�1–42 and the second isometric log-ratio was found in the left hippocampus.
Colormap represents the estimated GLM coefficient of A�1–42 (multiplied by 100) for the GM-like and CSF-like fractions.

Differences in local volume herein reported,
namely ventricle expansion and atrophy inside the
temporal lobe (shown in Fig. 11), have been widely
reported in AD literature [4], these results partially
overlap with the results of a previous study per-
forming TBM using a considerably larger dataset of
T1-weighted MRI [74].

Correlations with CSF biomarkers

We included an exploration of the relation between
CSF biomarkers and the different diffusion-derived
measures, resulting in significant effects of A�1–42
levels in macroscopic measures and tissue composi-
tion in certain areas. Negative correlations between
measures of volumetric change (with respect to the
template) and CSF A�1–42 values were found in the
interface between the ventricles and the genu of the
CC (Fig. 12), indicating expansion of the ventricles in
the presence of decreased (i.e., pathological) values
of this biomarker.

All effects of CSF A�1–42 levels in fiber-specific
measures detected with the omnibus F-test were con-
firmed as effects driven by the volumetric differences
with respect to the population template, and no sig-
nificant correlations with AFD were detected at the
significance threshold level after applying the strong

correction for multiple comparisons during post hoc
testing; this is an important consideration because
some of the previous findings of significant corre-
lations between CSF biomarkers and diffusion tensor
measures of WM integrity have been reported without
proper adjustments for multiple comparisons [75].

The significant correlations between CSF A�1–42
levels and tissue-like composition come from dif-
ferent combinations of tissue-like content variation
depending on their location (seen as different colors
in Fig. 13). As CSF A�1–42 levels are more patho-
logical, the GM-like fraction decreases in the left
hippocampus and genu of the CC, WM-like fraction
decreases in the cingulate cortex and insula, and CSF-
like fraction increases in all these areas. The detected
relations between tissue-like compositions and CSF
levels of A�1–42 are consistent with other works that
have reported correlations between this biomarker
and diffusion tensor parameters in the temporal lobe
area [75, 76].

About treating tissue diffusivity properties
separated from morphology

In this paper, we decided to treat the model-derived
measures separate from deformation-derived mea-
sures instead of modulating the former with the latter.
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This approach resembles the original voxel-based
morphometry proposal [39, 40] which was designed
to detect local differences by removing most of the
anatomical variability with the spatial normalization,
and then the macrostructural differences, captured by
the deformation fields, could be analyzed with tensor-
based morphometry. The decision to not include a
modulation step was guided by two considerations:
First, it prevents the decreased sensitivity due to
the increased variance of modulated measures, espe-
cially when advanced normalization algorithms are
used [64], as is the case here. Second, it allows the
post hoc investigation of effects sources (constituency
versus morphology), facilitating the interpretation of
the results. However, the original FBA pipeline [37]
explicitly recommends combining AFD with FC to
obtain a third measure, called FDC, that reflects ‘the
ability to relay information’. To compare against what
was detected in AFD and FC, we tested for group
effects in FDC with an F-test (see Supplementary
Figure 2, which shows the tracts where significant
effects of group in FDC were detected) and post hoc
testing for pairwise differences (see Supplementary
Figure 3, which shows the pairwise differences in
FDC). Significant effects and pairwise differences of
FDC are very similar to the significant differences of
AFD (Fig. 5) and do not capture the effects that are
detected when analyzing FC.

Comparison with diffusion kurtosis imaging
analysis

For the purpose of comparing the presented anal-
yses against previously used models for analyzing
multi-shell DW-MRI, we have tested for group effects
and correlations with CSF biomarkers in diffu-
sion kurtosis imaging (DKI) parameters voxel maps,
namely MD, FA, and mean kurtosis (MK) using
the same data and preprocessing. DKI fitting was
performed using an iterative weighted linear least
squares estimator [77] with the addition of constraints
to ensure physically plausible fits [78]. We followed
the same statistical approach we used for voxel-wise
measures, i.e., an omnibus F-test to detect any group
effect or biomarker correlation in any of these three
DKT parameters followed by post hoc analyses of
pairwise group differences or biomarker correlations
for each measure while performing strong FWE cor-
rection for multiple comparisons.

The results indicate patients exhibit reduced FA
(see Supplementary Figure 4) in areas around
the ventricles that might not be related to WM

microstructural degeneration but to PVE with sur-
rounding CSF. Decreased FA for ADD patients was
also observed in the hippocampal area, in the ante-
rior part of the superior longitudinal fasciculus, and in
the intersection between the cingulum bundle and the
corticospinal tract. All these areas exhibited signifi-
cant differences in FC and tissue-like composition
according to our results, therefore the differences
observable with FA are captured by our analyses.
However, FA does not reveal significant decreases
in some of the areas where we detected reductions of
FC and WM-like content such as the uncinate fasci-
culus and inferior longitudinal fasciculus, suggesting
that the sensitivity of FA is limited compared to our
more comprehensive analysis.

Maps of MD group differences (Supplementary
Figure 5) closely match the maps of group differences
for tissue-like fractions. Increased MD is associated
with distinct phenomena depending on the location.
In GM it agrees with increased CSF-like fraction
accompanied by decreased GM-like fraction. Mean-
while, the increase of MD in WM coincides with an
increased GM-like fraction rather than an increased
CSF-like fraction, favoring the explanation of those
differences as an increase in cellularity rather than a
mere increase of free-water content. The sensitivity of
MD is comparable with the sensitivity of tissue-like
fractions, the latter giving more specific information
about underlying changes. The decreases in MK coin-
cide with areas where MD increases (Supplementary
Figure 6), indicating the use of MK does not seem to
add sensitivity compared to MD in this cohort.

No significant correlations between DKI param-
eters and CSF biomarkers were detected. Although
the sample for the analyses with CSF biomarkers was
quite small (37 subjects), we did find significant cor-
relations between CSF levels of A�1–42 and measures
of macrostructural variations, as well as tissue-like
content. This suggests the diffusion-derived measures
used in this work might be more sensitive to AD
pathological processes.

Limitations

This work has some limitations regarding image
acquisition. First, DW-MR images were acquired
with a restricted field of view, thus the analyzed area
did not include the superior slices of the brain, where
GM changes might be ubiquitous. Second, geomet-
ric distortions due to field inhomogeneity were not
corrected, as no explicit image data tailored for this
purpose were acquired; therefore, high variability in
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high susceptibility areas could limit the power to
detect significant differences.

Other important limitations are the small sample
size, which reduces the power of the performed tests,
and the fact that the data were acquired in only one
center, which could hinder the generalizability of
the reported results. Given these limitations, and the
strong correction for type I errors, the reported differ-
ences might be underestimating the extent of actual
differences between groups. Future work reproduc-
ing these analyses with larger datasets, and therefore
more power, could help to detect more subtle and
widespread disease effects in brain tissue. Such work
should be possible with the inclusion of advanced
acquisition protocols in large multi-centric studies
such as the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI3).

Conclusions

This study presents a comprehensive neuroimag-
ing approach for the study of micro- and macroscopic
brain differences in the AD continuum using multi-
ple measures derived all from a single DW-MRI data
set. The results corroborate prior studies in that there
are widespread significant differences between the
brains of patients with AD dementia, MCI due to AD,
and those of age-matched healthy controls. The use
of tissue-specific measures capturing microstructural
diffusivity properties, as well as measures of mor-
phological changes, gives additional specificity about
the nature of observed AD effects. The significant
macrostructural changes comprise ventricle expan-
sion, temporal lobe atrophy, and shrinkage of fiber
bundle cross-sectional area in some WM tracts such
as the splenium, the corticospinal tract, the cingu-
lum bundle, and the inferior longitudinal fasciculus.
Changes in fiber-specific WM microstructure were
only detected in the splenium and tapetum, while
reductions of WM-like content were observed in a
larger set of areas including the cingulum, and the
inferior and superior longitudinal fasciculi, where
those variations are accompanied by increased GM-
like fraction suggesting changes related to increased
cellularity instead of increased free-water content.
Variations in tissue composition were also detected in
the hippocampus and insular cortex as reductions of
the GM-like fraction accompanied by increases of the
CSF-like fraction, indicating true GM degeneration.
The strong control for false positives incorporated in
our analyses supports the robustness of reported find-
ings. Direct comparison with DKI analysis suggests

that diffusion-derived measures used in this study
could be more sensitive to differences between AD
patients and controls than DKI parameters.
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