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Abstract.
Background: We previously reported the effects of a probiotic strain, Bifidobacterium breve MCC1274, in improving
cognitive function in preclinical and clinical studies. Recently, we demonstrated that supplementation of this strain led to
decreased amyloid-� production, attenuated microglial activation, and suppressed inflammation reaction in the brain of APP
knock-in (AppNL−G−F ) mice.
Objective: In this study, we investigated the plasma metabolites to reveal the mechanism of action of this probiotic strain in
this Alzheimer’s disease (AD)-like model.
Methods: Three-month-old mice were orally supplemented with B. breve MCC1274 or saline for four months and their
plasma metabolites were comprehensively analyzed using CE-FTMS and LC-TOFMS.
Results: Principal component analysis showed a significant difference in the plasma metabolites between the probiotic and
control groups (PERMANOVA, p = 0.03). The levels of soy isoflavones (e.g., genistein) and indole derivatives of tryptophan
(e.g., 5-methoxyindoleacetic acid), metabolites with potent anti-oxidative activities were significantly increased in the pro-
biotic group. Moreover, there were increased levels of glutathione-related metabolites (e.g., glutathione (GSSG) divalent,
ophthalmic acid) and TCA cycle-related metabolites (e.g., 2-Oxoglutaric acid, succinic acid levels) in the probiotic group.
Similar alternations were observed in the wild-type mice by the probiotic supplementation.
Conclusion: These results suggest that the supplementation of B. breve MCC1274 enhanced the bioavailability of potential
anti-oxidative metabolites from the gut and addressed critical gaps in our understanding of the gut-brain axis underlying the
mechanisms of the probiotic action of this strain in the improvement of cognitive function.
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INTRODUCTION

Alzheimer’s disease (AD) is the primary cause
of dementia and is fast becoming one of the most
burdensome and expensive diseases this century [1].
More than 50 million people will be diagnosed with
dementia, and the number of these patients could go
as high as 152 million in 2050 [2], as many predict.
AD is linked to amyloid-� (A�) deposition caus-
ing senile plaques. It is also often accompanied by
neurofibrillary tangles due to the tau protein’s hyper-
phosphorylation [3]. However, various factors such
as oxidative stress [4], chronic inflammation [5], and
abnormal glucose metabolism [6], are also associated
with the disease. Since these neurological patholo-
gies progress slowly over more than 20 years, much
emphasis has been placed on early AD diagnosis and
how to prevent its onset [7]. Significant research has
led to the identification of blood biomarkers and stud-
ies of preventive interventions of change in daily life
activities such as diet and exercise habits.

Recently, many studies have focused on the
microbiome-gut-brain axis, a growing concept in
which the brain interacts with the gut mediated by
gut microbiota (GM). In humans, several studies have
reported the difference of GM in both American [8],
Chinese, [9], and Japanese patients with AD [10].
In addition, studies using germ-free AD-like model
mice show a noticeable reduction of cerebral A�,
indicating a role of GM in the early pathological
change of AD [11]. The communication between
the gut and the brain is achieved mainly via direct
neural pathways such as the vagus nerve, pathways
through the immune system and endocrine system,
and pathways by which metabolites reach the brain
via blood vessel [12]. Therefore, examining pertur-
bation in microbial metabolites could help reveal the
microbial signatures that help improve the prognosis
or ameliorate the progression of AD. Metabolomics
studies in AD were well conducted in blood [13],
urine [14], brain [15], or cerebrospinal fluid [16].
Recently, a reduction of five short-chain fatty acids
(SCFAs) and altered profile of tryptophan derivatives
were identified as signatures for pre-onset and pro-
gression of AD [17].

Our group focuses on the benefits of a probiotic
strain Bifidobacterium breve MCC1274 (B. breve
MCC1274, synonym: B. breve A1) in improving cog-
nitive function. In a human randomized controlled
trial study of people with suspected mild cogni-
tive impairment, immediate memory and delayed
memory related to memory ability, and visuospa-

tial/construction related to spatial recognition were
significantly improved by supplementing B. breve
MCC1274 for 16 weeks compared to the placebo
group [18]. In addition, this strain consumption
improves memory and reduces the hippocampus’s
inflammatory response in AD-like model mice in
which A� is directly injected into the brain [19].

Recently, the effect of this strain in improv-
ing cognitive function has been evaluated using
APPNL−G−F mice, a representative AD-like model
of overproducing A� without overexpressing amy-
loid precursor protein (APP) [20]. Data indicated
that the oral supplementation of this strain prevents
memory impairment and decreases hippocampal
A� levels. Furthermore, increased expression of �-
disintegrin and metalloproteinase 10 (ADAM10), a
typical �-secretase in the brain, specifically in the
hippocampus, was associated with these effects. In
addition, the probiotic treatment also enhanced the
PKC-ERK-HIF-1� pathway, which is a transcrip-
tional activator of ADAM10. Also, it attenuated
microglial activation, which led to reduced mRNA
expression levels of pro-inflammatory cytokines in
the brain. These studies gave insight into the benefits
of the probiotic treatment, such as reducing A� depo-
sition and suppressing inflammatory reaction in the
brain, which is closely related to the pathologies of
cognitive impairment. However, the ligands that acti-
vated these signaling pathways or how they interacted
from the gut to the brain remain undefined. Therefore,
to understand the mechanism of action and further
explore the pharmaceutical use potential of this strain,
we conducted a metabolomics analysis of plasma of
AD-like model (APPNL−G−F ) mice and wild-type
mice with or without B. breve MCC1274 treatment.

MATERIALS AND METHODS

Sample preparation

The plasma samples were obtained from studies
performed at Nagoya City University which were
approved by Nagoya City University Institutional
Care and Use of Laboratory Animals committee to
understand the mechanisms of action and explore this
probiotic pharmaceutical potential. Plasma samples
of AD-like model mice were obtained from our pre-
vious study, which were orally supplemented with B.
breve MCC1274 (AT group) or saline (AC group)
for four months [20]. In addition, two-month-old
C57BL/6J wild-type mice (6 males and 6 females
per group) were also administrated in the same way
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with B. breve MCC1274 (WT group) or saline (WC
group) for comparison with the AD-like models as
described in the previous study [21]. Plasma was
promptly frozen in liquid nitrogen after separation
from blood and then stored at –80◦C. Twelve plasma
samples were obtained per group. In order to ensure
sufficient volume to perform metabolomic analysis,
each sample was thawed and three samples were ran-
domly pooled, and finally four samples for each group
were analyzed.

Metabolomic analysis with CE-FTMS

40 �L of plasma was added to 160 �L of methanol
containing the internal standard (H3304-1002,
Human Metabolome Technologies, Inc. (HMT)) at
0◦C to inhibit enzyme activity. After this solution
was mixed thoroughly with 120 �L of Milli-Q water,
240 �L of this mixture was centrifuged with a Milli-
pore 5 kDa cutoff filter (ULTRAFREE MC PLHCC,
HMT) at 9,100× g for 120 min at 4◦C to remove
macromolecules. The filtrate was evaporated to dry-
ness under vacuum and then dissolved in 40 �L of
Milli-Q water, followed by donation to HMT’s ω

Scan package using capillary electrophoresis Fourier
transform mass spectrometry (CE-FTMS) based on
the methods described previously [22, 23]. The spec-
trometer was scanned from m/z 60 to 900 in positive
mode and from m/z 70 to 1,050 in negative mode,
respectively.

Metabolomic analysis with LC-TOFMS

80 �L of plasma was added to 240 �L of 1%
formic acid/acetonitrile containing the internal stan-
dard (same as CE-FTMS) at 0◦C. The mixture was
centrifuged at 2,300× g, 4◦C for 5 min and then
filtered using a hybrid SPE phospholipid cartridge
(Hybrid SPE - Phospholipid 30 mg/mL, SUPELCO)
to remove phospholipids. The filtrate was then evapo-
rated to dryness under nitrogen, dissolved in 80 �L of
50% isopropanol (v/v), and conducted a metabolomic
analysis using liquid chromatography time-of-flight
mass spectrometry (LC-TOFMS) based on the meth-
ods previously described (HMT’s LC package) [24,
25]. Briefly, LC-TOFMS analysis was performed
using an Agilent 1200 HPLC pump, an ODS col-
umn (2 mm × 50 mm, two �m i.d.), and an Agilent
6210 time-of-flight mass spectrometer (Agilent Tech-
nologies, USA). The system was controlled by
MassHunter (Agilent Technologies, USA), and the
spectrometer was scanned from m/z 50 to 1,000.

Annotation of metabolites detected by CE-FTMS
and LC-TOFMS

Peaks were extracted with the automated integra-
tion software MasterHands (Keio University, Japan),
and peak information such as m/z, peak area, reten-
tion time (RT), and migration time (MT) was obtained
[26]. Signal peaks that correspond to known metabo-
lite isotopes, additional ions, and other product ions
were excluded, and the remaining peaks were anno-
tated according to the HMT metabolite database
based on their m/z values and RT or MT. The inter-
nal standard and sample volume then normalized the
areas of each annotated peak to calculate the relative
amounts of the metabolites.

Quantifying the concentration of characteristic
metabolites

The CE-FTMS and LC-TOFMS systems support
the quantification of a limited numbers of metabo-
lites using a one-point calibration curve based on their
respective standard compounds. In addition, the con-
centrations of the indole-3-propionic acid (IPA) were
measured using liquid chromatography-tandem mass
spectrometry (LC-MS/MS; Vanquish HPLC con-
nected with TSQ-FORTIS, Thermo Fisher Scientific,
USA) based on previous research with some modi-
fications [27]. In brief, chromatographic separation
was performed using an XBridge® C18 col-
umn (Waters Corporation, Milford) (4.6 × 150 mm,
3.5 �m) with mobile phase A (containing 1 g/L
ammonium acetate in water) and mobile phase B
(containing 1 g/L ammonium formate and 0.1%
formic acid in methanol) at a flow rate of 0.2 mL/min
and gradient elution at 2% B. Concentration quan-
tification was performed by comparing peak areas
of ions with those of the corresponding standards
and internal standard (1-methyl-2-oxindole, Sigma-
Aldrich).

Statistical analysis

Statistical analysis was performed using R soft-
ware (version 3.6.0). The comparison between
probiotic and saline groups in the principal compo-
nent analysis was assessed by permutation manova
using the adonis package in R. Also, intergroup
comparisons of each metabolite were performed by
Welch’s t-test.
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Fig. 1. Principal component analysis of plasma metabolites. AD-like model mice (A) and wild-type mice (B) were orally supplemented with
B. breve MCC1274 (red or purple circles) or saline (blue or green circles). p values show the comparison of group difference as determined
by permutation MANOVA.

RESULTS

Metabolomic analysis

Plasma metabolomic analysis by CE-FTMS and
LC-TOFMS detected a total of 400 (hydrophilic)
and 212 (lipophilic) peaks, respectively. 63 of the
400 hydrophilic and 22 of the 212 lipophilic were
significantly different between probiotic group (sup-
plemented with B. breve MCC1274, AT group) and
control (AC groups) in the AD-like model mice (Sup-
plementary Table 1). Principal component analysis
showed a significant difference between AT and AC
groups (PERMANOVA, p = 0.03, Fig. 1A). In addi-
tion, of the compounds in the wild-type groups, 46 of
the 400 hydrophilic and 7 of the 212 lipophilic were
significantly different between the probiotic (WT)
and control (WC) groups (Supplementary Table 2).
Principal component analysis showed a tendency
of difference between WT and WC groups (PER-
MANOVA, p = 0.09, Fig. 1B).

In order to understand the substantial changes
due to B. breve MCC1274 supplementation, we
focused on the metabolites with a p-value <0.05
and |log2 (fold change)|>1 in the group compari-
son. Based on these criteria, 23 metabolites were
extracted with 21 increased and 2 decreased in the
AT mice compared with the AC mice (Fig. 2A, B,
Table 1). Whereas 18 compounds were extracted
in the wild-type mice, with 17 increased and one
decreased in the probiotic group (Fig. 2C, D, Table 2).
Similar changes were observed for many metabo-
lites in both the AD and wild-type mice by the
oral supplementation of B. breve 1274. Among

them, in comparison with the control groups, glu-
tathione (GSSG) divalent, a disulfide derived from
two glutathione molecules, increased significantly
for 7.3-fold (p = 0.0014) in AT mice and, although
not significantly, it increased for 2.3-fold (p = 0.063)
in WT ones. Ophthalmic acid, a tripeptide ana-
log of glutathione, increased significantly for 5.8-
(p < 0.0001) and 3.9-fold (p = 0.0117) in AT and
WT mice, respectively. Significant increases of glu-
tathione derivatives such as cysteine glutathione
disulfide (2.3-fold, p = 0.0025 in AT mice) and S-
methylglutathione (3.1-fold, p = 0.0043 in AT and
2.4-fold, p = 0.0014 in WT mice) were also observed.
Genistein, an isoflavone derivative, increased sig-
nificantly for 2.3-fold (p = 0.0004) in AT mice, and
there was a tendency of increase (1.9-fold, p = 0.097)
in the wild-type ones. Similarly, glycitein, another
isoflavone derivative, increased significantly for 2.8-
fold (p = 0.0013) in WT mice but not significantly in
the AT ones (1.3-fold, p = 0.391). 2-oxoglutaric acid,
an intermediate in the TCA cycle, increased signifi-
cantly for 2.5- (p = 0.0072) and 2.1-fold (p = 0.0215)
in AT and WT mice, respectively. Succinic acid,
another intermediate in the TCA cycle, increased
significantly for 2.3-fold (p = 0.0222) in AT mice,
and although not significantly, it increased by 2.9-
fold (p = 0.060) in WT ones. 5-methoxyindoleacetic
acid (5-MIAA), a tryptophan derivative, increased
2.5- (p = 0.0062) and 2.0-fold (p = 0.0089) in AT and
WT mice, respectively. The simultaneous increase
in both models by probiotic supplementation was
also found for hypotaurine, butyrylcarnithine, N-
Acetylphenylalanine, and 4-Guanidinobutyric acid
(Tables 1 and 2).
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Fig. 2. Metabolites with differences in each group comparison. Volcano plot and heat map of changing metabolites in AD-like model mice
(A, B) and wild type mice (C, D) orally supplemented with B. breve MCC1274 (AT or WT) or saline (AC or WC). Venn diagram of variable
metabolites in group comparison (E).

Quantitative analysis of markedly altered
metabolites

CE-FTMS and LC-TOFMS analysis showed some
alterations in the metabolisms related to glutathione,

isoflavone, TCA cycle, and tryptophan by B. breve
MCC1274 supplementation. Since the CE-FTMS
and LC-TOFMS analysis showed only the relative
contents of each metabolite in the samples, we con-
ducted a quantitative analysis of some metabolites
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Table 1
The list of metabolites detected in Volcano plot for probiotic (AT) group versus control (AC) group of AD-like model mice

Method Compound name Fold Change p

CE-FTMS Glutathione (GSSG) divalent 7.320 0.0014
CE-FTMS Ophthalmic acid 5.821 0.0000
CE-FTMS CMP-N-acetylneuraminate 5.590 0.0012
CE-FTMS N-Acetylleucine 4.836 0.0418
CE-FTMS S-Adenosylhomocysteine 4.152 0.0496
CE-FTMS S-Methylglutathione 3.076 0.0043
CE-FTMS Imidazolelactic acid 3.007 0.0054
CE-FTMS 4-Aminohippuric acid 2.676 0.0018
CE-FTMS 4-Guanidinobutyric acid 2.626 0.0170
CE-FTMS Isobutyrylcarnitine 2.531 0.0210
CE-FTMS Butyrylcarnitine 2.498 0.0191
CE-FTMS Hypotaurine 2.457 0.0104
CE-FTMS 2-Oxoglutaric acid 2.457 0.0072
CE-FTMS Succinic acid 2.317 0.0222
CE-FTMS Cysteine glutathione disulfide 2.312 0.0025
CE-FTMS N-Acetylphenylalanine 2.292 0.0195
CE-FTMS N-Formylmethionine 2.153 0.0063
CE-FTMS N-Acetylglutamine 2.132 0.0043
CE-FTMS 3-Guanidinopropionic acid 2.002 0.0475
CE-FTMS Lipoamide 0.205 0.0391
LC-TOFMS 5-Methoxyindoleacetic acid 2.538 0.0062
LC-TOFMS Genistein 2.320 0.0004
LC-TOFMS AC(16:2)-1 0.410 0.0291

Fold change means the ratio of average value of AT/AC. p values are by Welch’s t test.

Table 2
The list of metabolites detected in Volcano plot for probiotic group (WT) versus control (WC) in wild type mice

Method Compound name Fold Change p

CE-FTMS Ophthalmic acid 3.908 0.0117
CE-FTMS Hypotaurine 3.447 0.0210
CE-FTMS Kynurenic acid 2.705 0.0416
CE-FTMS Butyrylcarnitine 2.555 0.0389
CE-FTMS Ribulose 5-phosphate 2.461 0.0274
CE-FTMS 4-Guanidinobutyric acid 2.459 0.0274
CE-FTMS 3-Phenylpropionic acid 2.427 0.0100
CE-FTMS S-Methylglutathione 2.363 0.0014
CE-FTMS Isovalerylcarnitine 2.237 0.0337
CE-FTMS N-Acetylphenylalanine 2.133 0.0215
CE-FTMS 2-Oxoglutaric acid 2.130 0.0143
CE-FTMS 4-Methyl-5-thiazoleethanol 2.109 0.0202
CE-FTMS trans-Glutaconic acid 2.093 0.0187
CE-FTMS 2-Hydroxybutyric acid 2.028 0.0371
CE-FTMS Phenaceturic acid N-(o-Toluoyl)glycine 0.320 0.0200
LC-TOFMS Glycitein 2.825 0.0013
LC-TOFMS 1,2-Distearoyl-glycero-3-phosphocholine 2.453 0.0020
LC-TOFMS 5-Methoxyindoleacetic acid 1.977 0.0089

Fold change means the ratio of average value of WT/WC. p values are by Welch’s t test.

related to these altered metabolisms (Fig. 3). For the
isoflavone-related metabolites, the levels of genis-
tein, an aglycones form of genistin, were significantly
increased by the probiotic supplementation in both
the AD-like model and wild-type mice (Fig. 3A).
Daidzein, an aglycones form of daidzin, tended
to be increased by the probiotic supplementation,
although the difference was not significant between
probiotic and saline groups (Fig. 3B). For the TCA

cycle-related metabolites, both the 2-oxoglutaric acid
and succinic acid levels were significantly increased
by the probiotic supplementation in both the AD-
like model and wild-type mice (Fig. 3C, D). For
the glutathione-related metabolites, the levels of
glutathione (GSSG) divalent were increased signif-
icantly in AD-like model mice (p < 0.01) and tended
to be increased in wild-type mice (p = 0.06) (Fig. 3E).
For the tryptophan-related metabolites, the concen-
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Fig. 3. Quantitative analysis of representative metabolites in AD-like model mice and wild-type mice orally supplemented with B. breve
MCC1274 (AT or WT) or saline (AC or WC). p values were calculated by Welch’s t test.

tration of IPA tended to be elevated by the probiotic
supplementation, although without statistical signifi-
cance in both the AD-like model and wild-type mice
(Fig. 3F). The concentrations of other compounds

are summarized in Supplementary Tables 4 and 5.
Quantitative analysis confirmed the increased levels
of other metabolites related to the TCA cycle, includ-
ing pyruvic acid, lactic acid, citric acid, isocitric acid,
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fumaric acid, and malic acid, by the probiotic supple-
mentation in both the AD-like model and wild-type
mice.

DISCUSSION

In this study, we found that supplementation of B.
breve MCC1274, a probiotic that has been reported
to improve cognitive function, dramatically altered
plasma metabolites in both AD-like model and wild-
type mice. In particular, the analysis in the volcano
plot identified soy isoflavones such as genistein, inter-
mediary metabolites of the TCA cycle including
2-oxoglutaric acid and succinic acid, and antioxi-
dants such as glutathione (GSSG) divalent as altered
metabolites, and quantitative analysis confirmed the
changed levels of some of these substances.

Isoflavone metabolites were the most notably
altered by the probiotic supplementation. Soy and
soy foods are rich sources of isoflavones, which
have been shown to possess several biological activ-
ities. Most of the isoflavones, daidzin, genistin, and
glycitin, similar to other types of polyphenols, are
generally consumed as glycosides, which are poorly
absorbed from the small intestine [28]. A significant
fraction can persist in the colon, where they encounter
the gut microbiota and are hydrolyzed by bacterial
�-glucosidases to their corresponding bioactive agly-
cones, daidzein, genistein, and glycitein [29]. In this
study, the concentrations of genistein were signifi-
cantly increased in both AD-like model mice and
wild type mice, those of glycitein were increased
in the wild-type group, and the concentrations of
daidzein tended to be increased in the AT group.
Previously, B. breve MCC1274 has been shown to
possess high �-glucosidase activity and a solid capa-
bility to convert daidzin and other polyphenols to
their aglycons [30]. Indeed, it was shown that oral
supplementation of B. breve MCC1274 significantly
enhanced the plasma concentration of daidzein in
rats. Therefore, we proposed that the supplementa-
tion of live B. breve MCC1274 is responsible for the
gut release of aglycones from isoflavone glycosides
in the dietary sources. Soy isoflavones have been
reported to have multiple functions, including anti-
cancer, anti-oxidative, and anti-inflammation effects
[31, 32]. It has been shown in in vivo studies that
genistein can pass through the blood-brain barrier,
antagonize the toxicity of A�, and have a neuropro-
tective effect [32]. The mechanism of the antioxidant
effect involves a reducing agent that directly removes

hydroxyl radicals and enhances glutathione biosyn-
thesis via the nuclear factor-erythroid 2-related factor
2 (Nrf2) pathway [33]. Nrf2 is a master transcrip-
tion factor that responds to oxidative stress, and it
has been reported that hyperactivation of Nrf2 in
AD-like model mice enhances glutathione synthase
and decreases inflammatory cytokines [34]. Genis-
tein has also been shown to inhibit the production of
A� by promoting the expression of �-secretase and
the degradation of presenilin. It is known that PKC-
MAPK-ERK is a transcriptionally active signaling
pathway for �-secretase induced by genistein [35].
These isoflavones act on the estrogen receptors (ERs),
ER-� and ER-�. In addition, they have an exception-
ally high affinity for ER-� [36], which is explicitly
expressed in the hippocampus but not in the cerebral
cortex [37]. Furthermore, there is an isoform of ER
called G-protein coupled receptor ER1 (GPER) that
binds to G-protein coupled receptor (GPCR), which
is expressed in the hippocampus [38], and is known to
activate PKC, MAPK/ERK, and Nrf2 [39]. We have
shown that B. breve MCC1274 supplementation led
to decreased microglial activation in the hippocam-
pus and the gene expression of cytokines IL-6 and
IL-1� in the hippocampus and cortex in the AD-like
model mice [20]. In addition, the PKC-MAPK-ERK
pathway was explicitly enhanced in the hippocampus
by B. breve MCC1274 supplementation. The specific
effect in the hippocampus is unclear, but the interac-
tion of isoflavones with regional-located ERs may be
at play.

We found that IPA, an indole derivative of tryp-
tophan generated by gut microbes, increased by
probiotic supplementation in the AT group. Microbial
tryptophan catabolites affect various physiologi-
cal processes and may contribute to intestinal and
systemic homeostasis in health and disease [40].
Previous studies have shown the production of indole-
3-lactic acid (ILA) by B. breve MCC1274 [27]. These
indole derivatives may potentially improve intesti-
nal barrier function [41], regulate the gut mucosal
immune system [42], and modulate inflammatory
responses in an AhR-dependent way [43]. It has been
reported that IPA acts on pregnane X receptors (PXR)
in the gut to inhibit TNF-� production and simulta-
neously improve intestinal barrier function [44], and
that IPA has antioxidant and inhibitory neuronal cell
death effects on hippocampal neurons [45]. In this
study, it is possible that the ILA produced by B. breve
MCC1274 was transformed to IPA by other microbes
in the gut, although the details await future study.
The transformation of ILA to IPA has been previ-
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ously reported by Clostridium sporogenes [46]. We
also observed a significant increase of 5-MIAA, an
analog of IPA. Although the physiological function
of 5-MIAA remains to be clarified, it has been shown
that it is produced by a probiotic strain Lactobacillus
rhamnosus LGG and acts as an activator of Nrf2 in
the modulation of hepatic susceptibility to oxidative
injury [47].

We observed an increased level of lactic acid in
the AD-like model mice by the probiotic supplemen-
tation. Acetic acid and lactic acid are the primary
metabolites of Bifidobacterium. We could not ana-
lyze the concentration of acetic acid since it is an
internal standard in the measurements in this study.
However, in a previous study, we observed that
the probiotic supplementation significantly increased
the plasma level of acetic acid, and supplemen-
tation of acetate partially improved the cognitive
function activity in mice where A� is injected into
mouse brains [19]. Notably, acetate also possesses
anti-oxidative and anti-inflammation activities [48],
and has been shown to contribute to microglial
metabolic modulation and inhibition of phagocytosis
[49].

On the other hand, lactic acid, together with other
metabolic intermediates, fuels the TCA cycle. Alter-
ations in metabolites responsible for the TCA cycle,
including 2-oxoglutaric acid, succinic acid, and many
other metabolites, were associated with the probiotic
supplementation. It is interesting since dysregula-
tion of glucose metabolism, glycolysis, TCA cycle,
oxidative phosphorylation (OXPHOS), and pentose
phosphate pathway are seen in aged and AD brains
[50]. The TCA cycle is one of the most important
metabolic pathways for producing the energy sources
required to perform vital functions and is generally
driven by the metabolism of carbohydrates, lipids,
and amino acids. It has been reported that the expres-
sion of genes related to lipid metabolism and organic
acid metabolism was increased in the liver when mice
are treated with this probiotic [51]. In addition, the
promotion of �-oxidation via estrogen-related recep-
tors [52], for which soy isoflavones are ligands, and
effective oxidative phosphorylation by the Nrf2 path-
way are also considered an essential function of the
TCA cycle [53]. In addition, as shown in Supplemen-
tary Table 5, lactic acid was significantly decreased
in the AC group compared to the WC group. A simi-
lar phenomenon has been observed in a human study
[54], and the underlying mechanism could be owing
to the impairment of glucose metabolism in the patho-
physiology of AD.

In this study, the probiotic supplementation
increased glutathione (GSSG) divalent and rela-
tive metabolites. These changes are thought to be
associated with the oxidative stress caused by the
accumulation of A� in the brains of AD-like model
mice [55]. Neuronal inflammation is associated
with a broad spectrum of neurodegenerative dis-
eases, including AD. Several studies have shown
that A� can induce cerebral oxidative stress and
activate microglia and astrocytes, leading to neuroin-
flammation, neuronal damage injury, and cognitive
impairment [56, 57]. The probiotic supplementa-
tion led to an enhanced glutathione biosynthesis in
response to activating the Nrf2 pathway triggered
by isoflavones and tryptophan derivatives in the pro-
biotic group [34]. We observed a superficial level
for the reduced glutathione in this study. The rea-
son may be that the reduced glutathione in plasma
is rapidly metabolized with a half-life of a few min-
utes by �-glutamyltranspeptidase [58], and that the
plasma concentration are much lower than intracellu-
lar level [59]. Nevertheless, these results suggest that
B. breve MCC1274 supplementation led to significant
suppression of oxidative reaction in the brain.

Altered levels were also observed on other
metabolic pathways such as butyrylation and N-
acetylation. Butyric acid is an SCFA produced by
gut bacteria in the colon. However, no change was
observed in the butyric acid level in this study; the
mechanisms for the enhanced butyrylation are not
well understood. Enhanced N-acetylated metabolites
were observed for most of the amino acids, including
N-acetylleucine, a compound developed for pos-
sible treatment for several neurological disorders
[60]. The N-acetylation is supposed to be trig-
gered by N-acetyltransferase, an enzyme commonly
expressed by Bifidobacterium species. Nevertheless,
future studies are needed to understand the mech-
anisms and physiological functions of these altered
metabolic pathways with the effects of the probiotic
strain in improving cognitive function.

There are several limitations to this study. First,
since only plasma metabolites were evaluated, a more
comprehensive metabolomic analysis with other
samples such as feces, liver, and brain should be
performed for validation. Then, there is a need to
investigate transcriptomic analysis to understand how
gene expression has changed in the brain and liver.
Another limitation of this study is that we could
only quantify some of the metabolites due to tech-
nical restrictions. In addition, whether the changes in
metabolites detected in these mice could be extrap-
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Fig. 4. Illustration of possible mechanisms by B. breve MCC1274 in improving cognitive function.

olated to humans, who have more complex dietary
habits and gut microbiota, needs to be studied in the
future.

However, this study is valuable because it reveals
a part of the pathway by which B. breve MCC1274
signals act from the gut to the brain, which has not
been previously elucidated. Taking together with our
previous findings, we can propose the following as
parts of the possible mechanisms of action of this
probiotic: 1) conversion of dietary soy isoflavones in
the gut to a bioavailable aglycone form; 2) production
of indole derivatives from tryptophan; and 3) gener-
ation of SCFAs (Fig. 4). These molecules can cross
the blood-brain barrier and contribute to activating
the TCA cycle and the Nrf2 pathway, which reduces

excessive oxidative stress and A� accumulation in the
brain. In addition, since various pathways, includ-
ing the enteric nervous system, vagus nerve, or the
immune system, connect the brain and gut, the elu-
cidation of the individual effects of these molecules
generated in the gut by B. breve MCC1274 awaits
future study.
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