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Abstract. Chronological aging is by far the strongest risk factor for age-related dementia and Alzheimer’s disease. Senescent
cells accumulated in the aging and Alzheimer’s disease brains are now recognized as the keys to describing such an association.
Cellular senescence is a classic phenomenon characterized by stable cell arrest, which is thought to be applicable only to
dividing cells. Emerging evidence indicates that fully differentiated post-mitotic neurons are also capable of becoming
senescent, with roles in contributing to both brain aging and disease pathogenesis. The key question that arises is the identity
of the upstream triggers and the molecular mechanisms that underly such changes. Here, we highlight the potential role of
persistent DNA damage response as the major driver of senescent phenotypes and discuss the current evidence and molecular
mechanisms that connect DNA repair infidelity, cell cycle re-entry and terminal fate decision in committing neuronal cell
senescence.
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INTRODUCTION time, from the 57.4 million cases reported in 2019

to almost 153 million cases predicted in 2025 [2].

Over ahundred years ago, the first seminal report of
the patient Auguste D. as described by Doctor Alois
Alzheimer has once suggested that Alzheimer’s dis-
ease (AD) is a rare cause of presenile dementia. It
was not until almost 60 years later, when the classic
pathological features of neurofibrillary tangles and
senile plaques that were previously described by Dr.
Alzheimer were found as well in many aged patients
who developed dementia late in life, that the con-
cept of the disease and its prevalence had undergone
dramatic shifts [1]. It is estimated that the global num-
ber of people with dementia will triple in five years’
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AD is the most common form of dementia, charac-
terized by early and prominent deficits in episodic
memory, with varying degrees of executive, language,
and visuospatial impairment in clinical presentations,
along with the pathological depositions of senile
plaques and neurofibrillary tangles in the brain [3].
Molecular-based analyses performed since the early
1980s have subsequently identified that the tangles
described by Dr. Alzheimer are indeed paired-helical
insoluble filaments of hyperphosphorylated tau pro-
teins inside neurons [4, 5]; whereas the plaques are
mainly composed of extracellular deposits of mis-
folded amyloid-3 (AR) proteins [6, 7]. Since then, for
the past two decades, the amyloid cascade [8, 9] and
tau hypotheses [10—12] have become the mainstream
explanations for the pathogenesis of this disease.
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However, unsuccessful attempts at testing anti-Af3-
targeting drugs for treating AD over a decade or so
[13, 14] and the recently halted clinical trial aimed
at antagonizing tau in a similar fashion [15] indi-
cated that the disease is far more complicated than we
could have imagined [16]. In the wake of these fail-
ures from the clinical trials, different voices are now
urging to reassess the roles of both amyloid and tau
in the aspects of disease causality and to re-consider
other important factors that may contribute to the
onset and progression of this multifactorial disease
[16-18]. One recent emerging aspect is the recogni-
tion of pathological cell aging as a new etiological
framework for these age-related neurodegenerative
disorders.

Chronological aging is by far the strongest risk
factor for age-related cognitive decline and demen-
tia, and the prevalence of dementia increases with
age [19]. However, significant variation in the rate of
aging is found across individuals. Subjective age, on
the other hand, is the psychological feeling of age rel-
ative to their chronological age, and this may capture
such individual differences as well as modulate the
risk of dementia [20, 21]. At the tissue level, phys-
iological aging can be considered as a progressive
loss of physiological integrity, leading to an impaired
body homeostasis and therefore increased vulnerabil-
ity to death [22]. Accumulation of senescent cells is
a major contributor to tissue aging. Within the brain,
these cells are well-documented and their presence
is associated with a variety of age-related diseases
such as Parkinson’s disease (PD) and AD [23]. Their
emergences are known to be induced by various cel-
lular stimuli, including heightened oxidative stress
[24, 25], replicative exhaustion [26, 27], protein
aggregation [28, 29], loss of proper proteostasis and
autophagy functions [30, 31]. While many of these
upstream stressors are seemingly unrelated; at some
points downstream, they converge by inducing DNA
damage, which can exacerbate the upstream stressors
in return, forming a vicious cycle [24, 27, 28, 31].

The phenomenon of cellular senescence is clas-
sically described as a process leading to permanent
cell cycle arrest. At the beginning, it intends to only
describe the changes occurring in dividing cells, but
the potential of neurons and other fully differentiated
cell types in the brain to senesce has been neglected
due to their post-mitotic status. Growing evidence
now indicates that these cells are indeed capable
of senescence. It was originally thought that cell
senescence was simply a cell-autonomous arrest pro-
gram without any influences on its surroundings [32].

Now it has become clear that these cells can acquire
a so-called senescence-associated secretory pheno-
type (SASP) to induce sterile inflammation, thereby
imposing unexpected threats to their neighboring
cells [29, 33]. Previous characterization of senescent
neurons consistently revealed markers of sustained
DNA damage response (DDR) and evidence of cell
cycle re-activation [30, 31, 34, 35], suggesting these
events are potential upstream drivers of such changes
and responses. This review will therefore center on
the likelihood of sustained DDR as the driver of cel-
lular senescence in mature post-mitotic neurons.

In the discussion, we will start with an overview
of general evidence on how senescent cells are the
building blocks of tissue aging, followed by a specific
analysis of evidence supporting such a phenomenon
among different brain cells in aging and AD brains.
Before going into the key discussion, we will pro-
vide evidence that persistent DDR is the unifying
trigger of cell senescence in general. Afterwards,
we will discuss why neurons are particularly sus-
ceptible to persistent DDR, which is associated with
cell cycle re-activation. Based on these arguments,
we will explain how cellular senescence could be
achieved in post-mitotic neurons.

ACCUMULATION OF SENESCENT CELLS
IS A MAJOR CONTRIBUTOR TO TISSUE
AGING AND PATHOGENESIS

Senescent cells differ from normal cells in many
aspects. By definition, these are cells that have com-
mitted to a permanent state of cell cycle arrest with
altered gene expression profiles that facilitate their
acquisition of various morphological and functional
changes. Many of these cells, even from different
tissue origins, exhibit common features, such as a
flattened and enlarged morphology, the formation of
senescence-associated heterochromatin foci, lipofus-
cin granules, and the ability to release an array of
soluble factors by the acquisition of SASP [36].

Since cells are considered as the fundamental
building units of tissues and organs, it is expected that
aged cells, known as senescent cells, will at least in
part contribute exclusively to the normal aging pro-
cess. However, early investigation into the roles of
senescent cells in the context of tissue homeosta-
sis and functioning also led to the discovery that
they indeed have important roles in many physio-
logical aspects of life [37]. For instance, senescent
cells are formed as a part of the normal developmen-
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tal mechanism in embryonic growth and patterning
[38]. As part of the body defense against any malig-
nant transformation of pre-neoplastic cells, cellular
senescence is also a safeguarding mechanism that
halts the proliferation of these cells [39]. During tis-
sue repairing, on the other hand, cell senescence also
plays a positive role as a morphogenetic force to
promote wound healing and repair [40]. In addition
to these “not-so-frequent” events, cellular senes-
cence is also a part of the body’s daily regulation
of insulin homeostasis as it promotes insulin secre-
tion by the pancreatic beta cells and regulates the
maturation of pancreatic tissue [41]. These find-
ings together sparked years of debates on whether
this cellular phenomenon truly represents aging,
or even contributes to age-related disease patho-
genesis. However, mounting evidence does indicate
that heightened accumulation of senescent cells is
indeed associated with a wide variety of age-related
pathological conditions, such as cancer [42], car-
diovascular disease [43], diabetes [44], osteoporosis
[45], and dementia including AD [35, 46]. In order
to explain this contradictory discrepancy, it is sug-
gested that the duration of senescent cells’ persistence
is a major determining factor of their nature in
shaping tissue homeostasis [47-49]. Senescent cell
populations, as a part of those physiological pro-
cesses, only exist transiently in the respective tissues
and are actively cleared out by the immune system
upon fulfilling their purposes [48-53]. In contrast,
those thought to be associated with tissue aging and
disease pathogenesis are the ones that persist, lead-
ing to the escalation of their populations over time
[54]. It is proposed that a malfunctioning and aged
immune system which fails to promptly remove these
cells may contribute to that [55, 56], but others also
suggested that senescent cells emerged from persis-
tent DDR may become resistant to apoptosis [57].
The latter appears to be caused by an upregulation
of the anti-apoptotic Bcl-2 family of genes, which
blocks the PUMA/NOXA regulated apoptotic path-
ways [58-61]. Moreover, sustained activation of cell
cycle inhibitors like p21 is also known to inhibit p53-
mediated apoptosis [62]. Another property of these
cells that contributes to tissue aging is the acquisition
of SASP, which seems to be a downstream feature
of sustained DDR [63, 64]. SASP is characterized by
the hypersecretion of various signaling factors, such
as an array of pro-inflammatory cytokines like IL-
6, IL-8, and TNF-«; chemokines and extracellular
matrix proteases [65]. This contributes to the low-
grade sterile inflammation and modulations of the

tissue architecture that are frequently found in age-
related conditions even in the absence of exogenous
pathogens.

EVIDENCE OF SENESCENT CELL
ACCUMULATION IN THE AGING AND AD
BRAIN

Similar to other organ systems, multiple functional
domains of the brain deteriorate progressively dur-
ing aging, which manifests as declines in learning
and memory, attention, speed of decision mak-
ing, sensory perception, and motor coordination
[66, 67]. The aging brain indeed reveals simi-
lar hallmarks of aging that are also evident in
other tissues [68]. These include mitochondrial
dysfunction, accumulation of oxidatively damaged
macromolecules, dysregulated energy metabolism,
impaired autophagy, proteasome functions and stress
response signaling, compromised DNA repair, and
chronic low-grade inflammation [68]. Many of these
are indeed common to the molecular signatures of
senescent cells. Almost universally, senescent cells
are characterized by metabolic changes, mitochon-
drial and lysosomal impairment and accumulation,
persistent DDR, and increased secretion of trophic
factors and cytokines [69]. As chronological aging
is the major risk factor for neurodegenerative dis-
eases [70], it is therefore reasonable to argue that the
accumulation of senescent cells plays major roles in
contributing to age-related pathological changes in
the organ. The adult brain is made up of multiple
brain cell types, mainly neurons, oligodendrocytes,
astrocytes, microglia, and endothelial cells. Cellular
senescence among these cells is found in both aged
brains [31, 71, 72] and in relevant brain regions of
age-related diseases like AD [73, 74], PD [75, 76],
Huntington’s disease [76, 77], and amyotrophic lat-
eral sclerosis [78, 79], exerting negative effects on the
brain homeostasis and functioning [80].

Focusing on AD, senescent astrocytes are one
of the well-characterized cellular species. A num-
ber of in vitro and in vivo evidence revealed that
human and mouse astrocytes could become senes-
cent upon the exposure to multiple types of stress,
including AB1—42. In brain tissues harvested from
aged individuals and patients with AD, a signifi-
cant increase in the number of senescent astrocytes
is found, and they could be identified by the classic
senescence-associated [3-galactosidase (SA-(3-gal)
staining and p16INK4A nuclear signals. These cells
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also exhibit the classic markers of SASP, including
the upregulation of p38MAPK and the release of a
number of cytokines [81, 82]. Evidence of senes-
cent microglia is also recently reported in human AD
brains. While sustained proliferation of these cells is
a hallmark of AD, it is suggested that this change
ultimately promotes replicative senescence. Senes-
cent microglia are characterized by positive SA-f3-gal
staining and a transcriptomic signature resembling
that of disease-associated microglia, with a loss in
their ability to prevent the progression of amyloid-
related pathologies [26]. Apart from glia, cellular
senescence is also recently reported in the endothelial
cells of intact microvessels located in the dorsolateral
prefrontal cortex of AD brains, which are associated
with vascular dysfunction and tau pathologies [83].
It was once thought that the phenomenon of cel-
lular senescence is irrelevant to post-mitotic cells in
the brain, as the fundamental criterion that involves
the transition from a cell cycling to a permanently
cell cycle arrested state does not readily apply [84].
However, pioneering work led by the von Zglin-
icki laboratory first used the term “senescence” to
describe the related changes in neurons and pointed
out their accumulation in the aging brain [84]. In
aged mice of 22-24 months of age, around 20-40%
of all terminally differentiated neurons located in
the cortex, the hippocampus and the gut are senes-
cent. Among the Purkinje cell population of the
cerebellum, the percentage is even higher, reaching
around 40-80%. These cells are not only charac-
terized by the classic SA-B-gal staining, but also
by markers indicating a secretory response involv-
ing the activation of proinflammatory p38MAPK and
heightened expression of IL-6 [34]. In human AD
brains, distinct heterochromatic structures designated
as senescence-associated heterochromatic foci are
reported in the granule cells of the hippocampus [85].
A recent single-nucleus transcriptome profiling study
also revealed that among the 2% senescent cells iden-
tified from around 140,000 nuclei derived from 76
postmortem human brains with various levels of AD
pathology, more than 97% of them are excitatory
neurons with overlapping neurofibrillary tangle tau
pathology [86]. Although the findings of earlier stud-
ies did not explicitly use the term “senescent neurons”
in their descriptions, they indeed matched the modern
hallmarks and definition of cellular senescence. For
instance, abnormal expressions of checkpoint regu-
lators like the INK4 family of proteins and p21 have
been reported in tangle-bearing neurons and neuritic
components of plaques [87]. Others reported that

in pyramidal neurons located inside the hippocam-
pus, so as neurons being positive for neurofibrillary
tangles and granulovacuolar degeneration, are aber-
rantly expressing cell cycle regulator pl6 [88]. In
another study which aimed at examining the regional,
cellular, and subcellular localization of active and
phosphorylated p38MAPK (pp38) in the brain also
reported pp38 immunoreactivity in hippocampal neu-
rons bearing early neurofibrillary pathologies [89].
Together, these independent findings from differ-
ent laboratories confirmed the possibility of cellular
senescence responses in post-mitotic neurons. Many
of these cells tend to be associated with tau patholo-
gies, despite the molecular mechanisms underlying
this transformation remain ill-defined.

PERSISTENT DNA DAMAGE RESPONSE
IS THE UNIFYING TRIGGER OF CELL
SENESCENCE

Length of the telomere is not the determining
factor

In order to better understand the molecular changes
underlying cellular senescence, it is essential to
understand its history. Cellular senescence was first
described in the 1960s by Leonard Hayflick and Paul
Moorhead as the irreversible proliferative arrest of
fibroblasts following prolonged culturing in dishes
[90]. This phenomenon is later known as replica-
tive senescence and has become a major focus in
the field of biogerontology [90, 91]. Since then,
replicative senescence has also been reported in vivo
across different mammalian species, ranging from the
proliferating cells of embryonic tissues [38, 92] to
many of those in adults, including endothelial cells
[93], lymphocytes [94], and vascular smooth mus-
cle cells [95]. The term “Hayflick limit” is therefore
coined, referring to the finite replicative capacity of
any diploid dividing cells [96], which also varies
considerably among different cell types [97]. At the
molecular level, it is generally believed that replica-
tive senescence resulted from successive telomere
shortening events that occur during each round of
cell division. This model was built upon the findings
from in vitro experiments with fibroblasts initially
[98], as well as both in vitro and in vivo studies in
other proliferative cell types [99—102]. Despite this,
the direct relationship between telomere shortening
and organismal aging remains inconclusive. Some
studies indicated that only weak linkages between
telomere lengths and the age of sample donors are
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present [103—-105]; whereas many others failed to
find any meaningful correlations at all [106-110].
While it seems logical to assume that organisms
with a longer lifespan should correspondingly pos-
sess longer telomeres, a comparative study involving
sixty mammalian species however revealed that many
short-lived species tended to have longer telomeres
instead [111]. These findings are indeed important,
as they suggest that if senescent cells contribute to
tissue and organismal aging, they should be formed
independently of changes in telomere length—the
side effect of cell cycling. In other words, a pre-
existing cycling status is not necessary to induce
cellular senescence. Therefore, this implied that ter-
minally differentiated cells, even if by default they
do not actively engage in the cell cycle, could still
become senescent by other means. Their existence
has already been reported in many different organs,
including the adult brain [84].

Difficult-to-repair DNA damage is the underlying
trigger

We now understand that the integrity of telomere
sequences rather than their length is more likely the
major driver of cell senescence, but how is it related to
senescence in non-dividing cells? Telomeres located
at the chromosome ends are organized into lariat-
like structures known as t-loops, which are stabilized
by a specialized 6-subunit protein complex known
as shelterin [112, 113]. During each round of cell
division, telomere shortening results in a loss of shel-
terin proteins [114], resulting in the destabilization
of t-loop conformation and the exposure of telomere
ends—a form of DNA lesion [113, 115]. Consis-
tent with that, deletion of shelterin components also
leads to DDR at the telomeric regions [115], which
activates the p53 transcription factor [116] that gov-
erns the fate of cells. Depending on the duration and
severity of the stress, cells can either undergo repair
and survival, cell death, or senescence [117]. DDR
in mammalian cells is facilitated by multiple lesion
sensing and repair pathways [118]. By virtue, they
have evolved into an interactive network [119, 120]
so that even when the primary repair pathways against
certain types of lesions become unavailable, sec-
ondary mechanisms are always standing by to avoid
leaving damage unattended at potentially impor-
tant regions within the genome, which could lead
to unpredictable consequences. However, sometimes
the backup repair process may not function as effec-
tively as they are supposed to and may even introduce

additional errors to the old lesion [121, 122]. The
skewed tendency towards a senescent fate as a domi-
nant outcome of telomere lesions is indeed related to
the relatively limited DNA repair capacity at telom-
eres as compared to the rest of the genome [123—125].
This outcome is caused by the actions of the telomeric
repeat-binding factor (TRF) proteins in the shelterin
complex, which impede non-homologous end joining
repair (NHEJ) as a way to prevent the risk of telom-
eric end-to-end fusions [125, 126]. Because of this,
DNA damage at telomeric regions is often managed
by another pathway of choice known as homologous
recombination (HR) [127, 128], which may some-
times introduce additional deletions and irreversible
damage to the site of repair, leading to an unresolved
DDR that stabilizes the senescence response [127,
129]. Conversely, blocking the onset of HR, but not
NHEJ, prevented cellular senescence despite the fact
that multiple dysfunctional telomeres could be left
unattended [129].

The above findings related to telomere biology
indeed have important implications. They highlight
that any circumstances that lead to unresolved DDR
or the persistence of repair intermediates signifying
unsuccessful DNA repair could lead to cellular senes-
cence, regardless of the cycling status of a cell [84,
130-132]. In fact, mounting evidence has already
hinted at the presence of robust DDR in post-mitotic
senescent cells [84]. Around 40 years after the initial
description by Hayflick and Moorhead, pioneering
work led by Olivier Toussaint and others demon-
strated that cellular senescence can also be induced
by exposing cells to chronic but non-lethal dosages
of stress [133], which they coined the phenomenon
as stress-induced senescence [133]. Various forms of
stressors that are capable of inducing so are identified,
including oxidants, UV irradiation, chemotherapeu-
tic agents and reactive oxygen species (ROS). While
these agents seem to act by different mechanisms, it
is arguable that the majority of them could at some
point introduce damage randomly to the genome,
both directly and indirectly [133, 134]. Chronic expo-
sure to these agents likely takes on the senescence
effect by increasing the chance of unfaithful DNA
repair. This confirms the idea that unresolved DDR
is a key driver of cell senescence.

THE NEURONAL GENOME IS
CONSTANTLY UNDER STRESS

Persistent DDR is probably the most consistently
observed feature of senescent cells [84]. As alluded
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to above, this could be triggered by either telom-
eric or non-telomeric DNA damage, and the infidelity
of their repair. As mentioned, this concept will help
explain how cellular senescence could be achieved
in post-mitotic cells. In the following sections, we
will discuss why neurons are susceptible to DDR
infidelity, priming the initiation of signals leading to
cellular senescence response.

Sources of DNA damage and their roles in
neuronal function

The adult mammalian brain is inherently incapable
of regeneration [135]. Fully differentiated cells in the
brain, particularly the mature neurons, are expected
to survive through the entire life of the organism, sug-
gesting that the maintenance of neuronal genomic
stability is of paramount importance in sustaining
brain health [136]. However, the genomes of these
cells are constantly under threat imposed by their
own physiological activities. The neuronal demand
for energy for sustaining intra- and intercellular com-
munications is enormous [137], which is supported
mainly by the intense activities of oxidative phos-
phorylation reactions in the mitochondria [138]. This
process also generates a huge amount of free radi-
cals and ROS as byproducts that ultimately introduce
oxidative DNA damage [139]. Despite so, an opti-
mal level of ROS produced by the NADPH oxidase
is also found to be essential for maintaining synap-
tic plasticity by modulating long-term potentiation
and depression in multiple brain regions [140]. A
recent study also suggested that within the somato-
dendritic compartment, a related NADPH oxidase
called dual oxidase (DUOX) is required for the neu-
ral activity-regulated generation of H,O,, which in
turn modulates neuronal dendritic growth and adap-
tive plasticity [141]. The duality in the role of ROS
is a double-edged sword which clearly puts neurons
at a heightened risk of DNA damage.

Robust neuronal activities, on the other hand, are
associated with enhanced transcription of long genes
that are necessary for the synaptic modulation and ion
transport [142], which may lead to the production of
RNA:DNA hybrids (R-loops) at these gene loci [143].
Significant increases in R-loop signals over gene bod-
ies and age-associated broadening of R-loop peak
signals are found in neurons [143]. Their existence
may be deemed detrimental, particularly at times
when collisions with the replication forks or tran-
scription complexes occur [144], and their quantities
are associated with a progressive loss in the expres-

sions of these long genes [143]. In addition, single-
and double-stranded breaks are frequently formed
by the actions of neuronal DNA topoisomerase
which are necessary to resolve any topological stress
incurred during active gene transcription [145]. For
instance, during learning and memory consolidation,
immediate early genes such as the activity-regulated
cytoskeleton-associated protein (ARC), fos proto-
oncogene (FOS), and neuronal PAS domain protein-4
(NPAS4) genes are rapidly and transiently expressed
in response to neuronal activities [146—148]. To turn
on these genes, rapid DNA demethylation pathways
have been proposed [149, 150], and it likely involves
the GADD45 family of DNA repair proteins for guid-
ing the removal of 5-methylcytosine by either the
base- (BER) or nucleotide excision repair (NER)
pathway [151-154]. Furthermore, the generation of
targeted DNA double-stranded breaks (DSBs) within
the FOS and NPAS4 promoters is also found to be
sufficient to induce their expressions in response
to neuronal activities, so the topological constraints
imposed by the pre-existing chromain structure can
be resolved. Such kind of activity-dependent DSB
formation is suggested to be mediated by type II
topoisomerase [3, as knockdown of which attenuates
all these events following neuronal stimulation [155].
At the neural circuitry level, increasing neuronal
activity at one brain region can lead to increased neu-
ronal DSBs in other brain regions within the relevant
networks as well [156]. For instance, visual stimuli to
one of the eyes in mice results in a specific increase
in levels of YH2AX foci—a DSB marker—in the
stimulated contralateral visual cortex (V1) but not
in the unstimulated ipsilateral V1, and that is associ-
ated with the induction of FOS expression in neurons
to a similar extent [156]. More importantly, these
foci signals are transient only due to the efficient
repair, and more likely, the formation of DSBs in
this sense is a natural process that facilitates the
extensive remodeling and changes in gene expres-
sion involved in information processing, learning and
memory [157].

Additional sources of DNA damage during brain
aging and disease pathogenesis

During the processes of aging, additional sources
of DNA damage could emerge as well. Recent
evidence revealed that age-associated epigenetic
alterations in the neuronal genome can directly
result in the de-repression of the long interspersed
element-1 family of transposable elements, causing
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unexpected DNA rearrangements and lesions [158].
On the other hand, the proteolytic activity of lyso-
somes declines with age [159], and its failure may
indirectly lead to DNA damage [160, 161]. In many
late-onset neurological diseases, the misfolded pro-
teins which are constantly produced throughout life
start to accumulate, which predominantly occurs in
the adult or aged brains [162]. In the context of
AD, the formation and deposition of A} may in turn
serve as an additional source of DSBs and oxida-
tive DNA damage to neurons [163], which could be
exacerbated during the disease progression. Another
possible linkage between lysosomal activities and
DNA damage is that lysosomes contain Dnase2a
which facilitates the clearance of damaged extranu-
clear DNA via autophagy, thereby preventing the
accumulation of cytosolic DNA [164]. In the brain,
the loss in Dnase2a expression has been associ-
ated with higher loads of senescent neurons [165].
Since the onset of senescence is often accompa-
nied by the progressive remodeling of chromatin, a
phenomenon called “DNA segments with chromatin
alterations reinforcing senescence” (DNA-SCARS)
occurs [166], which is unexpectedly a lysosomal-
dependent process [167]. Moreover, the formation of
DNA-SCARS is associated with a constitutive DDR,
as marked by persistent signals of YH2AX, 53BP1
and the gradual activation of p53 [64].

Together, this evidence highlights that the neu-
ronal genome is constantly under stress, and this
may gradually increase with age for all sorts of rea-
sons. Indeed, a transcriptome-wide profiling study
of prefrontal cortex tissues harvested from individ-
uals ranging from 26 to 106 years old revealed
that the accumulation of oxidative DNA damage is
remarkedly increased from 40 years of age onwards
[168]. More importantly, these markers are selec-
tively enriched at the promoters of genes that are
critical for shaping cognition, memory formation,
and neuronal survival, which are also associated
with diminished gene expressions [168]. The asso-
ciation between random DNA damage with specific
effects on brain aging and dysfunction is further sup-
ported by a more recent genome-wide mapping study,
which precisely pointed out that CpG dinucleotides
and demethylated sites located near neuron-specific
enhancers are vulnerable regions of DNA single-
stranded breaks [169]. At the cellular level, human
neurons are found to take on somatic mutations as
they age from 4 months to 82 years. These muta-
tions accumulate with age in individual neurons, but
when brought together the accumulated divergence

of genomes across the brain may affect functions
eventually [170, 171].

Limited flexibility in DNA repair

If DNA damage is inevitable even in healthy and
functional neurons, one might expect that these cells
should be equipped with a powerful and versatile
DNA repair network. However, the nature of these
cells tells us that this is unlikely to be the case. In
most proliferating mammalian cells, five major DNA
repair pathways are available, including the BER,
NER, mismatch repair (MMR), HR, and NHEJ [172].
Each of them has its own advantages in effectively
handling different types of DNA lesions while they
partially overlap and function as an intercalating net-
work, backing up the repair of one another [172].
For non-dividing cells, they are by default excluded
from the repair mechanisms involving the usage of
the more accurate, S and G2-phase dependent HR
on DSB repair [173], hinting that fully differenti-
ated neurons in the brain are facing such limitations.
Instead, these cells rely heavily on the alternative
but less accurate NHEJ-centric mechanism as the
major pathway for handling DSBs. One exception
is that on occasions when the DSBs are formed
at regions where active transcription activities are
found, an RNA-templated HR-mediated repair mech-
anism could be utilized. In contrast to the classic
mechanism which takes place during the late S-G2
phases, this is a replication-independent recombina-
tional repair predominantly occurring in the G0-G1
phase of the cell cycle, which depends on the nascent
RNA generated during active transcription. This path-
way is evident in post-mitotic neurons, serving as
a high-fidelity DNA repair option for actively tran-
scribed genes that are essential for sustaining the
normal functioning and survival of these cells [174].

Such repair inflexibilities, together with the
genomic stress imposed by various sources, render
neurons selectively vulnerable to an unexpected loss
in the functions of DNA repair machineries [175]. In
genetic diseases resulting from mutations in DNA
repair genes, neurological complications are com-
monly found [176, 177]. For example, xeroderma
pigmentosum group A (XPA) is caused by mutations
of the XPA gene, the product of which plays a cen-
tral role in NER [176]. Around 30% of XPA patients
are found to suffer from mild-to-severe degrees of
intellectual disability, deafness, and seizures [178].
In Cockayne syndrome resulting from mutations
in either the ERCC8 or ERCC6 gene involved in
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repairing transcription-coupled DNA lesions, many
patients suffer from accelerated aging, severe photo-
sensitivity, and impaired development of the nervous
system [179]. In ataxia telangiectasia (A-T) where
the ATM gene that facilitates DSB repair is mutated,
Purkinje neuron degeneration is found in all the
patients, leading to cerebellar atrophy and ataxia
[180]. These, together with the findings from mouse
models, where neurological symptoms are observed
when DNA repair factors like ligase IV and XRCC4
of the NHEJ mechanism are knocked out [181], well-
demonstrate that DNA repair deficiencies have a
causative role in initiating neurodegeneration.

SUSTAINED DNA DAMAGE RESPONSE
RESETS NEURONS INTO A
“PSEUDO-CYCLING” STATUS

Persistent repair intermediates but not
unattended DNA lesions are likely the
troublemakers

One logical speculation on the direct consequences
of defects in DNA repair is simply the accumula-
tion of unattended DNA lesions. However, evidence
indicated that even under normal conditions, neurons
and other post-mitotic cells readily adopt a selec-
tive repair approach, in which genes that are actively
transcribed are repaired more robustly than other
elements in the genome [182]. Such an unexpected
deviation from the ideology of effective global DNA
repair hinted that unattended lesions in the genome
may not immediately impose danger as long as they
are not located on essential genes. This notion is
indeed supported by a recent single neuronal nuclei
whole-genome sequencing analysis, which revealed
that neurons from neurologically normal individuals
have somatic single-nucleotide variant count num-
bers correlated with age [170, 183], serving as another
evidence that unattended DNA lesions are normally
tolerated among these cells. On the contrary, unsuc-
cessfully repaired damage—which indicates the type
of DNA lesions that has already been recognized by
the cellular repair system despite an incomplete and
unsuccessful repair—could lead to the persistent acti-
vation of unresolvable DDR, which in turn triggers
the aberrant reactivation of the cell cycle machinery,
and hence the degeneration of neurons [184]. In the
same vein, some studies revealed that the attenua-
tion of DDR via knocking down or inhibiting DR
effectors after the initial injury results in unexpected
neuroprotective effects [185-187].

The risk of emerging this kind of unsuccessful
DNA repair, just like the case of repair at telom-
eric regions, can be heightened when choices of
repair pathways become limited. Such a kind of
intrinsic limitation is well experienced by the post-
mitotic neurons even under physiological conditions,
as mentioned in the previous section (Limited flex-
ibilities of DNA repair). Apart from this, another
major risk is obviously the compromised DNA repair
capacity resulting from either reduced expressions
or activities of repair proteins. DDR dysfunction in
neurons is indeed well-documented in the pathogen-
esis of common neurodegenerative disorders [188].
Reduced levels and activities of DNA repair pro-
teins are reported in AD brains. These include the
ATM [189], BRCA1 [157], DNA-PKcs [190], and the
MREL11 complex [191] of the DSB repair network; so
as the OGG, NEIL1, and POLB needed for correct-
ing base-related lesions [192, 193], and many others.
Considering that DNA repair pathways are generally
interconnected, defects in the primary repair choice
could potentially be backed up by others. While on
many occasions such kinds of arrangements could
be observed, an error-free and faithful repair is not
always a guarantee. One example is the activation of
HR which serves as a local support of repair when
the primary NHEJ repair is intentionally suppressed
at the telomeric regions [127, 128]. Although HR is
thought to be a better choice of repair in general as
template-mediated repair is logically more accurate,
the repetitiveness of the DNA sequence at the telom-
eric region has made the homologous form of repair
more vulnerable to additional deletions and irre-
versible damage, which may ultimately evolve into
an unresolvable DDR [127, 129]. In other locations of
the genome, sometimes an error-prone repair called
the microhomology-mediated end joining pathway is
turned on as a surrogate repair mechanism for DSBs
when the NHEJ mechanism becomes defective. This
kind of repair is often associated with deletions flank-
ing the break sites and this may even heighten the
chance of undesirable chromosome translocations
and rearrangements [194]. In post-mitotic neurons,
DSB is the major type of lesion that is believed
to be tackled mainly by the NHEJ pathway [173].
However, signs of activated HR, for instance, phos-
phorylated ATM [195], phosphorylated checkpoint
kinase-2 [196], foci of BRCA1, and the RAD fam-
ily of proteins [197], are readily detectable in healthy
neurons as well. As mentioned before, these signals
can be caused by their routine participation in lesion
repair located adjacent to actively transcribed sites,
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which utilize nascent RNA-transcripts as the repair
template [174]. Alternatively, they could be rooted in
the classic mechanism involving the sister chromatid
as a template, where HR acts as a secondary pathway
of choice when NHEJ is not readily available. In the
latter situation, it is plausible that unexpected linger-
ing and unresolved errors are introduced when the
DNA template has to be sought from the sister chro-
matid alignments. Nevertheless, reduced neuronal
NHEJ activities and protein levels of DNA-PKcs
and KU have already been reported in AD [190].
Equally detrimental, other studies also reported that
neuronal activities or levels of proteins involved in
HR are compromised as well [157, 189], hinting
at a heightened chance of HR repair going awry.
Together, these imply that the competence to success-
fully repair DSBs in AD neurons, by any means, is
compromised. This echoes with the observation that
the immunosignals of YH2AX—a post-translational
histone modification thatis widely used as a marker of
DSBs—are persistently increased in neurons located
in the hippocampus and the frontal cortex of mild cog-
nitive impairment and AD patients [198]. As yH2AX
is a phosphorylation product of cellular DNA lesion
sensors like ATM and ATR, such signals indeed indi-
cate repair intermediates rather than free, unattended
ends of DSBs [199, 200]. The accumulation of unre-
solved repair intermediates, in other words, sustained
DDR, should therefore be sensibly addressed for their
roles in disease progression.

Sustained DDR brings back the “cell cycle”
pre-requisite of cellular senescence

Being long-lived and terminally differentiated,
mature neurons at some points are strictly post-
mitotic, but it is also suggested that they are never
free from cell cycle-related events. Mounting evi-
dence indicates that even in normal situations, mature
neurons undergo DDR that is closely linked to the
cell cycle regulatory mechanism [187, 201, 202]. In
all eukaryotes, DSBs can be repaired through NHEJ
or HR. In post-mitotic neurons, NHEJ is the pre-
dominant pathway of choice which comprises both
the canonical NHEJ (c-NHEJ) and alternative NHEJ
(a-NHEJ). The c-NHEJ is primarily facilitated by a
number of associated factors including the KU70/80
(KU), X-ray repair cross complementing 4 (XRCC4),
DNA ligase 4 (LIG4), and DNA-dependent protein
kinase catalytic subunit (DNA-PKcs). During physio-
logical conditions, neurons may exit their resting state
(GO phase) and re-initiate events in the G1 phase, at

which point the c-NHEJ pathway repair machinery
can be recruited to directly ligate the ends with-
out the use of extensive homology [201]. However,
in situations like AD when the levels and activi-
ties of KU-associated machineries are diminished
[203], this could result in the de-repression of the
shared machineries required for the initiation of a-
NHEJ and HR [204]. Both involve the recruitment of
ATM, Artemis, and Retinoblastoma-binding protein
8 (CtIP) [205].

Previous studies suggested that the pathway choice
between a-NHEJ and HR is likely dependent on
the cell cycle status. If the recruitment of fac-
tors occurs in the G1 phase, activation of a-NHEJ
predominates [205], which would likely allow the
lesions to be resolved by minimal resection followed
by direct annealing of microhomologous sequences
[206, 207]. However, if the recruitment process hap-
pens in the S or G2 phases, activation of HR prevails
[205, 208] but the outcome of end resection could
be completely different. Unlike the minimal resec-
tion that occurs in a-NHEJ, HR involves additional
endo- and exonucleases, such as DNA replication
helicase/nuclease-2 (DNA2), exonuclease-1 (EXO1)
and meiotic recombination-11 (MREI11) proteins
that remove several kilobases from the 5’ terminus
of the DSB [209], creating a long range single-
stranded DNA (ssDNA) resection for subsequent
strand invasion by the homologous sister strand [207].
The ssDNA created is then rapidly covered by the
ssDNA-binding replication protein A (RPA), which
briefly recruits and activates the ataxia telangiectasia
and RAD3 related (ATR) [210, 211]. In proliferat-
ing cells, the subsequent replacement with RADS51
recombinase (RADS51) protein on the ssDNA fol-
lowed by homology search would occur to complete
the HR repair [212]. However, in post-mitotic neu-
rons, such downstream events are unlikely to be
fulfilled due to their cell cycle constraints.

In light of the existence of such crosstalks between
the ATM and ATR-dependent signaling, some studies
also suggested that the ATM-dependent mechanism
is mainly activated by sublethal DSB lesions. This
signaling mediates their proper repair in neurons by
allowing a “brief” G1 phase re-engagement where
a-NHE]J could be initiated, and after the repair, these
cells would likely return to the GO resting phase [201].
On the contrary, the ATR-dependent pathway is
mainly hyperactivated in response to replicative stress
(i.e., S-phase) [213, 214], which is logically a more
devastating situation for neurons. The “replication-
like” stress is reported in neurons which attempt to
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transit from G1 to S phase upon unrepairable lesions
or when facing the exhaustion of repair machineries
[215, 216]. Subsequent activation of ATR signal-
ing would entail the transition through the G2-M
cell cycle checkpoint via Chk1 phosphorylation [214,
217]. If this occurs in proliferating cells, this will
lead to high-fidelity HR repair and full recovery will
likely follow [218]. However, in mature neurons,
the initiation of the classic HR repair machinery is
hardly effective due to their fully differentiated sta-
tus. It is plausible that the delayed processing of
DSBs in these cells eventually results in high levels of
resected single stranded DNA, which further enhance
ATR-dependent signaling in a vicious cycle [132].
Evidence of S-phase re-engagement and activated
ATR signaling has been reported in neurons of human
AD brains [219]. Recent studies suggested that early
S-phase re-engagement in neurons is indeed a protec-
tive mechanism in preventing immediate cell death
induced by the exposure to A [73] or the introduc-
tion of SV40 large T antigen [220]. Together, these
findings clearly illustrate how persistent repair inter-
mediates are strong inducers of cell cycle reactivation
in neurons, priming them to proceed to permanent
cell cycle arrest (i.e., cellular senescence) at times if
needed.

THE CHOICE OF TERMINAL FATES
BETWEEN IMMEDIATE CELL DEATH
AND CELL SENESCENCE

Observation: Death row is not the only possible
outcome

Indeed, the association between cell cycle re-entry
and neurodegeneration is well-established, and the
population of these cell cycle re-activated neurons
is also correlated with the decline in brain cogni-
tive function [221]. In patients with AD and even
those with mild cognitive impairment, evidence of
neuronal cell cycle re-entry has been reported, which
seems to be associated with the levels of hyperphos-
phorylated tau and neurofibrillary tangles [222]. In
non-diseased healthy brains, low levels of cell cycle
re-activated neurons are found occasionally [221], but
their number can be escalated by exposing them to
disease-associated conditions, such as hyperglycemia
[223], hyperinsulinemia [35], stroke [224, 225], and
traumatic brain injuries [226]. Markers indicating
activated G1 to S phases are frequently observed in
these cells. Occasionally, evidence of partial DNA
replication and G2 phase markers is also reported

[222, 227]. Despite so, signs of mitotic phase entry
and successful events of cell division have never
been observed, instead most neurons are found to be
arrested at the G1-S and G2-M cell cycle checkpoints
[222, 228].

The fate of cells arrested at cycling checkpoints
initiated by the DDR is mainly either survival from
successful repair or cell death from failing to do so
[229]. A number of cell death mechanisms related to
DNA damage and DDR have been reported in neu-
rons. These include apoptosis, autophagy-dependent
cell death, and necroptosis [230]. Apoptosis has been
widely studied as a response to severe DNA damage,
in particular, this mechanism involves the rapid acti-
vation of p53 signaling axis in neurons [231]. The
relationship between autophagy-dependent cell death
and DDR is also recently addressed [232], as multiple
DNA repair pathways, including the HR, BER, NER,
and MMR are at some point regulated by autophagy
[233, 234]. Regarding necroptosis, a type of regu-
lated cell death mechanism which displays features
of both apoptosis and necrosis, recent studies also
suggested that DNA damage is a potential upstream
trigger [235], and crosstalks with autophagy in neu-
rons as well [236, 237]. However, it appears that
the severity of DNA damage as well as the strength
of cell cycle progression signaling could both inter-
fere with the fate of these neurons. As illustrated
above, low levels of DNA damage promote the entry
into G1 phase, which will then be likely handled
by NHEJ; whereas high levels of damage or the
incompetence of NHEJ may lead to S phase re-entry
through the onset and activation of HR. This may then
result in the emergence of secondary damage formed
during the strand invasion process and partial repli-
cation of DNA, thereby promoting cell death. Apart
from these classic findings, emerging evidence also
suggests that some of these cell cycle re-activated
neurons could persist in the brain for months or
even years [238]. Many of these cells appeared to be
functionally active, despite the fact that they might
have deviated from their original physiology [239].
Indeed, other studies also suggested that neurons are
way more resilient than we could have imagined,
as their longevity is not limited by the maximum
lifespan of the organism from which they originated.
Rather, if they are transplanted into another organ-
ism with a longer lifespan, they could outlive their
original host [240]. This does not only suggest that
neuronal survival and chronological aging are coin-
cidental but separable processes, but also hints that
neurons are inherently well-equipped to survive after
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Fig. 1. Three major cell fates are found in terminally differentiated neurons in response to DNA insults. Successful repair results in a
quiescent outcome, and the neurons maintain their normal physiology as a part of a healthy brain. In contrast, sustained damage resulted from
unsuccessful repair or unattended lesions may lead to neuronal death and senescence, contributing to brain aging and disease pathogenesis.

being put in unexpected situations. Together, these
findings indicate that in contrast to the simple and
acute execution of cell death and removal, an unex-
pected “pro-survival” phase may sometimes emerge,
so that these neurons can last chronically in tissues
or even escape from the death row (Fig. 1).

Permanent cell cycle arrest following cell cycle
re-entry in neurons

Now it becomes clear that one possible mechanism
underlying the anti-apoptotic properties acquired by
these cells is the commitment to cellular senes-
cence [239]. At the molecular level, despite how
checkpoint activation and repair are coordinated to
determine the cell fate of neurons after initiation
of DDR still remains largely unknown, studies per-
formed in other cellular systems suggested that the
decision to irreversibly exit the cell cycle (i.e., cel-
lular senescence) can be established quickly within
hours after the DDR is triggered in the G2 phase. In
contrast to that scenario, a substantially longer time
for the repair is allowed when the damage is detected
in other phases of the cell cycle [241]. Other evi-
dence also echoed that the permanent cell cycle exit
decision from the G2 phase is marked by the p53-
p21-dependent entrapment of cyclin B1/Cdk into the
nucleus, where the latter serves as a final trigger of
a senescence response [241-243]. This outcome is
indeed downstream of and dependent on the ATR-
mediated DDR signaling [132, 244]. The linkage
between ATR signaling and cell senescence is evi-
dent. In ATM-deficient cells, activation of ATR in
the absence of DNA breaks is sufficient to promote

cell cycle arrest, and if the signal persists, it trig-
gers p53-dependent senescence [245]. In neurons,
ATR is indispensable for preventing the S phase-
dependent neuronal death in vivo, which allows the
“cell cycle events” to be sustained in the affected
neurons for weeks to years before their cell death
is observed [246]. If our prediction is correct, persis-
tent repair intermediates will likely trigger neuronal
senescence through a sustained ATR signaling axis.
While the direct evidence related to this hypothesis
currently lacks, transcriptome profiling of neurons
characterized with persistent DDR did reveal an
induction of gene expression patterns mapped to the
ATR-dependent DDR and APC/C cycle regulatory
complex and p53 signaling [247] (Fig. 2).

A proposed model

Combining the current understanding of the mech-
anistic and consequential heterogeneity in DDR and
our prediction, we have proposed a model describing
the fate of neurons upon DSBs. The neuronal genome
is constantly subjected to various kinds of stress.
Upon sensing the DSB lesions, DDR is elicited. It
is likely that NHE]J is elicited only when the NHEJ
core proteins, including KUs, XRCC4, LIG4, and
DNA-PKcs, are present. This leads to a temporary re-
engagement into the G1 phase for the c-NHEJ, and
to a lesser extent, the a-NHEJ (Figs. 2 and 3A). As
both variations of NHEJ are error-prone, by chance,
somatic mutations could be generated and left behind.
Since neurons are inherently well-equipped to survive
after DNA insults, when the mutations are toler-
able, DDR will be resolved, followed by neurons
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Fig. 2. A proposed decision roadmap leading to the different cell fates of neurons in the face of DSB challenge. For the details, please refer

to the “A proposed model” section.

returning to the quiescent and homeostatic GO phase
(Figs. 1 and 2). However, if mutations are intolerable,
particularly those on essential genes for cell function-
ing and survival, then non-homeostatic fates prevail
(Fig. 2).

We speculate that the non-homeostatic fates man-
ifest as either neuronal death or cellular senescence
(Fig. 1) and these fates will emerge at times when
the optimal functioning of NHEJ repair machinery is
compromised, particularly in the context of AD, or
on occasions when the primary lesions are left unat-
tended (Fig. 3A). In the former scenario, neurons are
likely reset back into the “cell cycling” status. Upon
reaching the S or G2 phase, the DDR can then be
facilitated by the HR and a-NHEJ, despite how the
decision is made between the two remains unclear.

The HR is likely by default a failure among these
cells, as homologous sequencing invasion is unlikely
to occur (Figs. 2 and 3B). This results in lingering
ssDNA repair intermediates, which prompt the sus-
tained activation of the ATR pathway to consolidate a
cellular senescence response (Fig. 3B). For the unat-
tended lesions, these may prime the occurrence of
somatic mutations. Under most circumstances, these
could be tolerated as long as they are located in
regions that will not impede the expressions of essen-
tial genes; or else a detrimental death fate is assured.
This proposed model tightly links how DNA dam-
age response is closely associated with the cell cycle
status, and how failure in the repair network results
in neuronal senescence and cell death, contributing
to the hallmarks of brain aging. Of note, this model
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persistence of single-stranded repair intermediates and chronic activation of ATR, where the latter is a strong driver of cell cycle checkpoint

and senescence.

bears emphasis on NHEJ and HR, yet they are not the
exclusive mechanisms of DNA repair in neurons.

CURRENT APPROACHES FOR
TARGETING SENESCENT CELLS

The idea of selectively targeting senescent cells
has emerged since 2004 when an inverse relationship
between senescence cell burden and health span was
identified in mice [248]. Since then, multiple strate-
gies have been identified, which can be classified into

two major categories: senomorphics and senolytics
[249]. While senomorphics are compounds that aim
at neutralizing SASP components without the actual
killing effect [250], senolytics are ones that aim at
eliminating senescent cells directly [251]. The ear-
liest senolytics were identified by a bioinformatics
approach, targeted at disrupting the senescent cell
anti-apoptotic and pro-survival network [251]. The
ultimate effect is to render senescent cells that express
SASP no longer “immuned” to the associated damag-
ing effect, thereby killing themselves [251]. A famous
example of this approach is the combined treatment
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of Src kinase inhibitor dasatinib and the flavonoid
quercertin, so as the use of BCL2 family protein
inhibitors and others [60, 251-254].

More recently, the application of the oxidized
form of nicotinamide adenine dinucleotide (NAD+)
has become one of the hotspots of anti-aging and
longevity science [255]. Strong links between NAD+
depletion and hallmarks of brain aging have been
found, so as between NAD+ and DDR at the molecu-
lar level [256, 257]. NAD+ is a substrate for DNA
repair through the reaction called PARylation for
“flagging” sites of lesions for subsequent process-
ing, and this is mediated by DDR signaling enzymes
PARP1, PARP2, and PARP3 [258]. In genetic dis-
eases such as the XPA [259], Cockayne syndrome
group B (CSB) [260] and A-T [261] where genes
involved in certain DDR are mutated, unresolved
and sustained activation of PARPI1 is frequently
observed, leading to uncontrolled PARylation and
hence severe NAD+ depletion [259]. The latter situa-
tion consequently de-activates the NAD-dependent
sirtuins [259], an anti-aging family of deacylases
in the eukaryotic system. A similar phenomenon is
also observed in AD and other age-related disorders
[262]. Supplementation of NAD+ precursors, either
in the form of nicotinamide riboside or nicotinamide
monucleotide, is found to be beneficial in improving
the cellular DNA repair capacities, as well as alle-
viating the clinical symptoms associated with these
DNA-repair deficient [259, 263, 264] and age-related
neurological diseases (i.e. AD, PD, Huntington’s dis-
ease, amyotrophic lateral sclerosis) [256].

FUTURE PERSPECTIVES

It is now encouraging to witness a rise in research
interest in cellular senescence biology in the context
of brain aging and neurodegenerative diseases. It is
not difficult to realize that cellular senescence and the
pathogenesis of AD, at some point, show reciprocal
causality. Here in this review, the argument for how
senescent cells may serve as a major contributor to
tissue aging and pathogenesis is laid out. We argue
that neuronal senescence is “a new face of an old
acquaintance”. This phenomenon possibly explains
how certain cell cycle re-engaged neurons could per-
sist in the brain if they do not die instantly (Fig. 1).
If the analysis is correct, this will extend our under-
standing of the influences of these “lingering” cells
on the brain milieu.

With reference to both the classic and the latest evi-
dence related to the subject of cellular senescence, it
is logical to reason that unresolved DDR is likely the
trigger of neuronal senescence, as this logically nar-
rates our knowledge of the relationship between the
DDR, cell cycle re-entry, and permanent checkpoint
arrest that we have acquired in post-mitotic neurons
over the past two decades (Fig. 2). The p53 dynam-
ics is the key controlling element of the terminal fate
of a cell after DDR [265], which the protein itself
is a known downstream phosphorylation target of
both ATM and ATR [266]. Therefore, it is crucial to
understand how the resulting dynamics differ when
triggered by different kinases, and that should help
explain the differences in the terminal fates achieved.

Research into the possibilities of senescence cell-
targeting senotherapies in reversing the effects of
pathological aging has been surging in recent years.
However, targeting senescent cells is not an easy task,
not only due to the fact that the brain is difficult
to access, but emerging evidence also indicates that
there is a large heterogeneity in the molecular charac-
teristics of senescent cells, depending on the inducing
agent, cell type, and life stages [249, 267]. There-
fore, the mechanisms that distinguish the beneficial
from the deleterious senescence events and details of
such heterogeneity are the critical knowledge gaps
at present. With the recent advances in spatial and
single-cell-based omics and multiplex-based imaging
technologies, unique markers and maps that describe
the evolutionary details of neuronal senescence at
the molecular, cellular, morphological, and func-
tional levels in a spatial-and-temporal framework can
potentially be identified in the near future. Alongside
with the traditional focus on the anti-amyloid and
tauopathy drug development, senotherapeutic strate-
gies may therefore hold great promises as adjuvants
in sustaining brain cell resilience and tissue home-
ostasis in acting against the inevitable aging factor of
life.
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