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Abstract.

Background: Though mediotemporal lobe volume changes are well-known features of Alzheimer’s disease (AD), grey
matter volume changes may be distributed throughout the brain. These distributed changes are not independent due to the
underlying network structure and can be described in terms of a structural covariance network (SCN).

Objective: To investigate how the cortical brain organization is altered in AD we studied the mutual connectivity of hubs in
the SCN, i.e., the rich-club.

Methods: To construct the SCNs, cortical thickness was obtained from structural MRI for 97 participants (normal cogni-
tion, n=37; mild cognitive impairment, n =41; Alzheimer-type dementia, n = 19). Subsequently, rich-club coefficients were
calculated from the SCN, and related to memory performance and hippocampal volume using linear regression.

Results: Lower rich-club connectivity was related to lower memory performance as well as lower hippocampal volume.
Conclusion: Therefore, this study provides novel evidence of reduced connectivity in hub areas in relation to AD-related
cognitive impairments and atrophy.
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Fig. 1. Graphical representation of a network with a rich-club con-
figuration. The high nodes with high nodal degree (black in the
graph) have a high number of connections between each other
(indicated by the black edges).

INTRODUCTION

Alzheimer’s disease (AD) is the most common
cause of dementia. The neuropathological hallmarks
of AD are the accumulation of amyloid-f3 plaques,
the formation of tau tangles, and neurodegeneration.
Moreover, volume changes of the hippocampus and
the accompanying memory decline are well-known
features of AD. Changes in cortical volume and thick-
ness may also occur outside the mediotemporal lobe.
These distributed alterations are not independent but
may express as coherent changes due to the under-
lying network structure. Specific patterns of cortical
thinning are a common finding in AD [1-4], which
is suggested to be indicative of disease progression
[5, 6]. Therefore, investigating cortical organization
could provide additional insights into the disease pro-
gression of AD.

Previously, measures of brain morphology (e.g.,
the cortical thickness) have been shown to correlate
across various brain regions [7]. These correlations
are thought to be associated with functional and
axonal connectivity, underlying the so-called struc-
tural covariance network (SCN). Previously, the SCN
has already been shown to be less efficiently orga-
nized in AD as compared to healthy controls [8—10].
These studies were based on group-level SCNs,
constructed by estimating the connection strength
between brain regions from correlations of morpho-
logical measurements across a group of subjects. As a
result, individual network characteristics were lack-
ing, hampering further statistical analyses that can

relate the SCNs to individual (e.g., demographic and
clinical) factors and provide a better pathophysiology
understanding. To overcome this limitation, several
individual SCN methods have been introduced to
estimate subject specific structural covariance con-
nectivity. For example, Saggar et al. proposed a
distance-based approach, where the contribution of a
subject is estimated with respect to a reference group
[11]. Furthermore, Tijms et al. [12] proposed an alter-
native method using a cube-based approach, where
small 3D cubes represent nodes and connections are
estimated by similarities in gray matter morphology.
This individual SCN method extends upon previous
work by showing that less efficiently organized SCNs
relate to worse cognitive performance [13-16] and
faster atrophy rates [17]. Furthermore, alterations in
SCNs were shown to be related to amyloid [18] and
tau [19] pathology, further showing their potential in
AD-related research.

Functional and structural networks in the brain
have extensively been shown to be organized as so-
called small-world networks, which allow efficient
information spreading with a low wiring cost. One of
the main features separating random networks from
such efficiently organized small-world networks is
the presence of hub nodes. Hubs are nodes in a net-
work that have a relative high number of connections
to other nodes. Furthermore, in the brain network,
these hubs tend to be interconnected, forming a
so-called rich-club [20]. A graphical representation
of the rich-club is shown in Fig. 1. The rich-club
subnetwork has strong implications on the overall
performance of a network. For example, the extent of
rich-club configuration in the anatomical network has
been associated to cognitive performance in healthy
participants using diffusion tensor imaging [21], and
more recently impaired functional connectivity of the
rich-club was found in AD using functional MRI [22].
Moreover, white and gray matter lesions in patients
with AD were found to be located more frequently
in hub-regions compared to peripheral regions [23],
emphasizing the potential involvement of hub nodes
and rich-club configuration in AD. Hence, impaired
connectivity of the rich-club subnetwork could have
a strong implication on the progression of AD-related
cognitive impairments and atrophy. Although cur-
rently, the influence that the rich-club might have on
AD is underdetermined. Therefore, the current study
aims to investigate whether a disrupted rich-club of
the distance-based SCN is associated with memory
performance and hippocampal volume in a memory
clinic population.
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Table 1

Subject characteristics of cognitively normal (CN), mild-cognitive impaired (MCI), Alzheimer’s disease (AD), and reference (Ref) partic-

ipants. Variables are summarized as mean =+ standard deviation or median [25th percentile; 75th percentile]. MMSE, Mini-Mental State

Examination; VLT, total recall score of the 15-word verbal learning task; VLT-dr, delayed recall score of the 15-word verbal learning task.
Note that the p-values denote differences between CN, MCI, and AD groups

CN MCI AD p Ref
# 37 41 19 - 55
Age (y) 71+7 70+ 6 72+7 0.12 66+ 10
Sex (Male/Female) 23/14 22/19 13/6 0.82 30/25
Education (level) 413 6] 42 6] 6[36] 0.11 -
Cognitive performance (raw
scores)
MMSE 29.0 [28.7 30.0] 27.0 [26.0 29.0] 26.0 [21.0 27.3] <0.01 29.0 [28.0 30.0]
VLT 45.6+9.2 33.7£11.0 27.7+8.3 <0.01 -
VLT-dr 92+29 50+£38 29+19 <0.01 -
Cognitive performance
(z-scores)
VLT 0.65+1.1 -093+1.3 -1.6+1.3 <0.01 -
VLT-dr 043+1.1 -1.3+14 -2.1+0.96 <0.01 -
METHODS of memory performance. Raw scores were converted
to age-, sex-, and education-corrected z-scores (based
Participants on normative data) [28], and (objective) cognitive

Ninety-seven participants with a varying range of
cognitive performance were included in this study,
including 41 individuals with mild cognitive impair-
ment (MCI) (19 females, mean age 70 y), 19 with
clinical AD (6 females, mean age 71 y), and 37
cognitively normal (CN) controls (14 females, mean
age 72 y). MCI was diagnosed based on the follow-
ing criteria: 1) concerns about cognitive functioning
were reported by the patient or an informant, 2)
cognitive impairment was detected on at least one
cognitive domain, and 3) dementia was absent [24].
AD diagnosis was made when individuals met the
NIA-AA core clinical criteria for AD [25]. MCI
and AD patients were recruited from the Maas-
tricht University Medical Center and Zuyderland
Medical Center in Heerlen, while CN controls were
recruited through local newspaper and online adver-
tisements. In addition, the CN group consisted of
individuals who visited the memory clinic and had
received a diagnosis of subjective cognitive decline
[26]. These individuals reported self-experienced
cognitive decline in comparison with a previously
normal status and unrelated to an acute event, but
no objective cognitive impairment was detected on
any of the neuropsychological tests [26]. For all par-
ticipants, education level (8-level scale; [27]) was
recorded. Furthermore, all participants underwent
neuropsychological assessment, among which the
Mini-Mental State Examination (MMSE) and the 15-
word verbal learning task, the latter for the assessment

impairment was defined as z-score<-1.5. A sum-
mary of the group characteristics is provided in
Table 1. A more detailed characterization of the sam-
ple, along with inclusion and exclusion criteria, is
described in a prior study [29]. All participants gave
written informed consent, and the study was carried
out in accordance with the latest update of the Decla-
ration of Helsinki and approved by the local medical
ethics committee.

An additional reference group consisting of fifty-
five healthy older controls (25 females, mean age
66 y) [30] was included to perform the distance-based
SCN analysis. These participants had no substantial
global cognition impairment (MMSE >25), and no
major brain abnormalities.

MRI acquisition

All participants were scanned on a 3.0 Tesla unit
(Philips, Achieva TX, Best, the Netherlands) using
a 32-channel head coil. For all participants, T1-
weighted 3D fast gradient-echo images were acquired
with the following parameters: repetition time (TR)
8ms, echo time (TE) 4ms, inversion time (TI)
800 ms, flip angle 8°, and 1 mm cubic voxel size.

Structural covariance network

From the acquired T1-weighted images, the cor-
tical thickness was determined using automated
software (Freesurfer, version 5.1 [31]), combined
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with visual inspections and manual corrections. The
brain was parcellated into 68 cortical regions using
the Desikan-Killiany atlas [32] and the mean cortical
thickness was calculated for each region. Addition-
ally, the hippocampal volume, also determined using
Freesurfer, was used as a measure of AD-related atro-
phy. Cortical thickness is known to decrease with
age [33], to differ between sexes [34], and to scale
with brain size. For each brain region, the cortical
thickness values were therefore adjusted for age, sex,
and total intercranial volume via multivariable linear
regression models [35]. Subsequent SCN analyses
are thus not biased by potential group differences
in age, sex, and intercranial volume. An adjacency
matrix, which represents the SCN, was calculated
by the Pearson’s correlation coefficient between the
corrected cortical thicknesses of each region pair.

To extract individual SCNs, the add-one-
participant method was used [11, 36], in which
the individual contribution of a participant was
assessed by adding that participant to the reference
group before calculating the adjacency matrix.
Only significantly positive correlations (r>0 and
p<0.05) were considered, since the involvement
of negative correlations in the network is still
unclear [37]. Furthermore, to avoid that statistical
analysis would be driven by the total number of
connections (edges) in the networks, the networks
were thresholded such that each network has the
same amount of connections. The individual SCN
analysis was performed using in-house MAT-
LAB code, made publicly accessible on GitHub
(https://github.com/GSDrenthen/SCN).

Rich-club analysis

To identify the hub nodes in the network, the nodal
degree for each node in the network was first aver-
aged over all subjects, obtaining an average degree
per node. Hub nodes were defined as those nodes with
adegree higher than the average degree plus one stan-
dard deviation [38]. The interconnectedness of hub
nodes was determined using the weighted rich-club
coefficient (RCC);

_ 2% Elmbs
Npubs (Nhuhs - 1)

where Ep, 5 s the total connectivity strength between
hubs and Nj,,ps is the number of hubs [20]. As such,
the RCC provides a measure of the between-hub
connectivity strength over the total number of possi-
ble connections between hubs, where a higher RCC

RCC

ey

indicates more interconnectedness between hubs.
Subsequently, the RCC was normalized with respect
to the mean RCC of 1000 random networks. To assess
the stability of the rich-club analysis with respect to
the hubs, the analysis was repeated where the amount
of hub nodes was varied from 4 up to 64 with steps
of 4.

Additionally, the connectivity strength of the so-
called feeder connections (i.e., connections between
hubs and other nodes) and local connections (i.e.,
connections between the nodes that are not hubs)
were also assessed.

Statistical analysis

Potential group differences in age, and cognitive
performance were assessed by one-way ANOVA test,
while differences in the categorical variables sex and
education were assessed using a chi-squared test. A
one-way ANOVA test was performed to assess poten-
tial group differences in the RCC. Subsequently, the
relation between RCC and memory performance was
assessed using multivariable linear regression with
the RCC as the dependent variable, and the raw
VLT-dr scores as independent variable, correcting for
age, sex, education level, and diagnostic group using
two dummy variables representing MCI and AD.
Similarly, the relation between RCC and hippocam-
pal volume was assessed using multivariable linear
regression, correcting for age, sex, total intracra-
nial volume, and diagnostic group using two dummy
variables representing MCI and AD. Furthermore,
the potential relation of local and feeder connec-
tion strength with hippocampal volume and memory
performance was assessed using similar regression
models.

The statistical analyses were all performed using
MATLAB (version R2019b) software. Statistical sig-
nificance was inferred at p <0.05.

RESULTS

The average nodal degree of all participants for the
68 nodes is 42 with a standard deviation of 12, result-
ing in 8 hub nodes. The average degree of all nodes is
shown in Fig. 2, where the hub nodes are depicted
in bold. In Fig. 3, the locations of the hub nodes
are depicted on inflated cortical surfaces. Means and
standard deviations of the RCC for each diagnostic
group were 1.31 4 0.03 for CN, 1.29 % 0.05 for MCI,
and 1.29 £0.03 for AD. RCC did not differ signifi-
cantly between the diagnostics groups (p =0.39).
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Fig. 2. Average nodal degree of all 68 nodes, where the 8 hub nodes are shown in bold.

Hub nodes

Lateral

Medial

Fig. 3. The identified hub nodes in the structural covariance net-
work; bilateral fusiform gyrus; bilateral superior temporal gyrus;
left supramarginal gyrus; left opercular part of inferior frontal
gyrus; left precuneus and left middle temporal gyrus.

The multivariable linear regression model relating
RCC to the VLT-dr raw-scores revealed a significant
positive relationship (p =0.03). Moreover, a signifi-
cant positive relation was found between RCC and
hippocampal volume (p <0.01). These results indi-
cate that networks with a larger extent of rich-club
configuration relate to a better memory performance
and a larger hippocampal volume. The relation of
RCC and VLT-dr as well as RCC and hippocampal
volume are shown in Fig. 4. Note that for visualization
purposes, the age-, sex-, education corrected z-scores
of the VLT-dr, instead of the raw scores, are shown

in Fig. 4A. The feeder and local connection strengths
did not relate to either the memory performance or
the hippocampal volume.

To assess the stability of the relations between RCC
and VLT-dr as well as RCC and hippocampal volume
with respect to the number of hubs, we have repeated
the analysis for a varying rich-club size. We found
that both relations could be found for rich-clubs con-
sisting of up to 20 nodes. Moreover, the relation of
RCC and hippocampal volume was reported to be
even more robust, as it was still found to be significant
with rich-clubs consisting of the 56 highest-degree
nodes (Fig. 5).

DISCUSSION

In this study we set out to characterize the cortical
organization in cognitively impaired older individ-
uals in terms of the rich-club subnetwork of the
structural covariance network (SCN) and its associ-
ation with cognitive function. The main finding of
this study is that a loss of nodal degree in the rich-
club subnetwork of the SCN relates to lower memory
performance and a smaller hippocampal volume in a
memory clinic sample.

One of the main attributes that separates random
networks from efficiently organized networks such as
the brain, is the presence of hub nodes. In our study
we have identified 8 cortical regions as hubs in the
SCN: bilateral fusiform gyrus; bilateral superior tem-
poral gyrus; left supramarginal gyrus; left opercular
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part of inferior frontal gyrus; left precuneus and left
middle temporal gyrus. Interestingly, prior studies
employing diffusion tensor imaging have reported
overlapping hubs, such as the precuneus [20, 39],
the fusiform [39, 40], the inferior and superior tem-
poral, and the supramarginal regions [40]. Thus,
even though the SCNs only partly reflect the DTI-
derived fiber connections [37], they share the same
hub regions indicating the robustness and importance
of these hubs regions in the brain network.

The hubs in the brain network tend to form a
densely connected rich-club subnetwork, where a
higher rich-club configuration relates to a larger num-
ber of connections between the hubs in the network.
In the current study we have reported that a loss of
rich-club configuration, i.e., a loss of connections
between the hubs, relates to impaired cognitive per-
formance in the memory domain, as well as loss
of hippocampal volume. Previously, a lower nodal
degree in the fronto-temporal regions of the SCN was
associated with memory loss [14]. Here, we show that

the effect of nodal degree and memory performance
is more widespread through the brain, and specifi-
cally involves the connections between the hub nodes
(i.e., the rich-club). The more densely connected hub
regions have higher rates of neural processing and
information flow, thus requiring increased blood flow
and metabolic activity [38, 41, 42]. It has been previ-
ously debated that an increase of metabolic activity
interacts with the tau pathology in AD [43]. More-
over, hub regions in patients with AD were found
to be more prone to lesions compared to periph-
eral regions [23]. Combined, this demonstrates that
the hub regions, and thus the rich-club subnetwork,
are especially vulnerable in AD. Our results support
this notion, and further indicate that the vulnerability
of hubs could provide an underlying mechanism for
problems related to memory retrieval in AD.

The rich-club phenomenon has been previously
studied in relation to AD using DTI analysis, reveal-
ing that connections in the rich-club were affected in
early-onset AD [39]. Interestingly, other DTT studies
have reported that the extent of rich-club configu-
ration remains largely intact in AD [44, 45]. This,
combined with the results from the current study,
imply that the SCN has the potential to provide unique
knowledge on interregional cortical associations in
subjects with cognitive impairments, and provide
valuable information complementary to DTI.

Study considerations

A major strength of the SCN analysis is that it only
requires structural T1-weighted images, which are
generally available in clinical studies, and have a high
resolution and image quality. Other neuroimaging
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techniques, such as DTI, that also relate to struc-
tural connectivity require a dedicated scan, increasing
the total scan time, and more advanced hardware
(i.e., stronger gradient systems). Therefore, the SCN
approach provides an achievable way to model brain
connectivity. There are multiple ways to construct
individual SCNs, and they all share that they rely on
the assumption that axonally connected regions have
similarities in morphology, however each different
method has the potential to provide unique informa-
tion. For example, whereas the cube-based method
estimates within-subject connectivity directly, the
distance-based method is based on individual vari-
ations with respect to a group of subjects. As such,
abnormal morphology with respect to a reference
group relates to a loss of connection strength in
the distance-based SCNs, making the distance-based
SCN approach especially sensitive to network dis-
ruptions due to disease-related (e.g., AD-related)
cortical atrophy. However, the distance-based SCN
approach requires a reference group to construct the
SCNs, thus generally requiring a larger sample (ref-
erence group of approximately 25 subjects is needed
[11]) to maintain similar statistical power compared
to direct individual SCN approaches. To circum-
vent this problem, we have proposed to calculate
the distance-based SCNs with respect to a reference
group from a prior study. Even though the reference
group differed slightly in age, since we do not directly
compare the reference group with the other groups,
our between-group results are not biased by the differ-
ences between the reference group and NC, MCI, and
AD groups. Furthermore, the effects of age on the cor-
tical thickness are controlled for in the preprocessing
steps. A limitation of this study is its cross-sectional
design, which does not allow us to derive causal rela-
tionships between alterations in the SCN and memory
performance and hippocampal volume. Furthermore,
it cannot be excluded that drug use has had a bearing
on the results of this study. Nonetheless, because the
drugs were prescribed based on the individual clinical
situation of subjects, the results in this study reflect a
sample of memory clinic patients.

Concluding remark

The distance-based SCN is proposed as a quan-
titative MRI processing method, suitable for use in
large population scale studies, that provides infor-
mation on neurodegeneration and the underlying
network of distributed dependent cortical regions
in relation to cognitive function. We have shown

that a decreased rich-club connectivity in the SCN
relates to lower memory performance and hippocam-
pal atrophy, indicating that a loss of degree in the
rich-club subnetwork may be related to underlying
memory loss in the context of MCI and dementia.
This provides novel evidence that interconnectivity
of hub regions relates to AD-related cognitive impair-
ments and atrophy. Future, preferably longitudinal,
prospective of retrospective studies should investi-
gate whether rich-club connectivity could be a marker
for disease progression.
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