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Abstract. The success of genome-wide association studies (GWAS) completed in the last 15 years has reinforced a key
fact: polygenic architecture makes a substantial contribution to variation of susceptibility to complex disease, including
Alzheimer’s disease. One straight-forward way to capture this architecture and predict which individuals in a population are
most at risk is to calculate a polygenic risk score (PRS). This score aggregates the risk conferred across multiple genetic
variants, ultimately representing an individual’s predicted genetic susceptibility for a disease. PRS have received increasing
attention after having been successfully used in complex traits. This has brought with it renewed attention on new methods
which improve the accuracy of risk prediction. While these applications are initially informative, their utility is far from
equitable: the majority of PRS models use samples heavily if not entirely of individuals of European descent. This basic
approach opens concerns of health equity if applied inaccurately to other population groups, or health disparity if we fail to
use them at all. In this review we will examine the methods of calculating PRS and some of their previous uses in disease
prediction. We also advocate for, with supporting scientific evidence, inclusion of data from diverse populations in these
existing and future studies of population risk via PRS.
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INTRODUCTION

Polygenic risk scores (PRS) have increasingly
become a tool of interest in both research and clinical
settings. As a measure of an individual’s genetic risk
for a specific trait, PRS hold the possibility of increas-
ing the efficiency of disease diagnosis and prognosis
beyond what can be achieved using lifestyle and
environmental risk information alone. Scores have
been calculated for a multitude of phenotypes [1-13],
including for Alzheimer’s disease (AD) [14-21]. AD
is a neurodegenerative disease characterized by dev-
astating memory loss and cognitive deterioration. It
is the sixth leading cause of death in adults in the
United States, affecting more than 6 million adults
over the age of 65 [22]. Previous studies have shown
that PRS and PHS (polygenic hazard scores, which
look at time to event) are able to quantify differences
in genetic risk between individuals, enabling stratifi-
cation of those individuals based on their risk levels
[17, 20, 23, 24] and personalized treatment options.

While this finding is useful, there is one major
drawback of using PRS: the population in which
these scores may prove useful is only a subset of
the global population. The majority of PRS analyses,
and the genome-wide association studies (GWAS)
they are built on, are computed on samples of exclu-
sively European lineage [2, 25, 26]. Due to the known
differences in linkage disequilibrium (LD) structure
and environmental factors between ethnic groups,
these European-based PRS analyses have been shown
to be far less useful for non-European populations,
especially those of African American descent [25].
Because of all this, it is vital that researchers perform
PRS analyses on a diverse group of individuals to
maximize the usefulness of this method globally. This
review will examine PRS, their previous uses in dis-
ease prediction generally and AD specifically, some
of the methods used to calculate them, and the vari-
ous reasons why data from a variety of populations
must be included in these studies.

POLYGENIC RISK SCORES AS A
RESEARCH TOOL

What is a polygenic risk score?

In its simplest form, a PRS, also known as genetic
risk score or risk profile score, is an estimate of an
individual’s genetic risk for a particular trait. PRS is
a sum of an individual’s genotypes, either genome-
wide or only at specific genomic locations, weighted

6000

4000

Disease Status
Case

[] contrat

Density

2000

[ \——

-26-04 06+00 2604
Polygenic Risk Score

Fig. 1. Alzheimer’s disease PRS distribution. PRS is typically nor-
mally distributed, as seen here, with cases shifted slightly right of
controls due to higher genetic risk. In the best case it is able to
discriminate between the groups of study. The PRS for this fig-
ure was calculated for samples (2635 cases, 2471 controls) from
the National Alzheimer’s Coordinating Center (NACC) [55] using
effect size estimates from the 2019 IGAP GWAS [36] summary
statistics. The C+T method was implemented using PLINK soft-
ware (code available upon request).

by the effect size estimates for single nucleotide poly-
morphisms (SNPs) present in a GWAS dataset for the
trait of interest [27, 28]. For binary traits, effect sizes
are represented as beta in the summary statistics, but
continuous traits (height, body mass index, etc.) are
reported as an odds ratio (OR). These effect sizes
must be transformed into betas, using log(OR), before
being used to calculate PRS. Using just these two
inputs, genotype information and GWAS summary
statistics, the typically normally distributed PRS can
be used to stratify individuals based on genetic risk
for a trait, with the tails representing individuals
with higher or lower genetic risk (Fig. 1 shows this
characteristic holding for AD) [29]. When used in
combination with phenotype data for a second trait,
for the purpose of examining whether genetic risk
for one trait is predictive of another, PRS can also
be used to indicate shared etiology between diseases.
An overview of a typical PRS workflow is shown in
Fig. 2.

Previous use of PRS

Since researchers began using polygenic scores
for research in 2008, there have been many studies
that have applied PRS to various diseases and pheno-
typic traits [3—13, 24], both continuous and binary. In
Oetjens et al., the authors calculated PRS for height
and body mass index. They noted that the variance
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Fig. 2. Typical PRS workflow. A normal PRS workflow involves
the QC of both a base and target dataset. PRS are then calcu-
lated on the base dataset to predict the trait of interest in the target
data. Validation is performed in an independent dataset to ensure
a predictive and informative risk score model. This model can
then be used for various clinical applications. QC, quality control;
LD, linkage disequilibrium; P+T, pruning and thresholding; G/P,
genotype/phenotype.

explained by both scores were similar to that of the
respective GWAS summary statistics that were used
to build the scores, thus providing more evidence for
the clinical utility of PRS [30]. Similarly, Ripke et
al. [5] showed that a PRS for schizophrenia was able
to predict case/control status for individuals from a
dataset independent of the discovery set. This abil-
ity to stratify individuals could prove useful in both
epidemiological and clinical studies. While only dis-
cussing two examples in this review, PRS have been
calculated and shown predictive for many different
types of diseases [1-4].

With the possibility of PRS being of clinical use,
there has also been interest in whether the perfor-
mance of a risk score could be predicted a priori.
In creating a model to achieve this, Chatterjee et
al. identified several indicators of how predictive the
PRS will be. Among these were the sample size of
the discovery GWAS dataset, the underlying genetic
architecture and degree of heritability of the trait of
interest, and knowledge about relevant environmental
and lifestyle risk factors [31]. Knowing the expected
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Fig. 3. Average PRS for Alzheimer’s disease. Average
Alzheimer’s disease PRS by age for cases (2635, red) and
controls (2471, blue) from the National Alzheimer’s Coordinating
Center (NACC) [55]. Risk scores were calculated using the C+T
method in PLINK (code available upon request), using effect size
estimates from the 2019 IGAP GWAS [36] summary statistics.
Samples were grouped by age, with bin width=1, with the
exception of group 90 which includes all samples 90 years of age
and older.

utility of a risk score before producing it allows for
efficient dispersal of resources to completing these
studies.

USE OF PRS FOR ALZHEIMER’S
DISEASE

Alzheimer’s disease

AD is a neurodegenerative disease characterized
by devastating memory loss and cognitive deterio-
ration that affects more than 6 million adults over
the age of 65 [22, 32]. Postmortem autopsies show
brain atrophy, amyloid plaque deposition, and tau
tangles [32], but these changes may begin to take
place about two decades before symptoms appear.
Because of this delayed symptom onset, AD is diffi-
cult to manage, with standard treatment focused on
management of cognitive and behavioral symptoms.
With a better understanding of the biology underlying
AD, and the ability to identify increased disease risk
earlier in life, it is possible to move toward a treat-
ment for AD. This has, in part, driven the use of PRS
to further our understanding of AD (age-stratified
AD PRS in Fig. 3, previous studies summarized in
Supplementary Table 1).
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PRS and PHS in Alzheimer’s disease

One of the earliest applications of risk score calcu-
lation for AD was performed in 2017 by Desikan et
al. [17], in the calculation of polygenic hazard scores
(PHS). PHS are calculated using a Cox regression
model, as opposed to the typical logistic or linear
regression used in PRS for binary and continuous
traits respectively. This model change also means the
predicted outcome is different; PHS gives researchers
the ability to estimate a person’s instantaneous risk
for developing a disease. While Cox models are better
able to detect risk variants compared to linear/logistic
models due to their incorporation of time-to-event
data, SNPs with a strong effect size will be marked
as significant regardless of the model used [23]. In
Desikan et al., the hazard scores strongly predicted
the age of onset (p=1.1 x 1072%) for AD, showing
that a higher PHS quartile correlated with a decreased
age of onset and increased yearly incidence rate.
In addition to this, their PHS also strongly associ-
ated with known markers of neurodegeneration, like
decreased hippocampal and cortical volume, and neu-
ropathological characteristics, such as neurofibrillary
tangles and amyloid plaques.

Many research groups were able to replicate the
results of Desikan et al. in their own studies, rein-
forcing the utility of PRS and PHS in AD risk
stratification. Tan et al. [20] used a stepwise Cox
proportional hazards model to investigate the rela-
tionship between AD PHS and multiple pathological
and behavioral markers. These markers include lon-
gitudinal volume changes of 33 brain regions of
interest, regional neuropathology, and longitudinal
cognitive decline, among others. Their hazard scores,
which were calculated using just the 31 SNPs that
passed feature selection, showed association with
amyloid deposition and neurodegeneration across
multiple brain regions, as well as cognitive and clini-
cal decline (p =2.93 x 1072) in people without an AD
diagnosis. This provided more information than what
could be gleaned solely from imaging biomarkers.

In 2021, Hugq et al. [33] calculated AD PRS specif-
ically for samples that were homozygous for the
APOE &4 allele. Presence of the APOE &4 allele is
considered the biggest risk factor for developing AD,
conferring an almost 15-fold increase in the chances
of developing the disease as compared to the most
common genotype [34]. Huq et al. calculated PRS
for young AD cases and cognitively healthy older
controls, all homozygous for &4, after removal of the
APOE genomic region. This PRS, calculated with-

out the SNPs with the largest effect sizes and done
on samples with known heavy genetic burden, was
able to significantly distinguish between the cases and
controls. The PRS for cases was significantly higher
than that of controls (p =0.003), indicating the abil-
ity for PRS to effectively capture comparatively small
genetic effects.

Felsky et al. [35] developed their PRS further
than the previously mentioned studies. Instead of
using PRS solely to classify levels of genetic risk for
AD, they investigated whether immune-specific risk
scores were associated with known characteristics of
an aging brain. Many recent AD GWAS [36-38] have
implicated immune genes in AD risk, and it has been
previously shown that a diagnosis of certain immune
diseases like rheumatoid arthritis (RA) and psoriasis
is associated with increased AD risk [39], setting the
foundation for this work. Felsky et al. calculated 8 dif-
ferent risk scores, including for RA, coronary artery
disease, and telomere length, and looked for associa-
tions with microglial density, cognitive decline, and
AD neuropathology. Among their results, the authors
found that the risk scores calculated from the RA
summary statistics were associated with both cogni-
tive decline in living patients and neuropathology at
autopsy. While they did not use a diagnosis of AD as
their outcome, the use of these known AD features
shows the ability of PRS to capture shared genetic
risk between different phenotypes, even indirectly.

METHODS TO CALCULATE PRS

In order to calculate an individual’s genetic risk
for a trait, PRS are calculated by weighing a sub-
set of a person’s genetic variants by the strength of
their association with the trait of interest, represented
by the effect size reported in the GWAS summary
statistics. While this appears relatively straightfor-
ward at first glance, there are multiple complexities
that need to be considered. These include 1) the
scope of the genome being captured, 2) how to best
model LD, and 3) assumptions about the statistical
distribution(s) underlying the disease of interest. As
such, there have been many different methods devel-
oped [40] over the last decade that attempt to make
this calculation as biologically relevant as possible.
This review will briefly introduce five methods for
calculating PRS, summarized in Table 1, showing
the similarities and differences in terms of software
needs, statistical approach, and input requirements.
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Table 1

Summary of PRS Tools. Summary of PRS tools mentioned in this review, with required platform and input needed for analysis.
ISC, International Schizophrenia Consortium; GCTB, genome-wide complex trait Bayesian analyses; LD, linkage disequilibrium; G/P,

genotype/phenotype
Tool Authors Development Platform Input Approach
Year Requirements
P+T/C+T ISC [56] 2009 PLINK Base phenotype GWAS C+T
results
Target G/P data
PRSice Euesden et al. [41] 2015 R Base phenotype GWAS C+T
results
Target G/P data
LDpred Vilhjalmsson et al. [44] 2015 R Genetic architecture prior Bayesian (Gibbs
GWAS summary Sampler)
statistics
LD reference panel
Target G/P data
PRS-CS Ge et al. [45] 2019 Python GWAS summary stats Bayesian
LD reference panel (Continuous
Target G/P data Shrinkage)
SBayesR Lloyd-Jones et al. [46] 2019 GCTB GWAS summary stats Bayesian (Gibbs
LD reference panel Sampler)
Target G/P data
Pruning/clumping and thresholding PRSice

The simplest, and most frequently used, methods
for calculating PRS are called ‘Pruning and Thresh-
olding’ and ‘Clumping and Thresholding’ (P+T and
C+T, respectively). These methods differ in how
SNPs are chosen to be included into the PRS model.
In P+T, SNPs that pass a specified LD thresh-
old in a pre-defined genomic window are retained.
Due to the arbitrary way SNPs in LD are cho-
sen to be pruned, this leads to a somewhat random
collection of uncorrelated SNPs to be included in
the risk score model [27]. In contrast, C+T selects
SNPs that are highly associated with the trait of
interest based on a specified p-value threshold, and
then forms clumps around those SNPs that include
all markers within a certain LD window [1]. This
allows a single genetic locus to capture multiple
independent effects stemming from different signif-
icant genetic markers. In short, P+T uses a random
set of uncorrelated SNPs to build the PRS model,
while C+T uses SNPs that have already been shown
to be associated with the trait of interest. Once
the subset of SNPs has been identified, both meth-
ods follow the same process to calculate the risk
scores; the individual’s dosage for each SNP is mul-
tiplied by the reported GWAS effect size. These new
weighted dosages are summed across all included
variants to give a final risk score, the units of which
correspond to the units of the discovery GWAS phe-
notype.

The first dedicated software for calculating PRS,
PRSice, was developed by Euesden et al. (2015) [41].
Rather than simply weighing genome-wide variants
by the GWAS effect sizes, PRSice removes SNPs in
LD and uses principal component analysis (PCA) to
control for population substructure. Incorporation of
this additional information allows for a more predic-
tive PRS. PRSice also allows for flexibility in the risk
scores calculated; users can calculate scores at any
number of p-value cutoffs, allowing for the identifica-
tion of the “best-fit” PRS based on R? values. Along
with calculating PRS, PRSice is a fully automated
software that also applies, evaluates, and plots the
results of a PRS analysis. This provides all the essen-
tial components needed to easily complete a PRS
analysis, and the ability to have quick turnaround time
for testing out different combinations of parameters.

Most recently, many researchers have been using
an updated version of PRSice, called PRSice-2 [42],
to calculate their risk scores. This newer version is
more time- and memory-efficient than the original.
For example, Andrews et al. [43] used PRSice-2 to
quickly and easily calculate PRS for 22 different AD
risk factors.

LDpred

Once researchers saw how accessible PRS studies
could be, they began looking into ways to improve
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the method by better modeling the underlying LD
structure and genetic architecture. To address this,
many Bayesian PRS tools have been developed [40],
including a tool called LDpred [44]. Developed in
2015, LDpred uses a prior on marker effect size (the
genetic architecture) and LD information to estimate
the posterior mean effect sizes for the causal GWAS
SNPs. By using different fractions of causal markers
in its prior, LDpred calculates multiple PRS, similar
to the way P+T uses different p-value thresholds to
calculate multiple scores. If we assume all markers
are causal and hence no LD to account for, a scenario
known as LDpred-inf, then the posterior effects are
drawn from a Gaussian distribution. In practice, a far
more reasonable model assumes that the variant data
is comprised of a mixture of causal and non-causal
risk variants; thus, the standard implementation
approximates the posterior using a Monte-Carlo
Gibbs sampler. Calculated this way, as opposed to
the normal P+T method, the prediction accuracy
of the risk scores calculated by LDpred’s Bayesian
method converges to the heritability explained by the
included SNPs.

PRS-CS

While Bayesian PRS methods like LDpred have
a higher prediction accuracy compared to P+T, they
can be computationally expensive and inaccurately
adjust for LD due to their discrete mixture priors
[45]. To address this issue, Ge et al. developed the
python package PRS-CS, a Bayesian PRS method
that uses a continuous shrinkage (CS) prior on
the SNP effect sizes; the amount of shrinkage is
inversely correlated with the strength of the GWAS
signal. This CS prior puts strong shrinkage on small
effects that are most likely to be noise while effec-
tively putting no shrinkage on non-zero effects. It
also allows for block updates of SNP effect sizes;
updates are done for a group of consecutive SNPs
instead of sequentially for each individual SNP, to
better model LD patterns [45]. When compared
to prediction accuracies produced by LDpred, Ge
et al. found that PRS-CS outperformed as sample
size increased and was computationally scalable;
more markers added to the model does not neces-
sarily increase the number of blocks that need to
be updated, whereas with LDpred the number of
updates grows exponentially with the number of
markers.

SBayesR

One of the more recent PRS methods is SBayesR
[46], developed by Lloyd-Jones et al. (2019). This
method applies a Bayesian multiple regression model
to GWAS summary statistics to calculate PRS. The
posterior is estimated through a combination of mul-
tiple regression coefficients and a mixture of normal
distributions prior on the SNP effect sizes. This
model can simultaneously estimate heritability, per-
form genetic mapping, and estimate the distribution
of marker effects, allowing SBayesR to outperform
other PRS methods and reduce the average runtime
of risk score calculations. This also has the potential
for fine mapping in the future, with SBayesR’s ability
to fit millions of variants into a single model.

As the work to develop these five methods high-
lights, there is great interest in developing methods
that make PRS calculations faster and more predic-
tive, whether that is by improving the statistical model
used in prediction or by incorporating genomic char-
acteristics into the calculation.

PERFORMANCE METRICS AND
CAVEATS OF PRS

Assessing PRS model performance

With all the available software options available
for calculating PRS, it is important now to consider
what makes a model “good” in practice. There are
many ways of evaluating the association between a
calculated risk score and a trait of interest by looking
at different characteristics of the model [27]. A low
p-value would reject the null hypothesis of no associ-
ation with the trait, while a high R? value would point
to the ability of the model to capture a large amount
of variance in the chosen phenotype. Lastly, the dis-
criminatory ability of the model can be represented
by the area under the receiver operator curve (AUC),
with a higher AUC indicating a higher ability to dis-
tinguish between case/control status in the context of
binary phenotypes.

Caveats of PRS analysis

While PRS have been shown to be useful statistical
tools for disease research, there are a few limitations
due to how scores are calculated and interpreted.

When calculating risk scores, specific SNPs are
chosen for inclusion in the final model. Regardless
of whether this is due to significance thresholds or



K. Clark et al. / Polygenic Risk Scores in Alzheimer’s Disease 7

a priori selection by researchers, this restriction in
the genomic information used leads to the inability
of PRS to completely capture the genomic landscape
of the selected trait [26, 47]. Along these same lines,
PRS generally do not include rare variants (those with
an allele frequency less than 1%) because they cannot
be captured in most large-scale GWAS. This becomes
a problem in the case of traits that are truly poly-
genic, or influenced by more than one gene, where
the model may be missing information contained by
the removed and/or absent genes.

Aside from the variants included in the PRS model,
the model itself can cause issues. PRS calculations
typically assume a linear, additive relationship, but
this is not always the case in complex diseases. There
are many interactions and non-linear effects that
should be considered when assessing genetic risk for
a disease. Unfortunately, these effects are typically
hard to detect due to small sample sizes, meaning
PRS models cannot account for these complexities.
Continuing research into how to adequately handle
these issues will certainly lead to more predictive PRS
models.

It is also important to remember that risk scores can
only indicate genetic risk for a disease; it cannot be
used to diagnose patients. This distinction between a
prediction and a definitive diagnosis becomes impor-
tant as PRS continues to be more widely and publicly
used in clinical and research settings.

CLINICAL APPLICATIONS OF PRS

While PRS have been shown to be useful research
tools, they can also be used in a multitude of ways
in clinical settings, especially in the context of AD.
Alzheimer’s PRS have already been shown to be pre-
dictive of clinical symptoms like cognitive decline
[15, 19], lending itself to uses in clinical trials, treat-
ment decisions, and individual life planning.

Clinical trials

PRS can be particularly useful in the case of clini-
cal trials, where the goal is to identify therapies that
can prevent disease progression. By identifying cog-
nitively normal adults that have a high risk for AD,
and therefore a high PRS, clinicians can improve their
chances of detecting effective prevention therapies in
trial cohorts [18, 19]. Instead of trying to discern the
effectiveness of a prevention drug on subjects that
may or may not have gone on to develop AD with-
out intervention, risk scores allow trials to be run on

subjects that have the highest chance of needing the
treatment. This in turn can save both time and money
when running clinical trials [26] by targeting specific
groups of people that will garner the most informative
results.

Treatment

PRS can also be used to aid in treatment decisions.
In the case of diseases with set guidelines for regular
screenings, like mammograms for breast cancer, risk
scores can be used to inform screening frequency for
various diseases [18, 48]. In some cases, individuals
with low PRS can safely delay screenings, while those
with higher PRS may begin screenings earlier than
the general recommendation. This would increase
the efficiency and cost-effectiveness of screenings
for many different diseases. In cases like AD, where
treatment is mainly focused symptom management,
identifying individuals with a high genetic risk and
introducing earlier interventions can lead to higher
quality of life for those affected.

For those with a known diagnosis, PRS can be used
to determine whether specific subjects would be good
candidates for certain drugs. If clinical trials show
that a drug is differentially effective in subjects of
varying risk profiles, that would help inform treat-
ment options. For example, Mega et al. conducted
a PRS study of coronary heart disease and found
that subjects with the highest genetic risk saw the
largest benefit from statin therapy [9]. Cases like
this highlight the possibility of using risk scores to
increase confidence when recommending drugs. This
would not only save time when deciding between
treatment options but would also save money that
would otherwise be spent looking for an effective
therapy [26].

Life planning

Along with a direct clinical use, PRS can also affect
general life planning of patients visiting the clinic [26,
48]. Depending on the disease for which the risk score
was calculated, patients with high genetic risk may
implement certain changes (whether dietary, phys-
ical, etc.) in an effort to lower their total risk. As
PRS continue to become more predictive, they have
to potential to me more impactful when calculated
earlier in life, especially when used for diseases with
a later age of onset like AD [49].
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Precautions

While risk scores clearly have their benefits as
mentioned previously, it is also important to remem-
ber that a risk score does not definitively correlate
with whether or not a person will develop a cer-
tain disease [7, 26]. There have been a few studies
showing that PRS can actually overestimate a per-
son’s genetic risk for a trait [50, 51]. It is especially
important for clinicians, and researchers in general,
to effectively communicate the implications of a high
or low risk score [48]. The key is to find the balance
between informing someone of their predisposition
for a disease and causing possibly undue stress to
the individual. Increasing public knowledge of PRS
as a prediction tool, among other things, will aid in
finding this balance.

PRS UTILITY IN DIVERSE POPULATIONS

As PRS become more popular, and their clini-
cal utility becomes more appreciated, it is essential
to ensure that everyone can reap the benefits of
the tool, specifically people of non-European ances-
tries. These groups have historically been negatively
impacted by health inequities and would greatly ben-
efit from successful development and deployment of
this methodology at scale.

Diversity in PRS calculation

A large proportion of the PRS studies that have
been completed, including those mentioned in this
review, have been performed on subjects of solely
European descent. In fact, only ~4% of previous PRS
studies have included samples of African American,
Hispanic, or Indigenous descent [2]. A naive PRS
based on information from European subjects applied
to non-European subjects will overlook at least two
major sources of variation that will reduce both the
prediction ability and accuracy of a score: known dif-
ferences in LD and variant allele frequencies across
populations. The accumulation of these differences is
thought to be the reason why many PRS studies have
reported substantially decreased accuracy and predic-
tive power in estimating genetic risk in non-European
individuals when training models are derived from
subjects of European ancestry [2, 6, 25, 26, 48]. For
example, a PRS calculated in European samples have
been shown to be about one-third as informative when
applied to samples of African ancestry [2]. Thus, the
previously mentioned clinical utility of PRS is greatly

limited for diverse populations, especially in compar-
ison to other commonly used clinical measures and
tests. While there are many other factors, including
both physical and social environmental differences,
that could affect the predictive power of PRS across
different groups [6, 26, 29, 52], it is apparent that eth-
nic background is a major contributor to the disparity
in utility.

One way to address this is by performing princi-
pal PCA to capture population structure, and a few
PRS studies [6, 16, 33, 53] (Supplementary Table 1)
have been conducted with the goal of addressing
this discrepancy in AD specifically. While control-
ling for multiple principal components does correct
a lot of the population stratification present in the
samples, there is still a small percentage that remains
uncorrected. This leads to the inclusion of false pos-
itives in the model; SNPs that incorrectly have a
significant, non-zero effect due to unaccounted-for
correlation with the base population instead of the
trait of interest. A PRS biased in this way contributes
to the differences in utility seen when applied to a
dataset of a different population, emphasizing the
notion that PRS should be calculated and applied in
a population-specific way. However, the fundamental
lack of diversity in the sample makeup of the genetic
association data used to train the PRS model makes
this very difficult to achieve.

Diversity in underlying GWAS

The most common way to calculate a PRS depends
on the variant effect sizes as reported in GWAS sum-
mary statistics data. While this can relieve some of
the privacy concerns surrounding publicly available
genetic data, about 80% of all GWAS participants
are of European descent [25] (Fig. 4). This bias in
the included samples is then passed along to the
training sets for the PRS calculations. High genetic
divergence between the GWAS samples and the tar-
get samples that a PRS is being tested on leads
to reduced prediction accuracy [25, 26], meaning a
research group that tries to incorporate populations
of different backgrounds in their analysis would still
be hindered by the lack of diversity present in the
initial summary statistics data. By investing in more
non-European GWAS, and thus population-specific
genotyping arrays and imputation panels as well, we
can start the process of properly balancing the func-
tionality of PRS among diverse populations. More
diverse GWAS will not only positively impact risk
score calculations. It has been shown that, even if the
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GWAS Populations

1.30%
2.40% 1.30%

6%

78%

= European = Asian - Not reported = African = Hispanic/Latin American = Other/Multiple

Fig. 4. Breakdown of ancestry populations included in the
GWAS Catalog. Ancestry data for all individuals included in
the GWAS catalog published between 2005 and 2016. The
“Other/Multiple” category includes individuals reported as “Non-
European, Non-Asian”, “Greater Middle Eastern”, “Multiple”,
“Multiple, non-European”, “Multiple, including European”, and
“Other and other admixed”.

sample sizes are considered small, GWAS of diverse
populations have increased predictive power and can
identify more associations as compared to those done
on samples of European descent [25, 54]. This also
holds for PRS calculations; Sariya et al. [54] showed
that their PRS for Caribbean Hispanic (CH) samples
either matched or exceeded prediction accuracies of
European PRS despite their CH GWAS dataset being
almost 15 times smaller in size. Investing in a more
diverse collection of GWAS studies can lead to a
better understanding of the genetic basis of many
different traits which can then be extended to PRS
studies.

FUTURE DIRECTIONS: PATHWAY PRS

As the utility of PRS becomes increasingly clear, it
isimportant to consider how they can be used for more
than just basic risk prediction. One example of PRS
being extended is in the use of pathway-specific risk
scores. In the last few years, the community has begun
calculating PRS in such a way that leads to a better
understanding of the etiology of a specific disease [7,
19,21] begun calculating PRS in such a way that leads
to a better understanding of the etiology of a specific
disease. In 2019, Morgan et al. [21] calculated both
standard and immune-specific risk scores to inves-
tigate the relationship between immunity and AD.
Their standard PRS included all SNPs that reached
a specified significance threshold, while the immune
PRS, referred to as an “IPS”, only included SNPs
near genes that had been previously shown to be rel-
evant to inflammation and immunity [21]. This IPS
allowed for the identification of specific inflamma-

tory biomarkers associated with AD risk that would
have otherwise been missed.

In 2020, Bandres-Ciga et al. did something similar;
they calculated what they called “Polygenic Effect
Scores” for over 2000 gene sets representing different
biological pathways [7]. After testing for signifi-
cant associations with Parkinson’s disease (PD) and
removing known PD risk loci and GWAS hits, the
group identified 6 significant gene sets. These six sets
represent PD risk that had not been identified previ-
ously, allowing the “new” risk that PRS capture to
be classified into biologically relevant groups. These
two research groups, among others, show the benefit
of extending PRS to be more biologically meaningful.

CONCLUSION

As we have shown, PRS have been informative in
many different disease contexts, with multiple soft-
ware developed in the recent past to increase its
accuracy. The goal of these new methods is to expand
the benefit of PRS beyond a research tool, gaining
value in both clinical settings and the lives of the
general public. Despite this effort, PRS remain the
most useful for subjects of European descent due
to differences in genetic architecture between ethnic
populations. While the clear solution is to increase the
diversity of populations with calculated risk scores,
this is only possible if the populations of the underly-
ing large-scale GWAS are also diversified. Once this
task is undertaken, PRS can grow to be applicable
to people of all communities. This is especially true
in the case of AD, where disease prevalence is much
higher in people of African and Hispanic descent as
compared to that of people of European or Asian
descent [22]. With continued effort to increase the
predictive ability of PRS software and an investment
into GWAS of non-European populations, it is very
likely that PRS will be a common tool used by the
medical community.
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