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Abstract.
Background: Automatic analysis of the drawing process using a digital tablet and pen has been applied to successfully detect
Alzheimer’s disease (AD) and mild cognitive impairment (MCI). However, most studies focused on analyzing individual
drawing tasks separately, and the question of how a combination of drawing tasks could improve the detection performance
thus remains unexplored.
Objective: We aimed to investigate whether analysis of the drawing process in multiple drawing tasks could capture different,
complementary aspects of cognitive impairments, with a view toward combining multiple tasks to effectively improve the
detection capability.
Methods: We collected drawing data from 144 community-dwelling older adults (27 AD, 65 MCI, and 52 cognitively normal,
or CN) who performed five drawing tasks. We then extracted motion- and pause-related drawing features for each task and
investigated the associations of the features with the participants’ diagnostic statuses and cognitive measures.
Results: The drawing features showed gradual changes from CN to MCI and then to AD, and the changes in the features
for each task were statistically associated with cognitive impairments in different domains. For classification into the three
diagnostic categories, a machine learning model using the features from all five tasks achieved a classification accuracy of
75.2%, an improvement by 7.8% over that of the best single-task model.
Conclusion: Our results demonstrate that a common set of drawing features from multiple drawing tasks can capture
different, complementary aspects of cognitive impairments, which may lead to a scalable way to improve the automated,
reliable detection of AD and MCI.
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INTRODUCTION

As the world’s older adult population increases,
early detection and diagnosis of dementia have
become a major societal challenge. Diagnosis of indi-
viduals with dementia at earlier stages, e.g., mild
cognitive impairment (MCI), enables early interven-
tions that may prevent or delay the onset of dementia
[1–3], as well as provision of appropriate care to
help manage symptoms [3]. In particular, with the
possible advent of disease-modifying treatments for
Alzheimer’s disease (AD) [4], the most common form
of dementia, there is a growing need for early diag-
nosis of AD. However, diagnosis rates remain so low
that globally 75% of people with dementia have not
been diagnosed [5], and the rates are particularly
low for earlier stages [5–7]. A possible solution for
these low rates may be screening in non-specialist
settings such as primary care [8]. In fact, statistics
indicate that primary care physicians perceive bar-
riers to recognizing the presence of dementia and
making timely referrals to specialists [5]. Accord-
ingly, easy-to-perform screening tools that can be
used in primary care, or even at home, would help
identify individuals who require further examination
for AD diagnosis and thus improve the diagnosis
rates.

Drawing tests are a commonly used tool for screen-
ing and clinical diagnosis of AD. Various drawing
tests have been developed and applied, because
changes in drawing capability are known to be sen-
sitive indicators of AD and MCI [9]. These tests
were each designed to capture impairments in specific
cognitive domains according to test-specific scor-
ing methods that evaluate the drawing outcome. For
example, the Trail Making Test (TMT) measures an
individual’s processing speed in terms of the task
completion time [10], while the Clock Drawing Test
(CDT) measures executive function through qualita-
tive analysis of the clock face, numbers, and hands
[11]. In clinical practice, combinations of multiple
drawing tests have often been used for better perfor-
mance in screening or diagnosis of AD by capturing
multiple aspects of cognitive impairments [10, 12].
These drawing tests require clinical specialists to
evaluate the outcomes. Thus, the development of
automated drawing-based tools that work even in
non-specialist situations would lower the barriers to
AD screening.

Recent studies have proposed computer-based
analysis of the characteristics of the drawing pro-
cess rather than those of the drawing outcome. For

example, patients with AD or MCI exhibit changes
in drawing characteristics that are related to motion
(e.g., slower speed [13–15]) and pauses (e.g., longer
pauses [13, 15, 16]). As a result, computer models
that use features representing these changes have suc-
cessfully classified AD, MCI, and control individuals
[13, 15, 17]. However, most of these studies exam-
ined individual tasks in isolation and thus did not
explore an effective combination of multiple tasks.
On the other hand, it has been reported that various
drawing characteristics during a specific, individual
task are associated with cognitive impairments in
specific domains. For example, longer pauses in the
TMT are associated with impairments in inhibitory
control, switching ability, and processing speed [18],
while those in the CDT are associated with impair-
ments in processing speed and working memory
[19]. As different drawing tasks are designed to
capture impairments in different cognitive domains
through evaluation of the drawing outcome, anal-
ysis of the drawing process in different tasks may
also capture different aspects of cognitive impair-
ments. Accordingly, we hypothesized that analysis
of the drawing process in multiple drawing tasks
could capture different, complementary aspects of
cognitive impairments, with the idea that a combi-
nation of multiple tasks could effectively improve
the detection capability for AD and MCI. We thus
aimed to achieve better performance by applying the
same analytical procedure to the drawing processes
of multiple tasks. This approach contrasts with previ-
ous approaches that aimed to automate conventional
paper-based scoring methods [20, 21] or that intro-
duced task-specific, in-depth analysis of the drawing
process [18, 22].

We collected drawing data from 144 participants
(27 AD, 65 MCI, and 52 cognitively normal, or CN)
who performed five drawing tasks and were evalu-
ated on seven cognitive measures. The five tasks were
selected as representative, commonly used drawing
tasks that are related to different cognitive domains
in terms of their drawing outcomes. We then extracted
drawing features that represented the motion- and
pause-related characteristics of the drawing process
in each task. By using this dataset, we investigated 1)
whether the drawing features extracted from different
tasks were associated with a participant’s diagnos-
tic status and cognitive measures; and 2) whether a
combination of the drawing features from the five
tasks could improve the performance of classifica-
tion models over that of models based on a single
task.
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MATERIALS AND METHODS

Participants

We recruited outpatients from the Department
of Psychiatry, University of Tsukuba Hospital, the
spouses of the patients, and other participants either
through local recruiting agencies or community
advertisements in Ibaraki, Japan. The inclusion cri-
terion for the patients was a diagnosis of AD or MCI
in accordance with the National Institute on Aging
and Alzheimer’s Association (NIA-AA) core clini-
cal criteria for probable AD dementia [23] or MCI
[24]. The AD patients were in mild to moderate stages
according to Benoit et al.’s criteria [25]. Patients were
excluded if they had diagnoses of non-AD demen-
tia (e.g., dementia with Lewy bodies, frontotemporal
dementia, or vascular dementia) or other serious dis-
eases or disabilities that would interfere with the
collection of drawing data. The CN participants were
age-matched to the patients and did not fulfill the
NIA-AA criteria for MCI or dementia. Two psychi-
atrists (authors T. A. and K. N.), who are experts in
dementia and were blind to the results of the draw-
ing data analysis, examined each case in terms of the
clinical record, as well as the cognitive and clinical
measures, and they confirmed the diagnoses of AD,
MCI, and CN.

The study was conducted under the approval of
the Ethics Committee, University of Tsukuba Hos-
pital (H29-065), and it followed the ethical code for
research with humans as stated in the Declaration of
Helsinki. All participants provided written informed
consent to participate in the study. All examinations
were conducted in Japanese.

Cognitive and clinical measures

The cognitive performance of all participants was
measured using seven cognitive assessments that
were conducted by neuropsychologists and assessed
global cognition and five specific cognitive domains.
Specifically, the following assessments were admin-
istered: the Mini-Mental State Examination (MMSE)
for global cognition [26, 27], the Frontal Assessment
Battery (FAB) for executive function [28], imme-
diate and delayed recall of Logical Memory Story
A from the Wechsler Memory Scale-Revised (LM-
immediate and LM-delayed) for episodic memory
[29, 30], part A of the TMT (TMT-A) for process-
ing speed [10], part B of the TMT (TMT-B) for
executive function and attention [10, 31], and the

CDT primarily for executive function [11, 32]. In
addition to measuring global cognition, we primarily
targeted the measures for episodic memory and exec-
utive function as representative cognitive measures,
because deficits in these domains are recognized as
early signs of MCI [33] and are known to have seri-
ous impacts on the individual’s quality of life [34, 35].
These cognitive assessments were conducted because
they are established measures of impairments in mul-
tiple cognitive domains related to AD and MCI, and
we used the scores to investigate their associations
with the drawing process characteristics of multiple
drawing tasks.

As for clinical measures related to the diagnosis of
AD and MCI, we used the Clinical Dementia Rating
(CDR) [36], the Geriatric Depression Scale (GDS)
[37], the Barthel Index of Activities of Daily Living
(ADL) [38], and the Lawton Instrumental Activities
of Daily Living (IADL) [39], along with the severity
of medial temporal lobe atrophy. The latter measure
was not included in the diagnostic criteria but was
evaluated as a reference related to AD pathology
[40, 41]. The severity was evaluated from structural
magnetic resonance imaging scans at 1.5 T with T1-
weighted images and a 3D gradient-echo sequence.
It was expressed as a Z-score relative to cognitively
healthy adults by using a stand-alone, voxel-based
specific regional analysis system for AD [42].

Drawing tasks and features

During the cognitive assessments, the participants
performed five tasks by using a digitizing tablet and
pen (Wacom Cintiq Pro 16; sampling rate: 180 Hz;
pen pressure levels: 8,192; pen inclination resolution:
1 degree; Fig. 1A). Specifically, the following tasks
were administered in the following order (Fig. 1B):
the sentence-writing and pentagon-copying items of
the MMSE [43], the TMT-A and TMT-B [10], and
the CDT [11]. These tasks were selected because
they are representative drawing tasks that are com-
monly used in clinical practice for screening and
diagnosis of AD and MCI, and because they enabled
us to test our hypothesis that the drawing process
characteristics in different drawing tasks could cap-
ture impairments in different cognitive domains. Note
that the characteristics of the drawing outcome and
those of the drawing process may be associated with
different cognitive measures. For example, the con-
ventional scoring of the CDT is known to capture
executive function, but the particular features char-
acterizing its drawing process may also capture an
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Fig. 1. Illustration of the collection of drawing data from five drawing tasks and the extraction of drawing features. A) The digitizing
tablet and pen used for data collection. B) Example outcomes of the five drawing tasks. C) Illustrations of the drawing feature categories:
motion-related (speed/acceleration, pen pressure, and pen posture) and pause-related. Sentence, sentence-writing item of the Mini-Mental
State Examination (MMSE); Pentagon, pentagon-copying item of the MMSE; TMT-A, Trail Making Test part A; TMT-B, Trail Making Test
part B; CDT, Clock Drawing Test.

individual’s processing speed, language functions, or
memory functions [19].

As for the specifics of the tasks, the sentence-
writing task required writing a spontaneous sentence.
The pentagon-copying task required copying a figure
of intersecting pentagons. The TMT-A task required
drawing lines to connect consecutive numbers dis-
tributed in space (i.e., 1-2-3 . . . ). The TMT-B task
required drawing lines to connect numbers and letters
alternately in their respective sequences (i.e., 1-A-2-
B-3-C . . . ). Finally, the CDT task required drawing
an analog clock face to show 10 minutes after 10
o’clock. All the assessments were conducted in the
same room by using the same equipment to avoid the
introduction of additional confounding factors.

We extracted 22 drawing features from each task
(110 features in total), following previous studies on
the use of drawing analysis with AD, MCI, and other
neurological disorders [17, 44–48]. The features con-
sisted of 17 motion-related features (six related to
speed and acceleration, five related to pen pressure,
and six related to pen posture) and five pause-related
features. Figure 1C shows an overview of the feature
categories, and Supplementary Table 1 gives a full
description of the 22 features. The motion-related fea-
tures for speed and acceleration included the mean,

variability, and number of local extrema of the draw-
ing speed and acceleration. The number of local
extrema was used to characterize the non-smoothness
of the drawing motion [49]. The motion-related fea-
tures for pen pressure included the mean, variability,
and number of local extrema (i.e., non-smoothness)
of the pen pressure, as well as the median and variabil-
ity of the speed of changes in the pen pressure. The
motion-related features for pen posture included the
variability of the pen’s horizontal and vertical incli-
nations (hereafter called “tilt-x” and “tilt-y”), as well
as the median and variability of the speed of changes
in tilt-x and tilt-y. The pause-related features included
the mean and total pause duration between drawing
motions (i.e., between strokes and within a stroke),
the ratio of the pause and drawing durations, the total
duration (i.e., the sum of the pause and drawing dura-
tions), and the number of drawing motions separated
by pauses. The variability was generally calculated as
the standard deviation, except that the coefficient of
variation was used for the variability of the drawing
speed and pen pressure. We adjusted the total pause
duration, total duration, and number of local extrema
by dividing each one by the total stroke length in order
to make these features less sensitive to differences in
the stroke lengths across tasks or individuals. Note
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that, to obtain a common set of drawing features for
all five tasks, we did not include task-specific features
such as linguistic features for the sentence-writing
task [50, 51] or the number of errors for the TMT
tasks [52, 53], even though previous studies often
investigated these features.

Statistical analysis

To explore how the drawing features extracted
from different tasks were associated with the partic-
ipants’ diagnostic statuses and cognitive measures,
we performed a statistical investigation from two
different perspectives. First, we tested whether each
drawing feature from each drawing task could statis-
tically discriminate the three diagnostic categories of
AD, MCI, and CN. The purpose here was to evaluate
the discriminative power of the individual drawing
features. Second, we evaluated the statistical associ-
ations between the set of drawing features extracted
from each drawing task and the individual cognitive
measures. Here, the purpose was to obtain a compre-
hensive view of how the different drawing tasks could
capture impairments in different cognitive domains
through the features characterizing the drawing pro-
cess.

For between-group comparisons of the drawing
features, as well as the demographics, cognitive
measures, and clinical measures, we used one-way
analyses of variance (ANOVAs) for continuous data
and chi-square tests for categorical data. For multiple
testing of the 110 drawing features, the Benjamini-
Hochberg correction was applied. Post-hoc pairwise
comparisons between the diagnostic groups were per-
formed by using Tukey-Kramer tests for continuous
data and chi-square tests for categorical data. To
assess the effect size of each feature, we calculated
the generalized eta-squared (η2), for which the val-
ues 0.01, 0.06, and 0.14 are considered to indicate
small, medium, and large effects, respectively [54].
All the statistical analyses were performed using R
(version 4.0.5) with an alpha value of 0.05 (p < 0.05,
two-sided).

To investigate the associations between the draw-
ing features and cognitive measures, we used multiple
linear regression analysis and controlled for age, sex,
and years of education as covariates. The dependent
variables were the MMSE, FAB, LM-immediate,
LM-delayed, TMT-A, TMT-B, and CDT scores. We
included MMSE in the analysis, even though it rep-
resents global cognition rather than a specific aspect
of cognitive impairments, because it is the most

common measure for screening AD [55], and insights
on its associations with drawing tasks could thus
help improve the interpretability of drawing analysis
results. As for the use of drawing features as inde-
pendent variables, we first reduced the number of
variables to avoid overfitting. To achieve this reduc-
tion, we applied principal component analysis on the
22 features for each task and selected the top com-
ponents such that the cumulative variance exceeded
50%. We then applied varimax rotation with Kaiser
normalization to increase the orthogonality among
the resultant components and thus obtain a simpler
structure with greater interpretability. Finally, we
built multiple linear regression models to predict each
cognitive measure via the selected principal compo-
nents of the drawing features from the five tasks. To
reduce the model complexity, we applied a backward
stepwise variable selection procedure based on the
Akaike information criterion [56].

Machine learning analysis

To investigate whether a combination of the draw-
ing features from all five tasks could improve
the classification accuracy between the diagnostic
groups, we built classification models that used mul-
tiple machine learning algorithms with automatic
feature selection. The models included a support
vector machine (SVM) with a radial basis function
kernel, k-nearest neighbors, and a random forest.
The model training and evaluation were performed
through tenfold cross-validation with 20 iterations.
To reduce the number of features and thus avoid
overfitting in classification, we only used drawing
features that showed statistically significant dif-
ferences between the diagnostic groups (one-way
ANOVA, p < 0.05). The variables for demograph-
ics, cognitive measures, and clinical measures were
not included in the classification models. For miss-
ing values, we applied multivariate imputation by
chained equations [57]. For feature selection, we
used a sequential forward feature selection algorithm.
The following parameters were tuned through cross-
validation: for the SVM, the regularization parameter,
kernel coefficient, and class weights; for k-nearest
neighbors, the number of neighbors; and for the ran-
dom forest, the maximum depth of the tree and the
class weight. All models were implemented using the
Python package scikit-learn (version 0.23.2).

For the model performance, we evaluated the
area under the receiver operating characteristic curve
(AUC), the sensitivity, the specificity, and the F1
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Table 1
Demographics and cognitive/clinical measures of the participants (n = 144)

CN (n = 52) MCI (n = 65) AD (n = 27) p

Age, years 72.6 (3.8) 74.5 (4.9) 75.1 (7.5) 0.051
Sex, female, n (%) 34 (65.4)M 27 (41.5)C 16 (59.3) 0.029
Education, years 13.1 (2.0) 13.8 (2.6)A 12.2 (2.6)M 0.016
Mini-Mental State Examination∗ 27.8 (2.0)A 27.1 (1.9)A 19.8 (3.4)C,M < 0.001
Frontal Assessment Battery∗ 13.6 (2.4)A 13.0 (3.3)A 8.6 (3.0)C,M < 0.001
Logical Memory-immediate∗ 11.1 (3.3)M,A 7.5 (3.4)C,A 2.0 (2.1)C,M < 0.001
Logical Memory-delayed∗ 9.2 (3.0)M,A 5.1 (3.5)C,A 0.4 (0.9)C,M < 0.001
Trail Making Test part A, s∗ 35.1 (11.4)A 44.6 (17.6)A 70.5 (45.2)C,M < 0.001
Trail Making Test part B, s∗ 89.8 (39.4)M,A 144.1 (81.6)C,A 244.8 (75.2)C,M < 0.001
Clock Drawing Test∗ 6.7 (0.9)A 6.7 (0.7)A 5.3 (2.4)C,M < 0.001
Clinical Dementia Rating 0.0 (0.0)M,A 0.5 (0.1)C,A 0.8 (0.3)C,M < 0.001
Geriatric Depression Scale∗ 3.5 (3.3) 3.3 (2.9) 4.1 (3.3) 0.539
Activities of Daily Living∗ 99.8 (1.0)A 99.4 (2.1)A 97.4 (6.6)C,M 0.011
Instrumental Activities of Daily Living∗ 7.9 (0.4)A 7.3 (1.1)A 5.3 (2.2)C,M < 0.001
Medial temporal lobe atrophy 0.8 (0.5)M,A 1.2 (0.7)C,A 2.4 (1.2)C,M < 0.001

The values are displayed as means (standard deviations in parentheses), except for sex, which is displayed as a number (percentage in
parentheses). The bold values highlight statistically significant differences (chi-square test, p < 0.05, for sex; one-way ANOVA, p < 0.05, for
the other data). Significant differences between individual diagnostic groups (chi-square test, p < 0.05, for sex; Tukey-Kramer test, p < 0.05,
for the other data) are marked with C, M, or A (C: different from CN; M: different from MCI; A: different from AD). Logical Memory-
immediate and Logical Memory-delayed refer to immediate and delayed recall of Logical Memory Story A from the Wechsler Memory
Scale-Revised. ∗The total score ranges are as follows: Mini-Mental State Examination, 0 to 30; Frontal Assessment Battery, 0 to 18; Logical
Memory (immediate and delayed), 0 to 25; Trail Making Test (parts A and B), 0 to 300; Clock Drawing Test, 0 to 7; Geriatric Depression
Scale, 0 to 15; Activities of Daily Living, 0 to 100; Instrumental Activities of Daily Living, 0 to 8. CN, cognitively normal; MCI, mild
cognitive impairment; AD, Alzheimer’s disease; ANOVA, analysis of variance.

score, in addition to the accuracy, because the
accuracy alone does not sufficiently reflect the perfor-
mance for imbalanced datasets [58]. The three-class
AUC was computed as defined by Hand and Till [59].
To assess the importance of each feature, we also
calculated SHapley Additive exPlanations (SHAP)
values [60] based on their impact on the model out-
put, by using the Kernel SHAP method in the Python
package SHAP (version 0.39.0). We defined impor-
tant features as those with the highest mean absolute
SHAP values—i.e., those with the highest impacts on
the model output, such that the cumulative impact of
the features exceeded 50% of the total impact on the
model output.

RESULTS

Sample characteristics

The participants’ characteristics are summarized
in Table 1. There was a total of 144 participants
(53.5% female) with a mean age of 73.9 (SD = 5.2).
They comprised three diagnostic groups of 27 AD
patients, 65 MCI patients, and 52 CN partici-
pants. The AD and MCI patients were diagnosed
according to the NIA-AA core clinical criteria for

probable AD dementia [23] or MCI [24]. Of the MCI
patients, 30 met the criteria for amnestic MCI [61].
Regarding the demographics, the age did not show
any statistically significant differences among the
groups (F(2,141) = 3.05, p = 0.051). The proportion
of female participants was lower for MCI than for CN
(χ2(2) = 7.05, p = 0.029; χ2(1) = 5.66, p = 0.017 for
MCI versus CN). The years of education were lower
for AD than for MCI (F(2,141) = 4.28, p = 0.016;
t(141) = 2.86, p = 0.013 for AD versus MCI).

All seven cognitive measures were different
among the diagnostic groups (one-way ANOVA, all
p < 0.001; Table 1). The clinical measures showed
statistically significant differences among all the
diagnostic groups for the CDR (F(2,141) = 347,
p < 0.001) and the severity of medial temporal lobe
atrophy (F(2,141) = 35.9, p < 0.001). In contrast,
the GDS did not show any statistically signifi-
cant differences among the groups (F(2,141) = 0.620,
p = 0.539). As for the measures related to activi-
ties of daily living, both the ADL and the IADL
showed statistically significant differences among
the groups (F(2,141) = 4.68, p = 0.011 for ADL;
F(2,141) = 38.04, p < 0.001 for IADL), except that
there were no statistically significant differences
between MCI and CN (t(141) = 0.55, p = 0.848 for
ADL; t(141) = 2.22, p = 0.072 for IADL).
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Table 2
Drawing features with statistically significant differences between the diagnostic groups (one-way ANOVA, Benjamini-Hochberg adjusted

p < 0.05), ordered by the effect size for each task. All features had a medium-to-large effect size (η2 > 0.06)

Mean (SD) Adjusted

CN MCI AD η2 p

Sentence
Mean pause duration, s 0.24 (0.08)A 0.28 (0.12) 0.32 (0.14)C 0.065 0.036

Pentagon
Pressure variability (CV) 0.32 (0.13)A 0.37 (0.16) 0.44 (0.13)C 0.076 0.022

TMT-A
Adjusted total duration, s/mm 0.021 (0.007)M,A 0.027 (0.011)C,A 0.038 (0.022)C,M 0.185 < 0.001
Adjusted total pause duration, s/mm 0.011 (0.006)A 0.016 (0.010)A 0.026 (0.020)C,M 0.177 < 0.001
Mean pause duration, s 0.61 (0.27)A 0.75 (0.32)A 1.10 (0.65)C,M 0.170 < 0.001
Number of drawing motions 30.7 (5.4)A 34.0 (8.2)A 38.6 (9.7)C,M 0.121 0.001
Pause/drawing duration ratio 1.17 (0.64)A 1.54 (0.97)A 2.16 (1.35)C,M 0.119 0.001
Drawing speed non-smoothness, /mm 0.19 (0.06)A 0.22 (0.11) 0.27 (0.15)C 0.074 0.023
Drawing speed variability (CV) 0.46 (0.10)A 0.49 (0.11) 0.54 (0.08)C 0.066 0.036
Pressure variability (CV) 0.26 (0.10)A 0.30 (0.15) 0.35 (0.13)C 0.065 0.037
Drawing acceleration non-smoothness, /mm 0.37 (0.11)A 0.42 (0.19) 0.49 (0.22)C 0.061 0.045

TMT-B
Adjusted total duration, s/mm 0.040 (0.013)M,A 0.064 (0.039)C,A 0.106 (0.052)C,M 0.308 < 0.001
Adjusted total pause duration, s/mm 0.030 (0.013)M,A 0.052 (0.037)C,A 0.092 (0.051)C,M 0.298 < 0.001
Pause/drawing duration ratio 2.94 (1.22)M,A 4.49 (2.88)C,A 7.04 (3.86)C,M 0.231 < 0.001
Mean pause duration, s 1.45 (0.54)M,A 1.98 (0.85)C,A 2.67 (1.16)C,M 0.219 < 0.001
Pressure variability (CV) 0.33 (0.12)M,A 0.40 (0.16)C,A 0.51 (0.22)C,M 0.141 < 0.001
Drawing speed non-smoothness, /mm 0.21 (0.06)M,A 0.27 (0.13)C,A 0.33 (0.13)C,M 0.136 < 0.001
Drawing acceleration non-smoothness, /mm 0.41 (0.11)A 0.48 (0.20)A 0.58 (0.19)C,M 0.112 0.002
Drawing speed, mm/s 101.8 (19.6)A 95.2 (30.1)A 78.6 (20.9)C,M 0.098 0.005
Tilt-y change speed, deg/s 6.1 (6.5)M,A 10.6 (8.8)C 12.5 (10.5)C 0.085 0.012
Pressure non-smoothness, /mm 0.22 (0.06)A 0.24 (0.11)A 0.30 (0.10)C,M 0.084 0.012
Tilt-x variability (SD), deg 1.21 (0.26)A 1.10 (0.23) 1.03 (0.22)C 0.072 0.025
Drawing speed variability (CV) 0.59 (0.13)A 0.64 (0.14) 0.69 (0.14)C 0.071 0.027
Pressure change speed variability (SD), /s 0.48 (0.23)M 0.67 (0.39)C 0.66 (0.33) 0.070 0.027

CDT
Adjusted total duration, s/mm 0.036 (0.011)A 0.049 (0.033) 0.064 (0.046)C 0.098 0.005
Adjusted total pause duration, s/mm 0.023 (0.009)A 0.034 (0.030) 0.049 (0.045)C 0.097 0.005
Pressure variability (CV) 0.33 (0.08)A 0.34 (0.09)A 0.40 (0.11)C,M 0.087 0.011
Pause/drawing duration ratio 1.76 (0.58)A 2.20 (1.28)A 3.48 (4.09)C,M 0.087 0.011

The values were compared by using one-way ANOVAs with Benjamini-Hochberg correction for multiple testing. Significant differences
between individual diagnostic groups (Tukey-Kramer test, p < 0.05) are marked with C, M, or A (C: different from CN; M: different from
MCI; A: different from AD). CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; Sentence, sentence-writing
item of the Mini-Mental State Examination (MMSE); Pentagon, pentagon-copying item of the MMSE; TMT-A, Trail Making Test part A;
TMT-B, Trail Making Test part B; CDT, Clock Drawing Test; CV, coefficient of variation; SD, standard deviation.

A total of 110 drawing features (22 for each
task) were extracted for 143 of the 144 participants.
The features comprised 85 motion-related features
(speed/acceleration: 30; pen pressure: 25; pen pos-
ture: 30) and 25 pause-related features. For one AD
patient, one motion-related feature could not be cal-
culated for the TMT-B task because of an insufficient
number of drawing motions.

Associations of drawing features with clinical
diagnosis and cognitive measures

We first investigated whether each of the five
tasks showed statistically discernible differences in

the drawing features among the diagnostic groups.
One-way ANOVAs revealed that 28 of the 110
features showed statistically significant differences
among the AD, MCI, and CN groups (Benjamini-
Hochberg adjusted p < 0.05; Table 2). The 28 features
included at least one feature from each individual task
(sentence-writing: 1; pentagon-copying: 1; TMT-A:
9; TMT-B: 13; CDT: 4). All of the 28 features showed
at least a medium effect size (η2 > 0.06). Post-hoc
pairwise comparisons revealed the following patterns
of statistically significant differences (Tukey-Kramer
adjusted p < 0.05): for AD versus CN, each individ-
ual task derived at least one feature with statistically
significant differences; for MCI versus CN, only
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Fig. 2. Summary of the analysis results. A) Radar plots illustrating the differences in the representative drawing features from each task
for the cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) groups. The central black lines represent
CN (control), and the other lines represent MCI and AD and indicate Z-scores based on the control means and standard deviations. B)
Associations between the task of drawing features and cognitive measures, which were obtained by multiple linear regression analyses.
The dotted lines represent statistically significant associations between either of the top two principal components of the drawing features
from a task and a cognitive measure (multiple linear regression, p < 0.05; Supplementary Table 3). The solid lines represent associations that
remained significant after controlling for the age, sex, and years of education as covariates (Supplementary Table 4). C) Comparison of the
model accuracies (single-task models versus five-task model) with 95% confidence intervals, as assessed through 20 iterations of tenfold
cross-validation and ordered by accuracy. D) SHapley Additive exPlanations (SHAP) values of important features in the classification models
for AD versus CN (top) and MCI versus CN (bottom), where these features cumulatively accounted for 50% of the total impact on the model
output. Sentence, sentence-writing item of the Mini-Mental State Examination (MMSE); Pentagon, pentagon-copying item of the MMSE;
TMT-A, Trail Making Test part A; TMT-B, Trail Making Test part B; CDT, Clock Drawing Test.

the TMT-B task derived statistically significant
features; and for AD versus MCI, the TMT-A, TMT-
B, and CDT tasks derived statistically significant
features.

As for the overall trends of the 28 statistically sig-
nificant features, 27 (96.4%) exhibited larger changes
from CN for AD than for MCI, thus indicating grad-
ual changes in the features from CN to MCI and
then to AD (see Fig. 2A for a graphical summary
of example features and Table 2 for the full list). In
particular, the following changes were consistently
observed in the majority of the five tasks: a greater
pressure variability in the pentagon-copying, TMT-A,
TMT-B, and CDT tasks; a longer mean pause duration
in the sentence-writing, TMT-A, and TMT-B tasks;
and a longer adjusted total pause duration, greater
pause/drawing duration ratio, and longer adjusted

total duration in the TMT-A, TMT-B, and CDT
tasks.

Next, we performed principal component and
regression analyses to investigate whether a com-
mon set of drawing features extracted from different
tasks could be associated with impairments in dif-
ferent cognitive domains. First, principal component
analyses with varimax rotation revealed that, regard-
less of the task, the first two principal components
explained 50% of the total variance of the drawing
features extracted from the individual task. Specif-
ically, the first two components comprised 59.7%,
54.5%, 58.5%, 54.5%, and 56.5% of the total vari-
ance for the sentence-writing, pentagon-copying,
TMT-A, TMT-B, and CDT tasks, respectively. In
terms of factor loadings, for all five tasks, the
first principal component (PC1) mainly represented
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motion-related features, whereas the second principal
component (PC2) mainly represented pause-related
features (Supplementary Table 2).

By using PC1 and PC2 for each task as independent
variables and one of the seven cognitive measures
as a dependent variable, multiple linear regression
analyses revealed the following statistically signifi-
cant associations between the drawing tasks and the
cognitive measures (p < 0.05; see Fig. 2B for a graph-
ical summary and Supplementary Table 3 for the full
results). The sentence-writing task was associated
with the FAB and TMT-B scores via at least one of the
principal components. The pentagon-copying task
was associated with the MMSE score. The TMT-A
task was associated with the FAB and TMT-A scores.
The TMT-B task was associated with all the cog-
nitive measures except TMT-A. The CDT task was
associated with all cognitive measures except for LM-
delayed. The overall results were unchanged when
the age, sex, and years of education were included as
covariates in the model, except that the associations
of the sentence-writing task with the FAB score and
of the pentagon-drawing task with the MMSE score
lost significance (p > 0.05; see Fig. 2B for a graphi-
cal summary and Supplementary Table 4 for the full
results). The resultant multiple linear regression mod-
els included four to eight independent variables as
a result of the stepwise feature selection procedure,
which met the requirement for a power analysis (≤16)
to detect an effect size of Cohen’s f2 = 0.15 with a
power of 0.8 at � = 0.05.

Model performance for combination of multiple
drawing tasks

Overall, the model combining the features from
all five tasks outperformed all of the models based
on features from a single task. For three-class clas-
sification of AD, MCI, and CN, the five-task model
achieved the best performance with an accuracy of
75.2% (AUC: 0.899). This accuracy (AUC) was 7.8%
(0.077) higher than the best single-task performance
for the TMT-B task (Welch’s t-test, both p < 0.001;
see Fig. 2C for a graphical summary and Table 3 for
the details). The best model was based on the SVM,
for which the automatic feature selection procedure
included at least one feature from each of the five
tasks.

For discriminating AD from CN, the five-task
model achieved an accuracy of 96.8% (AUC: 0.971;
sensitivity: 98.0%; specificity: 96.2%; F1 score:
95.4%). This result was 2.2% higher than the best

Table 3
Model performance for classifying Alzheimer’s disease (AD), mild
cognitive impairment (MCI), and cognitively normal (CN). The
values were obtained from 20 iterations of tenfold cross-validation

Mean [95% CI]

Accuracy, % AUC

Sentence 53.3 [52.8, 53.7] 0.650 [0.645, 0.656]
Pentagon 55.1 [54.3, 55.9] 0.690 [0.684, 0.696]
TMT-A 63.7 [62.7, 64.6] 0.726 [0.722, 0.730]
TMT-B 67.4 [67.4, 67.4] 0.822 [0.816, 0.828]
CDT 66.1 [65.5, 66.7] 0.792 [0.786, 0.797]
All five tasks 75.2 [74.7, 75.7] 0.899 [0.895, 0.903]

Sentence, sentence-writing item of the Mini-Mental State Exami-
nation (MMSE); Pentagon, pentagon-copying item of the MMSE;
TMT-A, Trail Making Test part A; TMT-B, Trail Making Test part
B; CDT, Clock Drawing Test; CI, confidence interval; AUC, area
under the receiver operating characteristic curve.

single-task accuracy for the TMT-B task (Table 4).
In this case, the model included a total of 13 features
as a result of the feature selection. For discriminat-
ing MCI from CN, the five-task model achieved an
accuracy of 82.8% (AUC: 0.822; sensitivity: 87.9%;
specificity: 76.4%; F1 score: 85.0%). This result was
7.6% higher than the best single-task accuracy for the
TMT-B task (Table 5). The model included a total of
19 features as a result of the feature selection. We
also explored potential reasons for misclassification.
To this end, we focused on the misclassification of CN
as MCI, considering the relatively low specificity in
discriminating MCI from CN. Among the 52 CN par-
ticipants, 39 were correctly classified as CN and 12
were misclassified as MCI (1 as AD) in the majority
of iterations. The main difference in cognitive mea-
sures between them was observed for the TMT scores.
Specifically, the correctly-classified CN participants
showed better performance in the TMT-A and TMT-B
than the MCI patients (Welch’s t-test, both p < 0.001),
while the CN participants who were misclassified as
MCI did not statistically outperform the MCI patients
(Welch’s t-test, p = 0.255 for TMT-A and p = 0.068 for
TMT-B). Therefore, one of the reasons for misclassi-
fication may exist in the relatively lower performance
in cognitive functions assessed by drawing tests in the
CN participants.

To identify the important features driving the
classification, we investigated the top features that
cumulatively accounted for 50% of the total impact
on the model output according to the SHAP val-
ues [60]. For the classification of AD and CN, the
important features comprised four features extracted
only from the TMT-B task, which included three
pause-related features and one motion-related fea-
ture for pen pressure (see Fig. 2D for a graphical
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Table 4
Model performance for classifying Alzheimer’s disease (AD) and cognitively normal (CN). The values were obtained from 20 iterations of

tenfold cross-validation

Mean [95% CI]

Accuracy, % AUC Sensitivity, % Specificity, % F1 score, %

Sentence 75.3 [74.3, 76.4] 0.681 [0.672, 0.691] 45.4 [44.3, 46.5] 90.9 [89.5, 92.3] 55.7 [54.3, 70.3]
Pentagon 80.9 [80.3, 81.6] 0.731 [0.725, 0.736] 48.1 [47.6, 48.7] 98.0 [97.1, 98.8] 63.4 [62.4, 70.5]
TMT-A 81.8 [81.5, 82.1] 0.753 [0.749, 0.757] 54.6 [53.9, 55.4] 96.0 [95.7, 96.2] 67.3 [66.6, 73.2]
TMT-B 94.6 [94.4, 94.9] 0.940 [0.937, 0.943] 92.0 [91.4, 92.7] 96.0 [95.7, 96.2] 92.1 [91.7, 78.0]
CDT 82.6 [82.1, 83.1] 0.764 [0.758, 0.770] 56.9 [55.7, 58.0] 96.0 [95.7, 96.2] 69.0 [68.0, 75.5]
All five tasks 96.8 [96.4, 97.2] 0.971 [0.965, 0.977] 98.0 [96.8, 99.2] 96.2 [96.2, 96.2] 95.4 [94.8, 85.9]

Sentence, sentence-writing item of the Mini-Mental State Examination (MMSE); Pentagon, pentagon-copying item of the MMSE; TMT-A,
Trail Making Test part A; TMT-B, Trail Making Test part B; CDT, Clock Drawing Test; CI, confidence interval; AUC, area under the receiver
operating characteristic curve.

Table 5
Model performance for classifying mild cognitive impairment (MCI) and cognitively normal (CN). The values were obtained from 20

iterations of tenfold cross-validation

Mean [95% CI]

Accuracy, % AUC Sensitivity, % Specificity, % F1 score, %

Sentence 62.1 [61.6, 62.7] 0.600 [0.594, 0.606] 79.1 [78.5, 79.6] 41.0 [40.1, 41.8] 69.9 [69.5, 70.3]
Pentagon 65.4 [64.4, 66.5] 0.648 [0.637, 0.658] 70.8 [69.1, 72.5] 58.8 [57.0, 60.5] 69.4 [68.4, 70.5]
TMT-A 70.0 [68.7, 71.2] 0.701 [0.688, 0.713] 69.2 [67.3, 71.0] 71.0 [69.6, 72.4] 71.9 [70.5, 73.2]
TMT-B 75.2 [74.3, 76.0] 0.751 [0.742, 0.759] 76.1 [75.3, 76.9] 74.0 [72.9, 75.2] 77.3 [76.6, 78.0]
CDT 70.7 [69.8, 71.6] 0.699 [0.690, 0.707] 77.3 [75.7, 79.0] 62.4 [61.5, 63.3] 74.5 [73.5, 75.5]
All five tasks 82.8 [81.8, 83.8] 0.822 [0.812, 0.832] 87.9 [86.8, 89.1] 76.4 [75.0, 77.9] 85.0 [84.2, 85.9]

Sentence, sentence-writing item of the Mini-Mental State Examination (MMSE); Pentagon, pentagon-copying item of the MMSE; TMT-A,
Trail Making Test part A; TMT-B, Trail Making Test part B; CDT, Clock Drawing Test; CI, confidence interval; AUC, area under the receiver
operating characteristic curve.

summary and Supplementary Table 5 for the details).
For the classification of MCI and CN, the impor-
tant features comprised six features extracted from
the sentence-writing, TMT-B, and CDT tasks, which
included one pause-related and five motion-related
features (speed/acceleration: 2; pen pressure: 1; pen
posture: 2; see Fig. 2D for a graphical summary and
Supplementary Table 6 for the details).

DISCUSSION

We investigated the drawing process in five
drawing tasks by using data collected from 144 par-
ticipants in the AD, MCI, and CN groups, and we
obtained two main findings as follows. First, the
features characterizing the drawing process differed
among the diagnostic groups, and those extracted
from different tasks could capture impairments in dif-
ferent cognitive domains. Specifically, the statistical
analysis revealed that 1) at least one feature from each
task showed a statistical difference among the AD,
MCI, and CN groups with a medium-to-large effect
size; and that 2) the features from different tasks were

statistically associated with different sets of cognitive
measures. The second main finding was that the com-
bination of drawing features from multiple drawing
tasks improved the model performance in classifying
the diagnostic groups. Specifically, the models using
all five tasks consistently achieved higher accuracies
than any of the models that used a single task: this
was the case for both three-class classification of AD,
MCI, and CN and binary classification to discriminate
AD or MCI from CN.

Our statistical analysis found that many of the
drawing features showed gradual changes among the
diagnostic groups. Over 96% of the statistically sig-
nificant features exhibited gradual changes from CN
to MCI and then to AD, which indicates that changes
in these features may reflect specific aspects of cog-
nitive impairments and can be considered as potential
markers for the progression of AD. Our analysis also
identified several individual drawing features that
showed gradual, consistent changes across multiple
drawing tasks in patients with AD or MCI; these
changes included longer pauses, lower smoothness
in speed and acceleration, and greater pressure vari-
ability. Although these trends have been reported for
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specific drawing tasks [15, 62], to our knowledge
this is the first study to demonstrate consistent trends
across multiple drawing tasks performed by the same
individuals. It is especially notable that the pressure
variability consistently increased in the AD group for
four of the five drawing tasks, with a medium-to-large
effect size. Although the pressure variability during
drawing tasks is known to increase for patients with
Parkinson’s disease [63] and Huntington’s disease
[64]—i.e., neurodegenerative diseases that typically
involve motor symptoms—it has rarely been exam-
ined in the context of AD or MCI, except for a
recent study on the CDT task by Davoudi et al. [22].
On the other hand, recent studies on other types of
behaviors in AD patients, such as the patient’s gait
[65–67] and finger tapping [68], have suggested that
variability in motor control may be a useful marker
for neuropathological changes. Because changes in
drawing behavior are another typical example of
motor control deterioration in AD [9], our findings
imply that neuropathological changes in AD can
be assessed by measuring the pressure variability
during drawing tests. Confirmation of this impli-
cation will require a further study with validated
neuropathological biomarkers. In our results, the dis-
criminative power for some drawing features varied
across tasks, which suggests that it is sensitive to the
task characteristics. For example, the drawing speed
variability was statistically discriminative only for the
TMT tasks. Meanwhile, the gradual, task-consistent
changes observed for many features suggest that we
could obtain more reliable indices for an individual’s
graphomotor characteristics by aggregating the same
types of features from multiple tasks. In turn, this
could enable accurate detection of AD. The develop-
ment and validation of such indices will be another
area of future research.

The results of the regression analysis showed that
the common sets of drawing features extracted from
different tasks were associated with different sets of
cognitive measures. This indicates that the character-
istics of the drawing process for different tasks could
capture impairments in different cognitive domains.
Our results align with the results of previous studies
on a single drawing task, which reported statistical
associations between cognitive measures and draw-
ing features [18, 19]; moreover, our results extend
those findings by showing inter-task differences in
these associations through multiple regression mod-
els with multiple drawing tasks. In our study, most of
the cognitive measures were statistically associated
with drawing features that were extracted from two

or more drawing tasks. This indicates that a com-
bination of drawing tasks may improve models for
estimating cognitive measures. Such estimation mod-
els could enable better interpretation of the output of
drawing-based screening tools for AD by providing
additional information about cognitive impairments
in specific domains.

As mentioned above, the classification perfor-
mance of the five-task models was consistently better
than that of the single-task models, for both three-
class and binary classification. In particular, for
binary classification, the performance improvement
due to the combination of multiple tasks was larger
for detecting MCI than for detecting AD. In addi-
tion, the results of automatic feature selection and the
analysis of feature importance showed that a model
to discriminate MCI and CN required features from
more tasks than a model to discriminate AD and CN.
These results suggest that a combination of multiple
drawing tasks could have more benefit for detecting
MCI than for detecting AD. This approach might be
facilitated by using multiple drawing tasks to cap-
ture more multifaceted information about cognitive
impairments. In terms of the important features iden-
tified by the SHAP analysis, the classification of MCI
and CN was mainly driven by motion-related fea-
tures, in contrast to the classification of AD and CN.
This finding could align with the notion in the lit-
erature that lower levels of motor performance may
predict the development of AD at its earlier stages,
because both motor and cognitive decline may share a
common causation of AD neuropathology, and a loss
of motor function can precede cognitive impairments
by several years [69].

Regarding drawing-based machine learning mod-
els for AD detection, many studies have investigated
automated analysis on a particular task such as the
CDT and reported performance comparable to that
of conventional paper-based tests in terms of the sen-
sitivity and specificity [70]. Furthermore, there are at
least two potential approaches to improve the perfor-
mance by better capturing impairments in multiple
cognitive domains: 1) extraction of task-specific fea-
tures to capture multiple domains from one task;
and 2) application of multiple tasks to capture multi-
ple domains via a common set of features. The first
approach has been well studied, and various types
of task-specific features have been proposed, such as
the time inside/outside circles in the TMT [18] and
clock-face-related features in the CDT [22]. As for
the second approach, in contrast, only a few stud-
ies have tested multi-task models [71]; moreover,
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to our knowledge, none of them considered effec-
tive ways to combine tasks with clinical relevance.
Our analysis thus provides initial evidence that the
drawing characteristics in multiple drawing tasks can
capture different, complementary aspects of cogni-
tive impairments to enable superior detection of AD
and MCI, as compared to the use of a single task in
isolation.

Our results also support the viability of automated
screening for AD in non-specialist settings. Previ-
ous studies have proposed automated screening tools
[72], including both digital versions of conventional
tests [15, 18, 73] and novel digital tests [74–76], and
acceptance of those tools has been reported [44]. Our
findings may improve the reliability of those tools by
facilitating improved accuracy and a greater poten-
tial interpretability. Our multi-task approach may also
have advantages in terms of scalability: our results
suggest that a common set of drawing features, i.e.,
the same drawing analysis procedure, can capture
different aspects of cognitive impairments by intro-
ducing different tasks. In addition, our results have
implications for the operability of computer-aided
AD screening and diagnosis in clinical practice. First,
drawing data can easily and robustly be collected with
a commercial-grade tablet device. Second, our find-
ings can easily be incorporated in clinical practice,
because all five tasks in this study are already widely
accepted in practice for AD screening and diagno-
sis. As previous studies showed strong agreement
between the results of digital and standard paper-
based versions of drawing tests [18, 20, 21, 77],
clinicians can benefit from our findings without sig-
nificantly altering their current routines. In practice,
there may exist a trade-off between classification
performance and operational burden of performing
multiple tasks. The best combination of drawing tasks
should be explored further in future studies. Fur-
thermore, other neurodegenerative diseases such as
Parkinson’s disease [78] and Huntington’s disease
[79] also involve cognitive impairments in multiple
domains, and the usefulness of drawing analysis has
been reported for detecting those diseases, too [63,
64]. Thus, our approach of capturing multifaceted
cognitive impairments by analyzing drawing data
also holds promise for improving the screening and
diagnosis of those diseases.

The strengths of this study include a unique dataset
consisting of digitized drawing data from multiple
tasks and validated measures for multiple cognitive
domains. Together, these data and measures enabled
cross-task and cross-domain analysis with a view

toward automated drawing-based screening of AD
and MCI. However, the study has several limitations.
First, the drawing data in our dataset were collected
in a controlled setting with professional neuropsy-
chologists. Our findings have yet to be confirmed
in situ for the development of realistic applications
that work even in non-specialist settings. Second,
the sample size was small compared to the largest
studies on a single task [80, 81], even though we
kept the number of variables in each of the final
models to a reasonable level. This might affect the
generalizability of our findings, which will require
further confirmation with larger samples. Third, the
diagnostic labels in our dataset were not based on
validated biomarkers for AD pathologies, such as
cerebrospinal fluid or positron-emission tomography
markers [82]. Fourth, given the participants’ diverse
backgrounds due to the use of multiple recruitment
channels, there may have been residual confound-
ing factors besides those included in the analysis.
For example, although the GDS did not statisti-
cally differ among the groups, differences in life
circumstances might influence stress or affective
states, which could impact on cognitive performance
[83, 84]. A future study with control of these fac-
tors is required to confirm our findings. Fifth, the
order of tasks was not counterbalanced during data
collection. Finally, to simplify the multi-task proce-
dure, we did not examine variations in each drawing
task. For example, the CDT was only conducted
under the command condition. In contrast, previous
studies often used it under both the command and
copy conditions, and they reported that the drawing
features under each condition had different associa-
tions with an individual’s AD diagnosis or cognitive
measures [19, 22].

In conclusion, this study provides initial evidence
that the characteristics of the drawing process in dif-
ferent drawing tasks represented by a common set
of drawing features are associated with different,
complementary aspects of cognitive impairments.
Moreover, these features could improve the perfor-
mance in detecting AD and MCI. Accordingly, these
results demonstrate how multiple digital drawing
tasks could facilitate automated, accurate AD screen-
ing in the earlier stages.
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(2017) Spatial and dynamical handwriting analysis in mild
cognitive impairment. Comput Biol Med 82, 21-28.

[17] Garre-Olmo J, Faúndez-Zanuy M, López-de-Ipiña K,
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