
 

Supplementary Material 
 
Influence of Subject-Specific Effects in Longitudinal Modelling of Cognitive Decline in 
Alzheimer’s Disease 
 
 
Supplementary Methods 

Development of synthetic datasets 

 To complement the model evaluation for the meta-database and test generalizability of the 

influence of subject-specific effects, validation datasets were generated using simulation of 500 

separate synthetic cohorts each with 400 participants in 6-month increments out to 60 months of 

evaluation. Cohorts first sampled the population-level covariates used by the CPath 

parameterization before generating panels of simulated ADAS-Cog subscale scores expected 

from subjects with equivalent demographic characteristics. Simulated population-level covariates 

were baseline age, sex, APOE4 allele counts, and baseline MMSE and were generated from the 

meta-database to create cohorts similar in disposition to a representative population expected for 

studies in cognitive decline. Ages were randomly sampled from the observed meta-database 

cohort with additional demographics synthetically generated using classification and regression 

trees (CART) to create similar marginal combinations of covariates with assistance from the 

synthpop package in R [1]. Final evaluation timepoints for each synthetic subject were 

randomly permuted to simulate a 15% dropout rate followed by a row-wise deletion of 15% of 

all remaining timepoints to simulate reasonably anticipated missingness in a real-world study. 

To create the longitudinally correlated ADAS-Cog panel data, Gower’s distance was first 

calculated among the actual subjects in the meta-database according to the population-level 

covariates described above. This distance was used to cluster the meta-database subjects using 

weighted median spheroid distance to create 20 distinct similarity clusters. Simulated 

participants were assigned to the nearest cluster according to their generated demographics and 

randomly linked to the ADAS-Cog measures of an actual meta-database subject within the same 

similarity cluster. A mixed-effects beta regression model for each cluster was created using these 

linked ADAS-Cog measures with cubic polynomial time as fixed effects with random intercepts 

and slopes using unstructured covariance. Each synthetic subject then had new ADAS-Cog 

measures generated according to their corresponding cluster-specific model with fixed and 

random effects randomly generated from the model covariance matrices using multivariate 



 

normal sampling. To accommodate the extended 60-month timeframe and generalization to other 

datasets, the covariance matrices were relaxed to allow for more varied ADAS-Cog scores at 

later timepoints. This process generated unique panels of ADAS-Cog scores for each simulated 

participant while retaining serial correlation and within-subject covariance structure expected 

from real-world subjects with similar population-level demographics and characteristics. 

 

Model designs 

 First described in 2012, the CPath model for AD was developed from a variety of literature 

reported values and cohort studies to describe progression of the ADAS-Cog in both natural 

history and randomized clinical trial setting and create a framework to generate representative 

simulation cohorts [2]. Additionally, subject-specific effects can be randomly sampled using 

model covariance matrices for both intercept and slope. Model parameters were developed using 

both summary-level and patient-level data using a Bayesian implementation to adjust meta-data 

from the literature with individual-level effects. Further details about the CPath model can be 

found in Rogers et. al. [2] as well as an implementation in R using the adsim package [3], 

including coefficient values for population-level covariates effects along with covariance 

measures used to generate subject-specific effects. 

 In addition to the pre-specified parameterizations of the CPath model, novel beta regression 

mixed-effects models were developed de novo directly from the datasets. The same set 

population-level demographics used by the CPath model were selected but coefficient and 

covariance values were generated dynamically from each dataset to provide a comparison point 

to the pre-defined parameterizations from the meta-study. Use of ad hoc models also created 

model covariances which could be used for subject-specific effect imputation and fitted values 

for intercepts and slopes for use in observation forecasting of ADAS-Cog scores for modeled 

individuals. 

 The other de novo model design used the supervised machine learning method of mixed-

effects random forests (MERF) [4]. Random forest models are ensemble methods which improve 

upon standard decision tree designs by allowing for “feature bagging” to randomly select a 

subset of model features and generate a forest of partial feature set trees. Tree outputs are 

averaged across the forests to improve overall predictive accuracy. MERF models extend the 

random forest by including mixed-effects models in terminal nodes to accommodate the serial 



 

correlation inherent in repeated measures data by generating subject-specific effects and 

updating the population-level effects in the random forests stochastically. This study used a 

modification of the design presented by Capitaine et al. in the longituRF package in R [4] to 

either use known subject-specific effects for intercepts and slopes for observation forecasting of 

ADAS-Cog scores, to impute subject-specific effects by sampling from the covariance matrices 

of the correlation models developed in the terminal nodes in a fashion similar to the CPath 

generation of subject-specific effects, or suppress random effects altogether so prediction relied 

solely on the fixed effects of the random forests. 
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