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Abstract. The immune system plays a critical role in neurodegenerative processes involved in Alzheimer’s disease (AD).
In this study, a gene-based immunotherapeutic method examined the effects of anti-inflammatory cellular immune response
elements (CIREs) in the amyloid-� protein precursor (A�PP) mouse model. Bi-monthly intramuscular administration, begin-
ning at either 4 or 6 months, and examined at 7.5 through 16 months, with plasmids encoding Interleukin (IL)-10, IL-4, TGF-�
polynucleotides, or a combination thereof, into A�PP mice improved spatial memory performance. This work demonstrates
an efficient gene therapy strategy to downregulate neuroinflammation, and possibly prevent or delay cognitive decline in AD.
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INTRODUCTION

Alzheimer’s disease (AD), the most common form
of dementia, is not a normal part of aging, but rather a
chronic neurodegenerative pathology associated with
neuroinflammation, extracellular amyloid-� (A�)
plaques, and hyperphosphorylated tau, which leads
to progressive cognitive decline in older adults [1–3].
The specific cause of AD remains unclear, but it may
collectively involve the accumulation of activated
microglia, astrocytes, and proliferative T cells which
target extracellular filamentous abnormal A� protein
deposits in the brain [4–7]. Although most neurode-
generative diseases are not classically considered
autoimmune, in some instances, chronic neuroin-
flammation in aging can exacerbate a progressively
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declining innate immune system leading to further
neuronal damage [8, 9].

The adaptive immune system can be broadly
classified into two types of inflammatory activity:
cellular and humoral (antibody). Among cytokine
responses, proinflammatory T helper type 1 (Th1)
(i.e., interferon-gamma (IFN-�), tumor necrosis fac-
tor (TNF-�), IL-1, IL-2, IL-12), an anti-inflammatory
Th2 (i.e., IL-4, IL-5, IL-10, IL-13), Th3 (TGF-�),
and Th17 are involved in neurodegenerative disease
and could be targeted for therapy. Moreover, anti-
inflammatory CIREs such as IL-10 and TGF-� play
a critical role in neurodegenerative autoimmune dis-
eases such as multiple sclerosis, Parkinson’s disease,
and amyotrophic lateral sclerosis [10–14]. Although
immunotherapeutic clinical trials were previously
halted, emerging work continues to corroborate the
importance of T cell recognition and autoimmune
susceptibility in the etiology of AD [15–17].
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For patients experiencing mild cognitive impair-
ment, an elevated presence of proinflammatory
TNF-� concurrent with decreased anti-inflammatory
TGF-� levels was observed, resulting in a greater
risk conversion towards AD [18]. Similarly, TNF-�
and other proinflammatory cytokines such as IL-1�
and IL-6 were reported to impact anti-inflammatory
processes and increase amyloid brain deposition
in transgenic AD mice [19–21], with the latter
cytokine driving blood-brain barrier dysfunction
[22]. Anti-inflammatory cytokines, IL-4 and IL-10,
have also garnered therapeutic interest due to their
immunomodulatory role in the autoreactive T cell
repertoire of neurodegenerative diseases [23–25].
Researchers evaluating IL-4 and IL-10 polymor-
phisms in patient populations have reported that a
relative paucity of the genetic disruptions in these
Th2 cytokines increases susceptibility to developing
AD [26–31]. Therefore, the specific role these and
other anti-inflammatory cytokines play in preventing
or ameliorating neurodegeneration in AD not only
warrants further investigation, but also requires new
experimental approaches.

For example, gene-based technologies could pro-
vide a promising therapeutic strategy to ameliorate
neurodegenerative disease due to administration ease,
an efficacious and safe profile, and long-lasting
effects [32–35]. Previous Yoo laboratory gene trans-
fer work, examining anti-inflammatory response
using a clinically relevant allergen to induce exper-
imental autoimmune hearing loss, was successful
in controlling autoimmune reaction severity through
suppression of Th1-type proinflammatory responses
and inducing IL-10-secreting regulatory T cells
[36]. This non-toxic naked DNA delivery technique
suggests exogenous IL-10 could restore immuno-
logical homeostasis by suppressing the autoimmune
response and generate an endogenous regulatory
IL-10 profile. Since chronic inflammation appears
to trigger T cell-mediated autoimmune disease, the
present study assessed whether anti-inflammatory
CIRE gene therapy could also improve spatial mem-
ory performance in the amyloid-� protein precursor
(A�PP) mouse, and thus prevent or delay AD onset.

MATERIALS AND METHODS

Transgenic animals

Transgenic mice (Tg-2576) containing the K670N/
M671L (A�PP) Swedish double mutation, which
leads to familial early onset AD [37], were obtained

from The Jackson Laboratory (Bar Harbor, ME,
U.S.A.) and maintained at the University of Ten-
nessee, Memphis animal facility after experimental
approval by the Institutional Animal Care and Use
Committee of the University of Tennessee.

Plasmid DNA preparation and transfection
reagents

Polynucleotide constructs under a simian virus
40 promoter encoding a CIRE were used: IL-4, IL-
10, TGF-� (i.e., GenBank Accession No. M13982,
55 SEQ ID NO:12), (M57627, SEQ ID NO:14),
(M60316, SEQ ID NO:16), respectively. Expres-
sion of CIRE naked DNA plasmids utilized the
pVAX1 vector (Invitrogen, Carlsbad, CA) and
cytomegalovirus promoter/enhancer sequences. A
control vector without the CIRE genes was devel-
oped by digesting related plasmid DNA with EcoRI,
followed by ligating the agarose gel-purified vec-
tor fragment. Large-scale purification of all plasmid
DNA was conducted with Endo Free Plasmid Maxi
kits (Qiagen, Valencia, CA). Methodology was
reported [38–42], with dosage effective at least 1–5
weeks after injection, and adopted from previous
studies [36, 43]. Male and female A�PP mice were bi-
monthly, intramuscularly injected with either 100 �g
of a blank vector in 100 �l of phospate-buffered saline
for control or the same amount of naked DNA encod-
ing CIREs. Mice were used or maintained until age 60
weeks, then sacrificed, brains removed, snap-frozen
in liquid nitrogen, and stored at −80◦C.

Spatial memory performance evaluation in
untreated and treated AβPP mice

Spatial learning and memory were assessed using
the Morris Water Maze task [44] in a circular tank
(80 cm wide, 80 cm deep) with a non-distinct sub-
merged central platform (15 cm wide, 1 cm below
opaque water, 23◦C) (Fig. 1). All trials were recorded
with an overhead camera. Maximum swim time for
each trial was 90 s followed by a 20-s platform rest.
Each mouse was trained for five days, four trials per
day with randomized starting points. Probe trials were
performed without the platform 30 min after the last
trial. Mice were released opposite the target quadrant
and allowed 60 s to swim. Following retraining (day
7), the platform was moved to the opposite quad-
rant for reversal training (days 8–10). A retention
test was conducted 30 min after the last acquisition
trial, and latency (seconds to platform) was registered
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Fig. 1. Evaluation of spatial memory in A�PP mice using the Morris Water Maze. The MWM is an intermittently sensitive test to evaluate
reference memory performance for A�PP mice [47].

Table 1
Morris Water Maze results of 7.5 through 16 months with bi-monthly DNA-based immunotherapy beginning either at 4 or 6 months of age

in A�PP mice

Testing Age (month) 7.5 8 9 9.5 11 13 16

Normal Untreated Mouse 6 6 6 d.n.r d.n.r 6 6
A�PP control vector 120 120 160, 52 144, 52 144 220, 100 62
A�PP + TGF-� 23 23 80, 70 72, 66 78, 6 80, 30 14
A�PP + IL-10 15 15 8, 7, 15 8, 7 2, 7 1, 1, 8 3, 4
A�PP + IL-4 d.n.r d.n.r 10 10 10 10 4
A�PP + (IL-10 + IL-4) d.n.r d.n.r d.n.r d.n.r d.n.r 1, 2 3
A�PP + (IL-10 + TGF-�) d.n.r d.n.r d.n.r d.n.r d.n.r 45, 44 d.n.r

Normal Untreated Mice (n = 5), A�PP control vector (n = 10), TGF-� (n = 11), IL-10 (n = 14), IL-4 (n = 5), IL-10 + IL-4 (n = 3), and IL-
10 + TGF-� (n = 2) latencies for individual mice were registered and indicated by numerical values. d.n.r., data not recorded.

(Table 1). Combined cytokine-treated animals were
only tested at 13 and 16 months of age.

Data analysis

Latency times with animals (n ≥ 7) administered
with CIREs beginning at 6 months were measured
at specific ages (7.5, 9.5, 11, 13, 16 months) and
analyzed by Welch’s t-test and one-way ANOVA
with Tukey HSD Post Hoc in R open source soft-
ware (https://cran.case.edu/) [45]. Threshold values
of p = 0.05 were considered statistically significant.

RESULTS

Early and late TGF-β, IL-10, or IL-4 gene
therapy prevent and ameliorate AβPP mice
memory deficits

Mice injected bi-monthly with naked DNA encod-
ing TGF-�, IL-10, or IL-4 beginning at 4-months
of age (8 & 9 months columns), when hippocam-
pal lesions begin to appear in the A�PP model, and

tested in the MWM at 8 or 9 months (when lesions
fully form [46]) reduced latency times to platform
compared to age-matched A�PP mice receiving a
control blank vector (Table 1). Interestingly, A�PP
mice receiving either TGF-�, IL-10, or IL-4, or a
CIRE gene combination bi-monthly beginning at 6
months, and examined at 7.5 through 16 months, also
reduced latency-to-platform behavior. Overall, A�PP
mice administered TGF-�, IL-10, or IL-4 naked
DNA performed significantly better compared to
A�PP controls (p = 0.014, 0.002, and 0.002, respec-
tively; Fig. 2). No significant difference was observed
between Normal Untreated (not illustrated) and IL-10
or IL-4 treated mice (p = 0.777, 0.194, respectively).

DISCUSSION

The present study demonstrates that gene-based
immunotherapy, with pleiotropic anti-inflammatory
cytokines IL-10, IL-4, or TGF-� improves spatial
memory performance in a mouse model of AD.
A�PP mice treated bi-monthly, beginning at age

https://cran.case.edu/
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Fig. 2. A�PP mice treated with TGF-�, IL-10, or IL-4 improves
spatial memory. A�PP mice injected bi-monthly, beginning at 6
months, with either TGF-� (n = 8) or IL-10 (n = 10) and tested
at 7.5, 9.5, 11, 13, and 16 months showed significant differ-
ence compared to A�PP mice receiving control vector (n = 7)
[F(2,22) = 22.69, p < 0.001)]. A�PP mice administered IL-4 (n = 4)
also reduced swim latency compared to TGF-� (p = 0.011).
Mean ± S.E.M., Welch’s t test; ∗p < 0.05, #p < 0.01.

4 or 6 months, with a single CIRE dose (or a
combination thereof, in older animals) (Table 1),
rescued an AD-associated behavioral phenotype.
Although AD mouse models, including over 300 ther-
apeutic investigations with the Tg-2576 line [48],
presented pre-clinical limitations which resulted in
untoward clinical trial outcomes [49–51], neverthe-
less still comprise ∼ 45% of AD drug development
and continue to provide insight on temporal cell sig-
naling in neurodegenerative disease [52, 53].

For instance, hippocampal IL-10 or IL-4 overex-
pression through an adeno-associated virus (AAV)
in amyloid precursor protein+presenilin-1 bigenic
mice increases neurogenesis and improves cognition
without affecting hippocampal beta-amyloidosis [54,
55]. A separate group also reported that AAV-IL-
4 induced an anti-inflammatory response from an
alternative activated macrophage phenotype while
stimulating microglia and astrogliosis [56]. However,
in two different AD models, IL-10- and IL-4-AAV
modification increased hippocampal and cortical A�
accumulation and impaired memory, resulting in
aberrant innate immune amyloidosis [57–59]. While
viral vector technology for neuronal system delivery
advances, introducing exogenous Th2 cytokine into
a chronically inflamed system may unintentionally
exacerbate and accelerate neuropathology [60–63].
Precise therapeutic intervention may be required. As
an example, non-viral immunotherapy for AD could
utilize the appropriate biomolecule, adjuvant and
dose based on the patient’s metabolic and stratified
risk profile [64, 65].

Although anti-inflammatory gene therapy, in the
present report, improved overall spatial memory
deficits in A�PP mice, it remains unclear whether
the corresponding cytokine levels increased in the
periphery and/or neuronal tissue with the given dose.
Previous experiments in the Yoo laboratory con-
firmed, through harvested splenocyte cultures and
cochlear histology of IL-10–/– mice with experi-
mental autoimmune hearing loss, that intramuscular
injection of 100 �g IL-10 DNA provided suffi-
cient peripheral and cranial IL-10 production [36].
Interestingly, proinflammatory-induced neurodegen-
eration in an AD rat model was also alleviated
in a dose-dependent manner with TGF-� [66].
Notably, combinatorial TGF-�/IL-10 plasmid DNA
immunotherapy has already been explored to treat
humoral autoimmune diseases [67]. Safe, novel, and
optimized gene-based neuroimmunotherapies will be
essential as drug development advances [68–70].

In oncology, ‘cytokine synergy’ infers that com-
bined therapeutic potency is greater than any of
the individual cytokines alone [71]. Intriguingly,
older mice administered IL-10 + IL-4, and to a lesser
extent IL-10 + TGF-�, could augment spatial mem-
ory in A�PP mice (Table 1), suggesting synergistic
anti-inflammatory AD amelioration. Additionally,
plasmid delivery of DNA encoding IL-10/IL-4 pre-
vents autoimmune diabetes in nonobese diabetic mice
[72], while fusion protein treatments with these Th2
cytokines alleviates inflammatory pain [73, 74]. Cur-
rently, inflammation in these concomitant diseases
exacerbates cognitive decline [75–79], but synergistic
cytokine gene therapy could provide health benefits
not only for the aging population, but society as a
whole.

Finally, AD mouse models exhibit anxiety, age/
gender performance variability, elevated retinal
A�, increased proinflammatory Th1 cytokines, and
early-onset biomarker absence, which may con-
found behavioral data [53, 80–85]. Despite their
putatively dubious nature, gene-based immunother-
apy research in transgenic mice should continue
exploring enhanced delivery systems and promot-
ers, complementing adjuvants, and confirmation of
experimental results in other AD models, such as
rabbits, where artificially-induced risks factors are
closer to human AD [86–90]. Furthermore, clin-
ical trials for neurodegenerative disease involving
naked DNA require more investment due to plasmid
DNA biocompatibility, lower manufacturing cost,
efficient production, and storage stability [91–93].
In summary, the present study provides an efficient
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strategy of preventing/delaying AD onset through
down regulation of chronic inflammation using gene
therapy.
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