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Abstract.

Background: COVID-19 pandemic is a global crisis which results in millions of deaths and causes long-term neurological
sequelae, such as Alzheimer’s disease (AD).

Objective: We aimed to explore the interaction between COVID-19 and AD by integrating bioinformatics to find the
biomarkers which lead to AD occurrence and development with COVID-19 and provide early intervention.

Methods: The differential expressed genes (DEGs) were found by GSE147507 and GSE132903, respectively. The common
genes between COVID-19 and AD were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and protein—protein interactions (PPI) network analysis were carried out. Hub genes were found by cytoscape. A
multivariate logistic regression model was constructed. NetworkAnalyst was used for the analysis of TF-gene interactions,
TF-miRNA coregulatory network, and Protein-chemical Interactions.

Results: Forty common DEGs for AD and COVID-19 were found. GO and KEGG analysis indicated that the DEGs were
enriched in the calcium signal pathway and other pathways. A PPI network was constructed, and 5 hub genes were identified
(ITPRI1, ITPR3, ITPKB, RAPGEF3, MFGES). Four hub genes (ITPR1, ITPR3, ITPKB, RAPGEF3) which were considered
as important factors in the development of AD that were affected by COVID-19 were shown by nomogram. Utilizing
NetworkAnalyst, the interaction network of 4 hub genes and TF, miRNA, common AD risk genes, and known compounds
is displayed, respectively.

Conclusion: COVID-19 patients are at high risk of developing AD. Vaccination is required. Four hub genes can be considered
as biomarkers for prediction and treatment of AD development caused by COVID-19. Compounds with neuroprotective effects
can be used as adjuvant therapy for COVID-19 patients.
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INTRODUCTION

Ever since cases of COVID-19 were first reported
on 31 December 2019 in China, COVID-19 has
rapidly spread through the whole world and caused
millions of deaths [1, 2]. Several studies showed that
COVID-19 can impair the central nervous system
and result in long-term neurological sequelae, like
Alzheimer’s disease (AD) [3, 4]. As we know, the
therapy and management of AD patients impose a
substantial burden on society and families. In addi-
tion, research indicated that AD patients were more
susceptible to severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), and COVID-19 would
cause their AD condition to worsen [3, 5].

Our paper studies the interaction between COVID-
19 and AD in order to explore the effective control
strategy for managing the diseases. We aimed to
explain the central nervous system damage caused
by COVID-19 in the population by using integrated
bioinformatics analysis, especially concentrating on
the potential molecular biological functions and
pathways that cause and aggravate AD, thus benefit-
ing future exploration of intervention and treatment
strategies.

We screened differential expressed genes (DEGs)
by using GSE147507 [6] and GSE132903 [7],
respectively, and found the common DEGs between
COVID-19 and AD. Then we carried out a series
of bioinformatics analysis such as Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), protein—protein interactions (PPI), hub
gene identification, etc.

We found that common DEGs were enriched in
calcium signaling and other pathways, among which
the imbalance of calcium ion homeostasis is one of
the most important pathogenesis of AD. We found 4
hub genes (ITPR1, ITPR3, ITPKB, RAPGEF3) that
may play an important role in the occurrence and
development of AD in COVID-19 patients through
the identification of hub genes and the validation
of the multivariate logistic regression model. The
4 hub genes can be considered as biomarkers for
the occurrence and development of AD caused by
COVID-19. In addition, we utilized the common hub
genes of the two diseases to construct clinical diag-
nostic model (ROC_AUC =0.757) in order to provide
effective strategy and tools for early screening risk
of AD. This study also indicated that vaccination
is a relatively safe and economic intervention to
achieve universal immunization. Finally, compounds

with neuroprotective effects can be used as adjuvant
therapy for COVID-19 patients.

METHODS
Dataset collections

Dataset (GSE147507: https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE147507) [6] was
selected for SARS-CoV-2 infection in human
at transcriptional levels and dataset (GSE132903:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
=GSE132903) [7] was selected for the gene expres-
sion of AD analysis. Both datasets were acquired
from GEO database (https://www.ncbi.nlm.nih.gov/
geo/). Samples of lung biopsy for healthy neg-
ative control and lung sample from postmortem
COVID-19 patient were selected from GSE147507
for analysis. Samples which composed of temporal
gyrus samples from AD patients (AD=97) and
non-dementia controls (ND =98) was selected from
GSE132903. The study flow is shown as in Fig. 1.

DEGs identification and common gene
identification between COVID-19 and AD

DESeq2 [8] and limma [9] package in R soft-
ware (version 4.0.2) with adjusted P-value<0.05
and 1og2|FC|> 1 were used for DEGs identification
between COVID-19 patients and health control from
GSE147507. And limma packages in R software
with 1og2|FC[>0.5, adj.p.val <0.01 were used to
obtain DEGs from GSE132903. The common DEGs
between COVID-19 and AD was obtained by using
R software.

GO and KEGG analysis

GO and KEGG enrichment analysis were car-
ried out with the “clusterProfiler R” [10] package
(v3.16.1) of R software.

PPI network analysis and hub genes
identification

Common DEGs were used to construct a PPI
network by STRING (https://string-db.org/) with a
confidence score of > 0.4. Hub genes of the PPI net-
work were identified using degree algorithm from
cytoHubba [11], a plugin in Cytoscape, and visual-
ized using Cytoscape (v3.7.2).
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Fig. 1. Study flowchart. AD, Alzheimer disease; DEGs, differential expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes.

Model construction

Sex, age, and hub gene expression profiles from
GSE132903 were integrated to analyze the correla-
tion between these factors and AD using univariate
logistic regression. The baseline data was shown as in
Table 1. Then the data was divided into a training set

(70%) and a test set (30%), the difference between the
two sets was then verified. In the training set, a multi-
variate logistic regression model was constructed by
incorporating the features of p<0.05 in the results
of univariate logistic regression analysis. ROC_AUC
was performed to validate the model in the test
set.
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Table 1
Baseline data of AD and the control in GSE132903
AD ND P
NO. 97 98
ITPRI (mean(sd)) 9.39 (0.92) 10.03 (0.82) 6.30E-07
ITPR3 (mean(sd)) 8.63 (0.61) 8.04 (0.55) 1.40E-10
ITPKB (mean(sd)) 9.88 (0.82) 8.98 (0.74) 7.90E-14
RAPGEF3 (mean(sd)) 8.34 (0.77) 7.52(0.53) 5.10E-14
MFGES (mean(sd)) 10.42 (0.6) 9.89 (0.54) 2.40E-09
Age (mean(sd)) 85.02 (6.75) 84.98 (6.9) 0.97
Sex (%) N=97 (100(%))
Female 48 (49.48%) 48 (48.98%)
Male 49 (50.52%) 50 (51.02%) 1
AD_diagnosis (%) N=97 (100(%))
AD 97 (100%) 0 (0%)
Normal 0 (0%) 98 (100%) 0

p<0.05 is considered to be statistically significant.

Development and validation of a multigene
containing nomogram

Nomograms include several lines corresponding
to certain clinical parameters and have been widely
used to predict the incidence of patients in a clinical
environment [12]. A multigene containing nomogram
was constructed according to the multivariate logistic
regression model in the training set.

Validation of hub genes by Alzdata

The hub gene expression profiles between AD and
control brain tissues were determined using AlzData
(http://www.alzdata.org). AlzData is a database that
provides human brain gene expression profiling [13,
14].

TF-gene interactions

NetworkAnalyst [15] (https://www.networkana
lyst.ca/) was used to find the TF-gene interaction

COVID19_GSE147507_diff AD_GSE132903_diff

664

Fig. 2. Common DEGs are represented by a Venn diagram. 40
genes were found as common DEGs from 805 DEGs of COVID-19
and 704 DEGs of AD patients.

with identified hub genes. TF-gene interaction anal-
ysis with integration of common AD risk genes [16,
17] (APP, PSEN1, PSEN2, APOE, SORLI, ABCA7,
TREM?2, PLCG2, BDNF) and hub genes was also
performed by NetworkAnalyst.

TF-miRNA coregulatory network

TF-miRNA coregulatory network was constructed
with the identified hub genes using NetworkAnalyst
tool [15].

Protein-chemical interactions

An important component of the study also included
using NetworkAnalyst to identify compounds that
interact with hub genes [15].

RESULTS

DEGs identification and common DEGs
identification between COVID-19 and AD

We obtained 805 DEGs from GSE147507 and 704
DEGs from GSE132903. Then we took the intersec-
tion of 805 DEGs for COVID-19 and 704 DEGs for
AD and determined 40 common DEGs, this was then
visualized with a Venn diagram (Fig. 2).

GO and KEGG analysis

The 40 common DEGs between AD and COVID-
19 were used for GO and KEGG analysis. GO anal-
ysis showed that genes were enriched in molecular
function of inositol 1,4,5 trisphosphate binding and
calcium-release channel activity (Fig. 3). KEGG
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Fig. 3. GO enrichment analysis for the common DEGs. BP, biological process of GO analysis; CC, cellular component of GO analysis; MF,
molecular function of GO analysis.
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Fig. 4. KEGG enrichment analysis for the common DEGs.

analysis demonstrated the genes were enriched calcium signaling, cellular senescence, glutamatergic
on pathways of apoptosis, long-term potentiation, synapse, AD, etc. (Fig. 4).
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PPI network analysis and hub genes
identification

We entered the 40 common DEGs into STRING
and imported generated files into Cytoscape (https://
cytoscape.org/) for the visualization of PPI network
analysis (Fig. 5). Then we used cytoHubba to identify

Table 2
Univariate logistic regression of risk factors in AD

characteristics R val P val
1 ITPRI -0.82 0
2 ITPR3 1.69 0
3 ITPKB 1.42 0
4 RAPGEF3 1.97 0
5 MFGES 1.57 0
6 Age 0 0.97
7 Sex -0.02 0.94
p<0.05 is considered to be statistically significant.

the 5 hub genes ITPRI, ITPR3, ITPKB, RAPGEF?3,
and MFGES (Fig. 6).

Model construction and validation

The training set and test set was verified, and
there was no significant difference between the two
sets (Supplementary Table 1). Univariate logistic
regression was used to analyze features which would
affect the occurrence of AD, including ITPR1, ITPR3,
ITPKB, RAPGEF3, and MFGES (p <0.05) (Table 2).
Multivariate regression analysis indicated that 4 hub
genes (ITPRI, ITPR3, ITPKB, RAPGEF3) were
important factors affecting AD (p <0.05) (Table 3).
The result was validated using ROC_AUC with a
score of 0.757 in the test set (Fig. 7).


https://cytoscape.org/
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Table 3
Multivariate logistic regression of Risk Factors in AD
Intercept and B Odds Ratio (95CI) P
Variable
(Intercept) -62.8404185 1.24E-05
ITPRI 2.2525753 9.51E+00 (2.95E +00 to 3.54E+01) 0.000341
ITPR3 1.9249126 6.85E + 00 (1.63E +00 to 3.24E+01) 0.010611
ITPKB 0.9699832 2.64E +00 (1.06E + 00 to 6.86E +00) 0.0398
RAPGEF3 3.5058907 3.33E+01 (7.21E+00 to 2.03E+02) 3.14E-05
MFGES —1.1648198 3.12E-01 (7.38E-02 to 1.22E+00) 0.099675

p<0.05 is considered to be statistically significant.

Receiver Operating Characteristic
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Fig. 7. ROC-AUC of the multivariate logistic regression model for AD prediction (test set)

Development of a multigene containing
nomogram

A multigene containing nomogram was con-
structed according to the multivariate logistic
regression model in the training set. For example,
a sample (GSM3896060) from GSE132903 has an
AD incidence probability of 0.883 and requires active
treatment (Fig. 8).

Validation of hub genes by Alzdata

The 4 genes ITPRI1, ITPR3, ITPKB, and RAPGEF3
have significant differences in gene expression
between AD and normal groups (Fig. 9). RAPGEF3
has a high correlation with A and tau, while ITPR3
has a correlation with AB. RAPGEF3 and APP and
APOE interact in the PPI network (Supplementary
Table 2).



736 F. Wang et al. / Analysis and Identification Genetic Effect of SARS-CoV-2

fit2 gim
B(X-m) terms
r T — —& L T T 1
5 -4 -2 0 2 4 6 8
MFGES8
11.5 10.5 9.5 8.5
RAPGEF3***
T T T T =l T T T
6.5 7 7.5 8 85 9 9.5 10
ITPKB*
75 95 1.5
MRS M
72 8 8.8 9.6
ITPR1** w\n\/\/\/\’\
T /\ fi/\ =I T 1
7 8 ] 10 1
Total score
1.9
/-l/\ T T T 1
-4 -2 0 > 4 6
I 0.883y |

Pr( AD_diagnosis ) T v { t
0.015

0.04 01 03 06 0975 099 0.99

08 0.94

Fig. 8. Multigene based nomogram by 4 hub genes predicting the probability with Alzheimer’s disease (GSE132903).

10 0

o
w
- -
o
e
«@

iy
e
8.5 ¥ 5
; 6
2 : 4
7.5 5
. 3
Control AD Control AD Control AD Control AD
ITPR1 ITPR3 ITPKB RAPGEF3
(Temporal Cortex) (Frontal Cortex) (Hippocampus) (Temporal Cortex)

Fig. 9. Differential expression of Cross platform normalized data (AlzData)



F. Wang et al. / Analysis and Identification Genetic Effect of SARS-CoV-2 737

RADS1 PROMIOPROMIPOLR2A pHFs (oo,

TSHZ1
WT1
ZBTB33
ZBTBAD.
W=7
/ W=
o) RS \“" i,’(/;.’.'

NR4A1

KLF11

KDMSB

JUND

IRF1

IKZF1

HMGN3

< TN

N
DN SN\~
<A I
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TF-gene interactions

TF-gene interactions showed the interaction of
TF genes and 4 hub genes (Fig. 10, Supplementary
Table 3). ITPRI, ITPR3, ITPKB, and RAPGEF 3 were
regulated by 43, 28, 14, and 30 TF genes, respectively.
A TF-gene regulatory network of 4 hub genes and
common AD risk genes was constructed. Figure 11
and Supplementary Table 4 represent the interac-
tion network between the 7 AD risk genes (ABCA7,
APOE, PSENI, PSEN2, SORLI, PLCG2, BDNF) and
the 4 hub genes (ITPRI, ITPR3, ITPKB, RAPGEF3).

TF-miRNA coregulatory network

TF-miRNA coregulatory network showed the
interaction of TF genes and miRNAs with 4 hub genes
(Fig. 12, Supplementary Table 5).

Protein-chemical interactions

We found that resveratrol, genistein, and quercetin
were compounds that could interact with most hub
genes. Since these compounds were detected against
common hub genes, these compounds represented
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common compounds in COVID-19 and AD (Fig. 13, and pathways between COVID-19 and AD in order
Supplementary Table 6). Top 20 of the compounds to find biomarkers of AD progression by COVID-19
which interact hub genes were listed in Table 4. and provide early intervention.

In this study, we have identified the DEGs of
COVID-19 and AD, respectively. Then we found

DISCUSSION forty common DEGs of AD and COVID-19 and
performed bioinformatics analysis. GO indicated

COVID-19 could lead to neurologic sequelae such that common DEGs were enriched in molecular
as AD [3]. Since many studies have reported the function of inositol 1,4,5 trisphosphate binding and
pathogenesis of AD in association with COVID-19 calcium-release channel activity. KEGG showed
[3, 18, 19], AD is of particular concern. We tried that common DEGs were enriched in pathways of

to explore the common molecular biology functions apoptosis, long-term potentiation, calcium signaling,
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cellular senescence, glutamatergic synapse, and AD.
The inositol 1,4,5-trisphosphate receptor (IP3R) can
mediate calcium-release channel activity and dys-
function of IP3R may play a role in the pathogenesis
of AD [20]. The calcium signaling pathway involved
in the analysis of KEGG is consistent with the current
studies which have confirmed calcium ionic home-
ostasis imbalance as one of the key mechanisms of
AD pathogenesis [21-24]. Common DEGs enriched
in pathways of long-term potentiation [25, 26] and
glutamatergic synapse [27] may explain to some
extent the cause of memory loss in some COVID-
19 patients [28], as memory loss is widely known as
a clinical manifestation of AD. Then we performed

PPI network analysis on common DEGs and identi-
fied 5 hub genes (ITPRI, ITPR3, ITPKB, RAPGEF3,
MFGES).

By integrated the gender, age and the expression
profiles of 5 hub genes in GSE132903 which included
AD patients and the control group, we established a
multivariate logistic regression model and found 4
hub genes (ITPRI, ITPR3, ITPKB, RAPGEF3) that
were the most important factors affecting AD. ITPR]
(Inositol 1,4,5-Trisphosphate Receptor Type 1) takes
part in regulating calcium homeostasis in the endo-
plasmic reticulum and induces Ca>* release into the
cytosol and may be a potential target for treatment
of AD [20, 29]. One study indicated that ITPR3



740

Methotenate

Rakoxitend Hydrochionde

‘Siican Diowicy

.w',.'..\-

A

b

/‘,,mm\\\\\\\ii‘“\\ iRy

Q

X\

AN

\

|

F. Wang et al. / Analysis and Identification Genetic Effect of SARS-CoV-2

poriaiipansiios Loy 1olbgy . B .

Hydmcarisons

i W4
\‘",M -

/ ;‘.,,‘- ' /

\\\\\ S =

¢

==

HINRES

\I

\
N

)

i
J;f
/

{

I/

e ——

/f/

/

—

=

—

]
A /
74

7

Fig. 13. Protein-chemical Interactions by NetworkAnalyst. Suggested compounds that interact with hub genes.

(Inositol 1,4,5-Trisphosphate Receptor Type 3) is
particularly important at mitochondrial calcium and
apoptosis modulation [30, 31]. In SH-SYSY cells,
knockout of STIMI can downregulate the expression
of ITPR3 which leads to the reduce of free calciumion
concentration of mitochondria, and finally results in
energy metabolism disorders [32]. ITPKB (Inositol-
Trisphosphate 3-Kinase B) is necessary for mature T
cell and B cell functions [33, 34]. And in AD mouse
models, inhibition of /ITPKB can reduce the neuroin-
flammation in microglia [35]. It was also reported that
melatonin can attenuate scopolamine-induced mem-
ory loss by rescuing EPACs/miR-124/Egrl pathway

[36], with EPAC being an alias for RAPGEF3 gene.
EPAC activation in neuronal cells has been confirmed
to promote apoptosis [37]. EPAC is also involved in
secretion of an amyloid precursor protein which is
widely known to be an important mechanism leading
to AD [38].

Our bioinformatics analysis and current litera-
ture suggests that imbalance in calcium homeostasis
would be a shared mechanism to COVID-19 and
AD. We speculate that the imbalance of calcium
homeostasis in COVID-19 patients may eventually
lead to the occurrence and development of AD
as calcium homeostasis plays an important role in
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Table 4
Suggested top 20 compounds for AD
Id Compound Degree Betweenness Genes
DO001564 Benzo(a)pyrene 3 239.74 ITPRI, ITPR3, RAPGEF3
C459179 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H- 3 110.7 ITPRI1, ITPR3, ITPKB
imidazol-2-yl)benzamide
C516138 (6-(4-(2-piperidin-1-ylethoxy)phenyl))-3-pyridin-4- 3 110.7 ITPRI, ITPR3, ITPKB
ylpyrazolo(1,5-a)pyrimidine
C561695 (+)-JQ1 compound 3 110.7 ITPRI, ITPR3, ITPKB
C012589 trichostatin A 3 110.7 ITPRI, ITPR3, ITPKB
D014635 Valproic Acid 3 110.7 ITPRI, ITPR3, ITPKB
D016604 Aflatoxin B1 2 106.21 ITPRI, RAPGEF3
D002118 Calcium 2 106.21 ITPRI, RAPGEF3
D019833 Genistein 2 106.21 ITPRI, RAPGEF3
D009532 Nickel 2 106.21 ITPRI, RAPGEF3
D002945 Cisplatin 2 80.61 ITPR3, RAPGEF3
D001280 Atrazine 2 52.91 ITPRI, ITPR3
C018021 cobaltous chloride 2 5291 ITPRI, ITPR3
D019327 Copper Sulfate 2 5291 ITPRI, ITPR3
C118739 entinostat 2 52.91 ITPRI1, ITPR3
D006861 Hydrogen Peroxide 2 52.91 ITPRI, ITPR3
D008727 Methotrexate 2 52.91 ITPRI1, ITPR3
DO011794 Quercetin 2 5291 ITPRI, ITPR3
C059514 resveratrol 2 5291 ITPRI, ITPR3
D013629 Tamoxifen 2 52.91 ITPRI1, ITPR3

AD pathogenesis [39]. Recent studies suggested the
sequelae of the nervous system in COVID-19 may
be due to SARS-CoV-2 infection of central ner-
vous system [40]. The latest study demonstrated
virus-induced senescence can be the pathogenic trig-
ger of COVID-19-related cytokine escalation and
organ damage [41]. Another research demonstrated
COVID-mediated cytokine storm can cause Sys-
temic inflammation, including neuroinflammation
[42]. Neuroinflammation can then cause an increase
in cytokines and reactive oxygen species by activating
microglia, and then imbalance of calcium homeosta-
sis in neurons will lead to neuronal necrosis and
apoptosis, with a clinical symptom of memory loss
[43]. Activation of microglia by calcium homeosta-
sis dysfunction exacerbated disease progression [44].
Researchers found that the interaction between neu-
roinflammation and neuronal calcium dysregulation
may synergistically lead to memory deficits [43, 45].
Since ABCA?7 is involved in the phagocytosis and
clearance of amyloid-f3 by microglia [46], the inter-
action of ABCA7 with ITPR1, ITPR3, and ITPKB
shown in Fig. 11 confirms the relationship between
neuroinflammation and calcium homeostasis with the
development of AD from the perspective of bioinfor-
matics.

In addition, studies have found that since COVID-
19 may exacerbate neuroinflammation and calcium
homeostasis dysregulation in AD patients, COVID-
19 infection can worsen AD conditions [3]. Recent

studies showed that APOE4 can aggravate the synap-
tic loss and neurodegeneration of brain organoids
derived from iPSC in AD patients [47], which means
that AD patients carrying APOE4 are prone to disease
progression after being infected by SARS-CoV-2.
The latest research shows that neuronal APOE4 can
drive the occurrence and development of AD pathol-
ogy by influencing immune response genes [48], and
the inflammation and immune response that occur in
COVID-19 infection are likely to become the induce-
ment for APOE to participate in the pathogenesis
of AD. In other words, even in the normal popu-
lation, COVID-19 infection may induce AD due to
the imbalance of calcium homeostasis and neuroin-
flammation. We speculate that the normal population
carrying APOE4 may be more susceptible to AD.
Figure 11 showed a network interaction relation-
ship between APOE and other genes such as ABCA7,
ITPR1, ITPR3, and ITPKB, which also indicates that
APOE is involved in the occurrence and development
of AD. This study indicated that APOE is one of
the important factors driving AD among the normal
population and AD patients with COVID-19 infec-
tion. This may also explain to some extent why some
COVID-19 patients are more likely to develop AD,
and find a reasonable explanation for why the APOE4
genotype population is more likely to suffer from AD.

In this study, we developed an AD risk diagnosis
model (ROC_AUC =0.757) using the common hub
genes of COVID-19 and AD. This provides effective
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strategies and tools for early screening AD risk in
COVID-19 patients. which is valuable for the prog-
nosis of COVID-19. We found that the 4 hub genes
are not only the DEG of COVID-19, but also partic-
ipate in the pathogenesis of AD. Therefore, these 4
genes can be considered as biomarkers for predicting
the occurrence and development of AD in COVID-19
patients.

Finally, we found the interaction between sev-
eral compounds and hub genes by NetworkAnalyst,
among which resveratrol, genistein, and quercetin
were already confirmed to have a neuroprotective
effect on AD [49-54]. These compounds could
be considered for the prevention and treatment of
patients with COVID-19. But we also believe that
taking individual protection and vaccination to avoid
SARS-CoV-2 infection is the best strategy for indi-
viduals.

Conclusion

This paper developed an AD risk diagnosis model
based on the common hub gene of COVID-19 patients
and AD patients. According to the model and cur-
rent research, COVID-19 patients are at high risk
to develop AD. We highlighted that vaccination
is effective and economic for preventing COVID-
19. In addition, we found 4 hub genes (ITPRI,
ITPR3, ITPKB, RAPGEF3) that can be consid-
ered as biomarkers to predict the occurrence and
development of AD in COVID-19 patients. This
model provides valuable strategies and tools for the
prevention and treatment of COVID-19 and AD.
Compounds with neuroprotective effects can be used
as adjuvant therapy for COVID-19 patients.
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