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Supplementary Material 

Combining Multimodal Behavioral Data of Gait, Speech, and Drawing for Classification 

of Alzheimer’s Disease and Mild Cognitive Impairment 

 

Supplemental Methods 

Structural magnetic resonance imaging 

All participants were administered structural magnetic resonance imaging (MRI) scans 

with 1.5T, T1-weighted images and a 3D gradient-echo sequence with the following 

parameters: sagittal orientation with 1.2-mm-thick sections; time repetition/time echo 

2400/3.52 milliseconds; flip angle 8°; field of view 240×240. We expressed the severity of 

medial temporal lobe atrophy as a Z score relative to cognitively healthy adults by using a 

standalone, voxel-based specific regional analysis system for Alzheimer disease (AD) [1]. 

 

Gait data collection and feature extraction 

Gait data were concurrently recorded using an eight-camera OptiTrack Flex 13 motion 

capture system, sampled at 120 Hz using OptiTrack Motive software 2.1.0 Beta 1 (NaturalPoint, 

Inc, Corvallis, OR, USA). Fifty reflective, spherical markers were applied to defined anatomical 

landmarks in accordance with the marker setup of the OptiTrack Motive software. To discard 

the increase and decrease speed effect, the first and last two meters were excluded from analyses. 

We extracted a total of 35 gait features associated with pace, rhythm, variability, left-right 

asymmetry, and postural control based on previous studies on gait characteristics related to 

cognitive impairment and AD [2–6] as well as functioning changes in older adults related to 

fall risks [7–10] and frailty [11,12]. Specifically, 14 features were related to steps and strides: 

mean and variability of step length, step time, step angle, step width, stride length, and stride 
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time as well as absolute differences between left and right step time and length. We calculated 

gait speed, acceleration, and jerk by using the trajectory of the pelvis marker on the waist back. 

We extracted 15 features including the mean, variability, maximum, and root mean square of 

gait speed, acceleration, and jerk. In addition, the first and second peaks computed on the basis 

of the unbiased autocorrelation coefficients (i.e., Ad1 and Ad2) [13] were used as features to 

measure left-right asymmetry between steps and the variability of consecutive strides. 

Mediolateral fluctuation of the pelvis marker was also used as a gait feature related to postural 

control. We calculated the speed of the heel markers relative to the pelvis marker for measuring 

foot swing speed and used three features related to the mean, variability, and left-right 

differences of foot swing speed. Finally, maximum toe clearance, toe off angle, and heal strike 

angle were used as features related to postural control. 

 

Speech data collection and feature extraction 

For the speech data collection, participants sat down in front of the tablet and answered 

questions presented by a voice-based application on the tablet. The tablet showed a screen 

indicating whether it was speaking or listening. We used an iPad Air 2 and recorded voice 

responses by using the iPad's internal microphone (core audio format, 44,100 Hz, 16-bit). The 

audio data were manually transcribed. Filler words such as “um” and “uh” were annotated 

manually and were considered as pauses used for extracting pause-related features. 

From the speech data of each participant, we extracted a total of 84 speech features used in 

previous studies on detecting patients with MCI or AD [14–21]. Speech features consisted of 

58 acoustic features, 15 prosodic features, and 11 linguistic features. We extracted features from 

each task unless otherwise stated.  

The acoustic and prosodic features were extracted from audio data. The acoustic features 
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consisted of three feature types related to shimmer, jitter, and Mel-frequency cepstral 

coefficients (MFCCs). Jitter and shimmer features are cycle-to-cycle variations of fundamental 

frequency and amplitude, commonly used to measure pathological voice quality [22]. For jitter, 

we used local jitter calculated as the average absolute difference between consecutive periods 

divided by the average period [22]. For shimmer, we used local shimmer as the average absolute 

difference between the amplitudes of consecutive periods divided by the average amplitude 

[22]. MFCCs are spectral features characterizing the frequency distribution of a speech signal 

in specific time instance information and designed to take into account the response properties 

of the human auditory system [23]. We used the mean, variance, skewness, and kurtosis of the 

first 12 MFCCs during spontaneous speech, that is, the picture description task. The prosodic 

features included phoneme rate, pitch variability, and proportion of pause duration. For 

estimating pitch, we used fundamental frequency. We used the following audio-processing 

libraries in Python (version 3.8): librosa (version 0.8.0 [24]) for calculating MFCCs and 

Signal_Analysis (version 0.1.26 [25]) for calculating fundamental frequency. 

The linguistic features were extracted from manually transcribed text data. The linguistic 

features were the proportion of mistakes in the counting backwards and subtraction tasks, 

number of correct answers in the phonemic and semantic verbal fluency tasks, and Honoré's 

statistics (HS) [26] for measuring vocabulary richness and six features related to the number of 

information units in the picture description task. HS gives particular importance to unique 

words used only once and is calculated by the following equation: HS = 100log𝑁/(1 −

𝑉1/𝑉), where N is the total number of words, V is the number of unique words, and V1 is the 

number of words spoken only once. The number of information units was obtained by counting 

the number of unique pre-defined entities relevant to the picture. Whether participants 

mentioned each entity was determined by manually annotating entities to words in the 
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transcribed text data. For example, words such as boy, son, or brother were all annotated as the 

entity “boy.” We used 23 entities, or information units, in four categories based on previous 

studies [27,28]: subjects (mother, boy, and girl), places (kitchen and exterior seen through the 

window), objects (faucet, water, sink and counter, floor, plate and dishes on the counter, 

dishcloth, cookies, jar, cabinet, stool, window, and curtain), and actions (boy taking the cookie, 

boy or stool falling, mother drying or washing the dishes, water overflowing, girl asking for a 

cookie, and mother unconcerned by the water overflowing or children stealing cookies). We 

used the number of information units for each category and the total number of all information 

units as well as the total number of information units normalized by the length of the speech. 

For tokenizing and lemmatizing the transcribed text data, we used the Japanese morphological 

analyzer Janome (version 0.4.1 [29]) in Python (version 3.8). 

 

Drawing data collection and feature extraction 

We collected drawing data using a Wacom Cintiq Pro 16 (sampling rate: 180 Hz, pen 

pressure levels: 8192). We then extracted a total of 60 drawing features based on previous 

studies on drawing characteristics related to cognitive impairment [30,31], MCI or AD [30,32–

36], and other neurodegenerative diseases related to physical functioning changes such as 

Parkinson disease [37,38]. They consisted of 23 kinematic features, 5 pressure-related features, 

20 time-related features, and 12 trail-making-test-specific features. We extracted features from 

each task unless otherwise stated. The kinematic features included the mean, variability, and 

maximum of the drawing speed, mean drawing acceleration, total stroke length in the sentence 

task, and total stroke length normalized by number of correct edges in the trail-making tasks. 

For the pressure-related features, we used writing pressure variability. The time-related features 

included the average and maximum of pause duration between drawings (i.e., between strokes 
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or within a stroke), pause duration between drawings normalized by total stroke length, and 

task duration normalized by total stroke length. The trail-making-test-specific features included 

the number of correct and incorrect edges, number of lifts, mean and maximum of time between 

nodes, and task duration normalized by the number of answered edges. 

 

Preprocessing and parameters for classification models 

The number of input features from individual behavioral modalities was set to 35, the 

smallest number of gait features among the modalities, to be the same as the number of features 

from individual modalities. Input features of drawing and speech features were selected on the 

basis of an area under receiver operating characteristic curve (AuROC). As for missing values, 

multivariate imputation by chained equations [39] was carried out using all non-missing input 

features of the same behavioral modality. The parameters that we studied were as follows: the 

number of neighbors (search range: 1, 2, 3, 5, 10, 15, 20) for the k-nearest neighbors; the number 

of trees (10, 50, 100), maximum depth of trees (2, 3, 4, 5), class weights (None, balanced, 

balanced_subsample) for random forest; kernel functions (linear and radial basis function), 

penalty parameter (1, 10, 20, 50, 70, 90, 100, 110, 150, 200), the parameter associated with the 

width of the radial basis function kernel (1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 

1/𝑁features), and class weights (None, balanced) for the support vector machine. 𝑁features is 

the number of input features. The parameters were tuned using ten-fold cross validation. We 

used algorithms implemented using the Python package scikit-learn (version 0.23.2) and all 

other parameters were kept at the default values. 
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Supplemental Results 

Missing behavioral data 

Four AD patients did not complete the five speech tasks. One AD patient did not perform 

the picture description task, one did not perform the counting backwards task, and one 

performed only the picture description task because they could not follow the instructions. The 

remaining patient did not perform the counting backwards and subtraction tasks due to the 

participant's verbal refusal. 
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Supplementary Table 1: Behavioral features with statistically significant differences between 

diagnosis categories of AD, MCI, and CN 

   p 

  CN (N=47) MCI (N=45) AD (N=26) Unadjusted Adjusted 

Gait 
 

Gait speed [m/s] 1.33 ± 0.16 A 1.24 ± 0.21 A 1.07 ± 0.18 C, M <.0001 <.0001 

Gait speed RMS [m/s] 1.34 ± 0.17 A 1.25 ± 0.21 A 1.08 ± 0.18 C, M <.0001 <.0001 

Gait speed variability (SD) 

[m/s] 
0.14 ± 0.04 A 0.12 ± 0.02  0.11 ± 0.02 C .0011 .0022 

Peak gait speed [m/s] 1.73 ± 0.35 M, A 1.56 ± 0.23 C, A 1.40 ± 0.19 C, M <.0001 <.0001 

Gait acceleration [m/s/s] 3.45 ± 1.50 A 2.96 ± 0.62 A 2.50 ± 0.51 C, M .0015 .0038 

Gait acceleration RMS [m/s/s] 3.94 ± 2.34  3.23 ± 0.66 A 2.80 ± 0.53 M .0089 .0168 

Step length [m] 0.68 ± 0.07 M, A 0.65 ± 0.09 C, A 0.58 ± 0.07 C, M <.0001 <.0001 

Stride length [m] 1.37 ± 0.14 M, A 1.30 ± 0.18 C, A 1.16 ± 0.15 C, M <.0001 <.0001 

Step time [s] 0.52 ± 0.04 A 0.53 ± 0.04 0.55 ± 0.05 C .0132 .0105 

Stride time [s] 1.04 ± 0.07 A 1.07 ± 0.08  1.11 ± 0.11 C .0129 .0098 

Stride time variability (SD) [s] 0.06 ± 0.02 A 0.07 ± 0.03  0.08 ± 0.03 C .0210 .0292 

Step time left-right asymmetry 

[s] 
0.04 ± 0.02 A 0.05 ± 0.03  0.07 ± 0.05 C .0113 .0182 

Step angle variability (SD) 

[rad] 
0.04 ± 0.02 A 0.05 ± 0.02  0.06 ± 0.03 C .0016 .0065 

Foot swing speed [m/s] 1.61 ± 0.17 A 1.53 ± 0.22 A 1.37 ± 0.20 C, M <.0001 <.0001 

Foot swing speed variability 

(SD) [m/s] 
0.64 ± 0.05 A 0.61 ± 0.07  0.58 ± 0.07 C .0016 .0058 

Heal strike angle [rad] 0.53 ± 0.09 M, A 0.47 ± 0.11 C 0.43 ± 0.09 C .0002 .0007 

Toe off angle [rad] −1.27 ± 0.12 A −1.22 ± 0.13 A −1.13 ± 0.11 C, M <.0001 .0003 

Maximum toe clearance [m] 0.13 ± 0.02 M, A 0.12 ± 0.03 C 0.11 ± 0.02 C .0010 .0009 
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 p 

 CN (N=47) MCI (N=45) AD (N=26) Unadjusted Adjusted 

Speech 
 

Honoré's statistics [×103] 

(Picture description)  
1.93 ± 0.96 A 2.07 ± 0.98 A 1.34 ± 0.65 C, M .0058 .0061 

Total number of information 

units normalized by the length 

of the speech [words/s] (Picture 

description) 

0.27 ± 0.10 A 0.26 ± 0.12 A 0.19 ± 0.09 C, M .0044 .0098 

Proportion of mistakes 

(Counting backwards) 
0.00 (0–0.21) A 0.00 (0–0.27)  0.07 (0–0.80) C .0010 .0003 

Proportion of mistakes 

(Subtraction)  
0.13 ± 0.17 A 0.20 ± 0.23  0.36 ± 0.28 C .0003 .0005 

Number of correct answers 

[words] (Phonemic verbal 

fluency) 

7.6 ± 2.7 A 6.9 ± 2.7 5.6 ± 2.7 C .0194 .0184 

Number of correct answers 

[words] (Semantic verbal 

fluency) 

17.5 ± 4.9 A 16.4 ± 4.6 A 10.6 ± 4.4 C, M <.0001 <.0001 

Proportion of pause duration in 

calculation (Counting 

backwards) 

0.22 ± 0.08 A 0.25 ± 0.10  0.29 ± 0.12 C .0174 .0153 

Proportion of pause duration in 

spontaneous speech (Picture 

description) 

0.37 ± 0.11 A 0.40 ± 0.10 A 0.50 ± 0.17 C, M .0001 .0003 

Proportion of pause duration in 

word production (Semantic 

verbal fluency) 

0.75 ± 0.07 A 0.77 ± 0.05 A 0.84 ± 0.07 C, M <.0001 <.0001 

Pitch variability (SD) [Hz] 

(Counting backwards) 
23.3 ± 9.6 A 19.6 ± 9.4 16.8 ± 5.4 C .0120 .0148 

MFCC1 (Picture description) −496.2 ± 31.9 A −492.6 ± 36.3 −514.4 ± 35.5 C .0394 .0273 

MFCC9 (Picture description) −4.01 ± 6.20 M −0.32 ± 6.42 C −2.16 ± 5.01 .0183 .0152 

MFCC9 skewness (Picture 

description) 
−0.06 ± 0.16 M 0.04 ± 0.18 C −0.01 ± 0.19 .0326 .0189 
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p 

  CN (N=47) MCI (N=45) AD (N=26) Unadjusted Adjusted 

Drawing 
 

Drawing speed [mm/s] 

(TMT-B) 
102.0 ± 18.5 A 100.5 ± 28.4 A 79.0 ± 20.8 C, M .0002 .0006 

Drawing speed variability (SD) 

[mm/s] (TMT-B) 
34.8 ± 7.6 A 34.9 ± 13.6 A 25.3 ± 12.7 C, M .0015 .0042 

Maximum drawing speed 

[mm/s] (TMT-B) 
135.9 ± 26.3 A 130.5 ± 41.1 A 102.0 ± 33.8 C, M .0004 .0013 

Total stroke length [mm] 

[×102] (Sentence) 
8.46 ± 3.89 A 9.50 ± 5.38 6.17 ± 2.61 C .0100 .0215 

Pause duration between 

drawings [s] (TMT-A) 
0.60 ± 0.27 A 0.74 ± 0.30 A 1.09 ± 0.65 C, M <.0001 <.0001 

Pause duration between 

drawings [s] (TMT-B) 
1.49 ± 0.56 M, A 1.98 ± 0.84 C, A 2.55 ± 0.98 C, M <.0001 <.0001 

Maximum pause duration 

between drawings [s] (TMT-A) 
3.83 ± 2.98 A 5.25 ± 4.12 A 8.30 ± 5.79 C, M .0002 .0007 

Maximum pause duration 

between drawings [s] (TMT-B) 
7.61 ± 4.28 M, A 15.72 ± 15.88 C 20.41 ± 14.61 C <.0001 .0002 

Pause duration between 

drawings normalized by total 

stroke length [s/mm] (CDT) 

0.023 ± 0.009 A 0.031 ± 0.030 0.045 ± 0.039 C .0040 .0121 

Pause duration between 

drawings normalized by total 

stroke length [s/mm] 

(Pentagon) 

0.027 ± 0.015 A 0.032 ± 0.021 0.043 ± 0.029 C .0104 .0328 

Pause duration between 

drawings normalized by total 

stroke length [s/mm] 

(Sentence) 

0.016 ± 0.009 A 0.019 ± 0.012 0.025 ± 0.013 C .0057 .0154 

Pause duration between 

drawings normalized by total 

stroke length [s/mm] (TMT-A) 

0.011 ± 0.007 A 0.016 ± 0.010 A 0.025 ± 0.019 C, M <.0001 .0001 

Pause duration between 

drawings normalized by total 

stroke length [s/mm] (TMT-B) 

0.030 ± 0.013 M, A 0.052 ± 0.038 C, A 0.088 ± 0.047 C, M <.0001 <.0001 
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 p 

  CN (N=47) MCI (N=45) AD (N=26) Unadjusted Adjusted 

Task duration normalized by 

total stroke length [s/mm] 

(CDT) 

0.036 ± 0.010 A 0.045 ± 0.032  0.059 ± 0.039 C .0031 .0097 

Task duration normalized by 

total stroke length [s/mm] 

(Sentence) 

0.033 ± 0.013 A 0.035 ± 0.015  0.045 ± 0.017 C .0055 .0160 

Task duration normalized by 

total stroke length [s/mm] 

(TMT-A) 

0.021 ± 0.007 A 0.026 ± 0.011 A 0.037 ± 0.021 C, M <.0001 <.0001 

Task duration normalized by 

total stroke length [s/mm] 

(TMT-B) 

0.040 ± 0.014 M, A 0.063 ± 0.039 C, A 0.102 ± 0.047 C, M <.0001 <.0001 

Pressure variability (CV) 

(TMT-A) 
0.060 ± 0.027 A 0.093 ± 0.064 0.097 ± 0.063 C .0029 .0249 

Pressure variability (CV) 

(TMT-B) 
0.077 ± 0.037 M, A 0.124 ± 0.068 C 0.149 ± 0.074 C <.0001 <.0001 

Number of correct edges 

(TMT-B) 
23.4 ± 1.2 M, A 21.7 ± 3.9 C, A 14.2 ± 10.0 C, M <.0001 <.0001 

Number of incorrect edges 

(TMT-B) 
0.7 ± 1.1 M, A 2.0 ± 2.9 C 4.3 ± 5.0 C <.0001 .0001 

Number of lifts (TMT-A) 3.3 ± 4.0 A 7.7 ± 8.7 8.2 ± 7.4 C .0032 .0243 

Number of lifts (TMT-B) 6.6 ± 5.7 M, A 16.5 ± 17.4 C 19.8 ± 17.8 C .0002 .0017 

Time duration between nodes 

[s] (TMT-A) 
1.10 ± 0.22 A 1.20 ± 0.36 1.41 ± 0.50 C .0028 .0107 

Time duration between nodes 

[s] (TMT-B) 
2.36 ± 0.61 A 2.13 ± 0.87 A 2.94 ± 1.63 C, M .0073 .0053 

Task duration normalized by 

the number of answered edges 

[s] (TMT-A) 

1.52 ± 0.57 M, A 2.06 ± 0.97 C, A 2.90 ± 1.81 C, M <.0001 <.0001 

Task duration normalized by 

the number of answered edges 

[s] (TMT-B) 

3.59 ± 1.23 M, A 6.09 ± 4.23 C, A 10.28 ± 5.27 C, M <.0001 <.0001 
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Normally distributed data are displayed as mean ± standard deviations. Data for transformed variables are 

displayed as median (minimum–maximum) and refer to the non-transformed values. Bold values highlight 

statistically significant differences between CN, MCI, and AD in the unadjusted model and the adjusted model 

controlling for age and sex. Pairwise multiple comparisons (Bonferroni adjusted p values) were performed when 

comparing individual diagnostic groups. Significant differences between diagnosis categories are marked with C, 

M, or A (C: Different to CN, M: Different to MCI, A: Different to AD). 

SD, Standard deviation; CV, Coefficient of variation; RMS, Root mean square; TMT-A, Trail making test-part A; 

TMT-B, Trail making test-part B; CDT, Clock Drawing Test, Sentence and Pentagon: Writing a sentence about 

anything and the copy intersecting-pentagon item of MMSE. 


