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Abstract.
Background: Neuroimaging markers provide quantitative insight into brain structure and function in neurodegenerative
diseases, such as Alzheimer’s disease, where we lack mechanistic insights to explain pathophysiology. These mechanisms
are often mediated by genes and genetic variations and are often studied through the lens of genome-wide association studies.
Linking these two disparate layers (i.e., imaging and genetic variation) through causal relationships between biological
entities involved in the disease’s etiology would pave the way to large-scale mechanistic reasoning and interpretation.
Objective: We explore how genetic variants may lead to functional alterations of intermediate molecular traits, which can
further impact neuroimaging hallmarks over a series of biological processes across multiple scales.
Methods: We present an approach in which knowledge pertaining to single nucleotide polymorphisms and imaging readouts
is extracted from the literature, encoded in Biological Expression Language, and used in a novel workflow to assist in the
functional interpretation of SNPs in a clinical context.
Results: We demonstrate our approach in a case scenario which proposes KANSL1 as a candidate gene that accounts for
the clinically reported correlation between the incidence of the genetic variants and hippocampal atrophy. We find that
the workflow prioritizes multiple mechanisms reported in the literature through which KANSL1 may have an impact on
hippocampal atrophy such as through the dysregulation of cell proliferation, synaptic plasticity, and metabolic processes.
Conclusion: We have presented an approach that enables pinpointing relevant genetic variants as well as investigating their
functional role in biological processes spanning across several, diverse biological scales.
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INTRODUCTION

As aging populations continue to grow, age-ass-
ociated disorders such as Alzheimer’s disease (AD)
have become increasingly prevalent [1, 2]. AD is a
slow-progressing, complex, idiopathic disorder in
which early diagnosis is challenging because patients
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do not initially present symptoms [3]. Emerging neu-
roimaging techniques are a versatile, non-invasive
approach for the high-resolution, in vivo investiga-
tion of the underlying pathophysiology of AD that
may provide an opportunity for earlier detection and
therapeutic intervention.

Neuroimaging techniques quantitatively measure
markers of brain structure and function that are con-
sidered as endophenotypes, measurable intermediate
phenotypes that link molecular changes to organ-spe-
cific pathophysiological contexts [4]. One of the num-
erous neuroanatomical markers considered as an
endophenotype is medial temporal atrophy. This
well-established AD marker is an intermediate phe-
notype that implicates the aggregation of hyperph-
osphorylated tau protein (a well-known molecular
change) as a causative biological process of mem-
ory decline [5]. The diversity of markers prompted
the cataloging and organizing of their information in
order to better link clinical readouts to underlying
molecular changes. As a first attempt in addressing
this need, Iyappan et al. curated the terms used in the
literature to describe structural and functional brain
information in the Neuroimaging Feature Terminol-
ogy (NIFT) [6].

Elucidating the effect of genes and genetic varia-
tions (e.g., single nucleotide polymorphisms (SNPs))
on brain structure and function often begins with
genome-wide association studies (GWASs). How-
ever, this type of study only calculates statistical
associations between SNPs and traits and ignores
mechanistic insights. More robust approaches aimed
at addressing the mechanistic shortcomings of GWAS
are referred to as imaging genetics [7]. For exam-
ple, Wachinger et al. [8] studied genetic influences
on neuroanatomical shape asymmetries associated
with AD progression. Although their findings on the
association of genetic variants (i.e., BIN1, CD2AP,
ZCWPW1, and ABCA7 genes) to neuroanatomi-
cal structures had been reported in previous studies
[9–12], here the authors were able to provide an
explanation for the observed effect, specifically that
alterations in the expression level of the aforemen-
tioned genes can affect cellular homeostasis, thus
leading to changes in brain symmetry. A common
issue facing many imaging genetics approaches is
small sample size, which leads to a lack of statis-
tical power, limited replicability, and stratification
effects [13, 14]. Alternatively, Stefanovski et al. [15]
studied the connection between molecular changes
and neuronal population dynamics using differen-
tial equations. For example, this study provided a

possible mechanistic explanation of how local amy-
loid beta-mediated synaptic function disinhibition
leads to diminishing neural signaling. However, such
mathematical models thus far fail to handle the num-
ber of variables that are necessary to represent the
pathophysiological phenomenon involved in a multi-
factorial disorder such as AD.

The limitations and lack of mechanistic insights
provided by these previously mentioned techniques
prompted us to develop a new approach to interpret
how a particular genetic variant may have an impact
on neuroimaging feature changes through sequences
of molecular causalities in the context of AD. Our
approach captures knowledge from the literature per-
taining to SNPs and imaging readouts in a causal
model encoded in Biological Expression Language
(BEL) [16] to support the functional interpretation
of SNPs in a clinical context. In a case scenario, we
propose KANSL1 as a candidate gene mediating the
connection between the genetic variants and hip-
pocampal atrophy. We then hypothesized that variants
of this gene dysregulate biological processes related
to cell proliferation, synaptic plasticity, and energy
metabolism that ultimately leads to hippocampal
atrophy. These dysregulated biological processes are
early events in AD, and they have been posited
as attractive therapeutic targets for pharmaceutical
intervention [17, 18]. Thus, by garnering these mech-
anistic insights, it may be possible to reveal novel
therapeutic options in the future.

MATERIALS AND METHODS

In order to support the interpretation of the fun-
ctional impact of SNPs on the alteration of neu-
roimaging features, associations between SNPs and
imaging readouts were extracted using natural lan-
guage processing. Linkage disequilibrium (LD)
analysis was used to identify co-occurring SNPs and
their corresponding or associated genes. These genes
were then ranked by how often they appear in the liter-
ature in the context of AD. This workflow is described
in Fig. 1A.

Based on this analysis, one gene (KANSL1)
was selected for further investigation and a corpus
explaining its role in AD was enriched with knowl-
edge pertaining to multi-scale biological processes.
To enable computer-aided reasoning, manually-
extracted relations from this corpus were encoded in
BEL. The resulting KANSL1 knowledge assembly
was validated using PyBEL [19] and integrated into
NeuroMMSig [20]. Finally, NeuroMMSig was then
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Fig. 1. The two workflows developed for (A) gene prioritiza-
tion and for (B) generating the mechanistic knowledge assembly
around the effect of genetic variants on neuroimaging features in
AD. In workflow A, the first step involves the selection of a corpus
of relevant scientific literature. Next, the SNPs extracted from this
corpus were subjected to LD block analysis and the subsequently
obtained SNPs were mapped to their corresponding or associated
genes. KANSL1, a novel AD gene, was selected from this pool of
mapped genes for further investigation. In workflow B, corpus for
the selected gene is extracted and translated into BEL to generate
a knowledge assembly model for hypothesis generation.

used to investigate the putative role of KANSL1
in neuroimaging feature alteration, namely hippoc-
ampal atrophy. For the sake of reproducibility, we
have made the workflow publicly available through
GitHub (https://github.com/sepehrgolriz/GeVa NeIF)
under the MIT License. This workflow is described in
Fig. 1B. Additionally, to investigate the concordance
of knowledge around the KANSL1 gene, pathways
from three well-known pathway databases were
queried to determine those in which the gene is
implicated.

Generation of a SNP-neuroimaging corpus

A corpus enriched with neuroimaging features and
SNPs in the context of AD was generated using
SCAIView v0.3.3 (https://academia.scaiview.com)

on MEDLINE using the following query: “(([MeSH
Disease: “Alzheimer Disease”]) AND [Neuroimag-
ing Feature]) AND [SNP]))”. The corpus comprised
568 documents with a total of 2215 SNP-neuroima-
ging feature associations (Supplementary Table 1),
including 126 unique neuroimaging features (Sup-
plementary Table 2) and 745 unique SNPs (Supple-
mentary Table 3).

Identification of related SNPs via linkage
disequilibrium blocks

Over time, dependencies between genetic variants
are developed across populations [21]. This phe-
nomenon, described as LD, implies that correlations
between genetic variants and traits are caused by the
aggregated effect of multiple variants [22, 23]. How-
ever, SNP-trait associations identified in the literature
are obtained by analyzing thousands of SNPs individ-
ually (the “single-marker” approach). Therefore, we
performed LD block analysis using HaploReg v4.1
[24] to identify a total of 6,070 SNPs that occur with
the SNPs extracted from the literature and further
mapped them to their corresponding or associated
genes (Supplementary Table 4).

Gene selection

DisGeNET [25] was used to identify diseases asso-
ciated with the genes obtained from HaploReg v4.1.
After filtering out genes not associated with AD,
the remaining genes were categorized as either well-
known risk variants (supported by a minimum of 5
literature evidence which are enriched with obser-
vational studies, such as case-control studies) or as
emerging genetic biomarkers (those supported by few
or no published evidence) (Supplementary Table 5).
Since the involvement of well-known risk variants
has been sufficiently described in the literature, this
study investigated novel genes which may contribute
to AD development.

The study of genetics in the context of multiple
phenotypes, such as physiological traits or diseases,
can provide a holistic overview of gene functions
in a biological system. For this reason, DisGeNET
was used to investigate gene-disease associations of
genes that are not clearly linked to AD [26]. Although
the genes are associated with a broad range of dis-
eases, from autoimmune disorders to different types
of cancer, we focused on enriching the mechanistic
context surrounding genes linked to conditions, such
as Parkinson’s disease (PD), which have substantial
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Fig. 2. This figure shows the results obtained from the LD block analysis and gene mapping. The generation of the SNP-Neuroimaging
corpus yielded 745 SNPs. Following LD block analysis, 6,070 SNPs that occur with the SNPs extracted from the literature were identified
and located on 136 unique AD associated genes. These genes were then classified according to the number of evidences which are available in
the scientific literature. The first group, incorporating 78 AD associated genes, comprises well-known genes characterized by a high number
of publications in the AD context. The second group, that includes 58 AD associated genes, comprises emerging genes in the context of AD.
From the latter group, KANSL1 was selected.

genetic, pathological, and clinical overlap with AD
[27]. While it is believed that cancer and autoimmune
diseases are less prevalent in AD patients, 25 to 33
percent of AD patients show concomitant PD pathol-
ogy [28, 29]. Of the 25 PD-associated genes acquired,
we selected KANSL1 for further study of its putative
pathogenic role in AD as it had the highest number of
literature evidence and its functionality can thus be
better understood [30, 31] (Supplementary Table 6).

Corpus generation, relation extraction, and
mechanism enrichment for KANSL1

Using the same strategy and resources as the pre-
vious corpus, a new corpus describing the role of
KANSL1 in the context of AD was generated using
the following SCAIView query: “(([Human Genes/
Proteins:“KANSL1”]) AND [MeSH Disease: “Alz-
heimer Disease”]) AND [Neuroimaging Features]”.
The resulting gene-neuroimaging interaction infor-
mation was then enriched with further causal relations
from the literature using manual relation extraction in
order to bridge the knowledge gap between genetics
and clinical endpoints.

Knowledge modeling

Manually generating mechanistic hypotheses by
linking genetic variants to neuroimaging markers is
a daunting task. Therefore, in order to empower com-
puter-aided reasoning, the extracted knowledge ass-
embly was encoded in BEL. Both the syntax and
semantics of BEL encoded in the knowledge assem-
bly were validated using the PyBEL framework.

Knowledge was extracted from the selected cor-
pus using the official BEL curation guidelines from
https://biological-expression-language.github.io as
well as additional guidelines from https://github.com/
pharmacome/curation.

Evidence from the selected corpus was manually
translated into BEL statements together with their

contextual information (e.g., brain regions, brain cell
types). For instance, the evidence “BDNF infusion
led to rapid phosphorylation of the mitogen-activated
protein (MAP) in the adult hippocampus” corre-
sponds to the following BEL statement:

SET MeSHAnatomy = “Hippocampus”
p(HGNC:BDNF) - - p(HGNCGENEFAMILY:
“Mitogen-activated protein kinases”, pmod(Ph))

The resulting knowledge assembly was then int-
egrated into NeuroMMSig, a web server for mech-
anism enrichment that allows querying over genes,
SNPs, and neuroimaging features in the context of
a specific disease. Finally, NeuroMMSig was used
to identify the mechanistic model representing the
putative role of KANSL1 in hippocampal atrophy.

Comparison of the mechanistic model to pathway
knowledge

Several manually curated and highly-cited path-
way databases are available to deduce biologically
relevant pathways. We used three major ones, namely
KEGG [32], Reactome, [33] and WikiPathways [34],
in order to determine whether knowledge on the
KANSL1 gene has yet to be integrated into these
resources. Hence, we queried KANSL1 as well as all
other proteins from our mechanistic model in path-
ways from the three databases.

RESULTS

While KANSL1 has been associated with changes
in gene expression levels in the hippocampus [35],
its mechanism of action remains elusive. In order
to better understand KANSL1’s involvement in hip-
pocampal dysfunction, we queried NeuroMMSig to
investigate the downstream effects of this gene. Then,
reasoning over the knowledge assembly led us to the
interpretation described below. Finally, we report the
results of querying KANSL1 and other genes from

https://biological-expression-language.github.io
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our mechanistic model in pathways from three major
pathway databases to determine which pathways the
gene may be implicated in.

The putative role of KANSL1 in hippocampal
atrophy

The transcription and expression of the genes pro-
moting cell proliferation (e.g., BTG2) and synaptic
plasticity (e.g., BDNF) as well as metabolic proces-
ses (e.g., cell energy production) are both of para-
mount importance for hippocampal function [36]
(Fig. 3). KANSL1 is a protein-coding gene involved
in chromatin modification through histone acetyla-
tion [37, 38], one of the mechanisms orchestrating
gene transcription and expression [39–44]. While
histone acetylation transforms the condensed struc-
ture of the chromatin into a relaxed architecture
enhancing RNA transcription and gene expression,
its hypoacetylation causes it to behave adversely
[45–47].

KANSL1 and hippocampal neurogenesis

KANSL1 is required for the acetylation of
p53 [41], a transcription factor modulating BTG2

expression and a vital protein for hippocampal
neurogenesis (i.e., while KANSL1-dependent p53
acetylation induces BTG2 expression, p53 hyper-
acetylation leads to the overexpression of BTG2) [42,
48, 49]. BTG2 negatively controls the cell cycle since
its overexpression results in cell growth rate decline
[42, 50]. Through BTG2 binding to Ras (the signaling
event mediator), the Ras/MAPK signaling cascade is
activated, leading to tau hyperphosphorylation [48].
Tau is a microtubule-associated protein that pro-
motes the assembly and stabilization of cytoskeleton
microtubules, both of which are required for cell di-
vision (i.e., mitosis). However, tau hyperphosphoryl-
ation reduces its capability to bind the microtubules,
giving rise to dynamic instability, mitosis impair-
ment, cell cycle deterioration, elimination of proli-
ferating newborn neurons, and ultimately to apoptotic
processes [51]. In summary, KANSL1 dysfunction
disturbs the expression of cell cycle regulatory genes,
leading to the perturbation of cell proliferation pro-
cesses [46, 50] (Fig. 3A).

KANSL1 and hippocampal metabolic processes

The functional crosstalk between KANSL1 and the
metabolic processes occurring in the mitochondria

Fig. 3. The putative role of KANSL1 in hippocampal atrophy. A) KANSL1 role in hippocampal neurogenesis. B) KANSL1 function
in hippocampal metabolic processes. C) KANSL1 role in hippocampal synaptic plasticity. [https://nbviewer.jupyter.org/github/sep
ehrgolriz/GeVa NeIF/blob/master/Semi automatic developed pipeline/Exploring%20KANSL1%20putative%20role%20graph%20in%20
hippocampal%20atrophy.ipynb].

[https://nbviewer.jupyter.org/github/sepehrgolriz/GeVa_NeIF/blob/master/Semi_automatic_developed_pipeline/Exploring%20KANSL1%20putative%20role%20graph%20in%20hippocampal%20atrophy.ipynb]
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(e.g., oxidative phosphorylation) is key for the reg-
ulation of hippocampal synaptic plasticity [52–55].
KANSL1 is highly expressed in the mitochondria,
where it regulates mitochondrial DNA (mtDNA)
transcription and the subsequent translation of genes
involved in Oxidative phosphorylation—a set of
complex mechanistic processes that form adeno-
sine triphosphate (cell energy currency) by oxidizing
nutrients [36, 55, 56]. Oxidative phosphorylation pro-
duces potentially harmful reactive oxygen species
whose production and detoxification are balanced
in normal mitochondria [57]. However, KANSL1
deficiency promotes the downregulation of mtDNA
transcription and translation of genes involved in
Oxidative phosphorylation, causing reactive oxy-
gen species accumulation. Oxidative stress then
occurs, leading to cholesterol metabolism pertur-
bation [58]. Cholesterol homeostasis dysregulation
increases cholesterol concentration in cells, leading
to synaptic plasticity impairment and ultimately hip-
pocampal shrinkage [59–63] (Fig. 3C).

KANSL1 and hippocampal synaptic plasticity

Long-term potentiation (LTP) is one of the major
cellular processes involved in memory formation
[64]. BDNF, a member of the neurotrophin family
of growth factors, plays a role in LTP [65–67]. One
of the mechanisms governing the regulation of BDNF
expression is histone acetylation, where KANSL1
contributes significantly as a histone acetyltrans-
ferase complex. KANSL1 deficiency might severely
affect BDNF expression, which further promotes
long-term potentiation impairment and synaptic plas-
ticity. Both are considered to play an important role
in memory formation [68] (Fig. 3B).

Pathways implicating genes from mechanistic
model

The investigation on the presence, or lack thereof,
of KANSL1 in pathways from KEGG, Reactome,
and WikiPathways revealed that the KANSL1 gene is
largely absent in the major pathway databases. While
KANSL1 does participate in the “Chromatin Organi-
zation (Homo Sapiens)” and “Pathways Affected in
Adenoid Cystic Carcinoma (Homo sapiens)” path-
ways from WikiPathways, no interaction information
for this gene is provided. Moreover, KANSL1 is
altogether absent in pathways from KEGG and Reac-

tome. Similarly, we queried pathways from the three
databases for all other genes from our mechanistic
model (Supplementary Table 7). Unsurprisingly,
well-studied genes yielded a higher number of path-
ways which they participate in (e.g., BDNF was
found in 33 pathways across KEGG, Reactome,
and WikiPathways), while genes with fewer liter-
ature evidence were scarcely present (e.g., KAT8
was found in one pathway across KEGG, Reactome
and WikiPathways, however lacked interaction infor-
mation). Furthermore, these pathway resources do
not yet capture SNPs nor image features. Accord-
ingly, the mechanism by which KANSL1 may be
implicated in hippocampal atrophy can thus far only
be inferred through dedicated modeling approaches,
such as the one we have presented in this work.

Assessment of putative KANSL1-mediated
mechanism with experimental databases

The putative KANSL1-dependent hippocampal
atrophy mechanisms identified through systemati-
cally harvested knowledge is based on qualitative
information. To further support the mechanisms of
action exerted by KANSL1 in the nervous system,
we screened evidence from experimental databases
containing data sets on knockout mouse models in
the Mouse Genome Informatics database [69]. In
this database, we queried for KANSL1 and ner-
vous system and found two knockout mice studies
which investigated how KANSL1/MAPT dysregu-
lation may cause hippocampal shrinkage [70, 71].
These studies associated tau hyperphosphorylation
coupled with impaired microtubule binding of tau
with reduction in synaptic transmission and altered
synaptic plasticity. Furthermore, the authors argue
that these mechanisms may lead to neuronal apop-
tosis and hippocampal shrinkage (Fig. 3A).

Additionally, with respect to SNPs that occur in
the non-coding regions of the gene, we used Reg-
ulomeDB [72] to functionally annotate the 60 SNPs
associated with KANSL1. RegulomeDB scores SNPs
based on transcription factor binding sites, position
weight matrix for transcription factor binding, DNase
footprinting, open chromatin and chromatin states,
expression quantitative trait loci (eQTL), and val-
idated functional SNPs. Moreover, it calculates a
score that represents the probability of being a regu-
latory variant based on functional genomics features
along with continuous values such as ChIP-seq sig-
nal, DNase-seq signal, information content change,



S. Golriz Khatami et al. / Hypothesizing the Effect of Genetic Variants on Neuroimaging Features in AD 837

and DeepSEA scores for each SNPs [73]. From the
60 SNPs, our analysis suggested that 11 of them are
located in the functional region of KANSL1 (Supple-
mentary Table 8).

DISCUSSION

While the exact mechanism of action of KANSL1
remains obscure, the proposed methodology was able
to identify the mechanisms through which it may
have an impact on hippocampal atrophy. This demon-
strates how the mechanism enrichment approach
offers improved interpretation of molecular mecha-
nisms involved in disease pathobiology. Ultimately,
the hypotheses derived from such approaches can fos-
ter research by identifying unexplored links that have
not been validated in the laboratory.

We observed that the information pertaining to
different biological scales is not equally distributed
in the literature. For example, there is a paucity of
results reported at the phenotypic level, compared to
those at the molecular or organ level. Shortcomings in
knowledge representation at different scales are also
reflected in pathway databases which currently do not
contain information on SNPs or neuroimaging fea-
tures. Consequently, linking molecular mechanisms
to clinical readouts is one of the great challenges in
biomedical informatics.

The results presented in this work are hypotheses
that require further investigation. We have shown that
despite the scarcity of knowledge from the literature
around KANSL1, our approach was able to reveal
interesting hypotheses. This sparsity of information
surrounding KANSL1 combined with its manifesta-
tion as a novel AD associated gene motivates future
updates of the knowledge assembly as new informa-
tion becomes available. Furthermore, in our attempt
to validate our hypothesis, we did not find any of the
genetic variations of KANSL1 in major AD cohorts,
such as Alzheimer’s Disease Neuroimaging Initia-
tive and AddNeuroMed [74, 75]. Thus, future work
can include measurements of these genetic varia-
tions as well as their expression in these and other
independent cohorts. Using these quantitative mea-
surements, if available, several tools can be employed
to elucidate pathway signatures in disease as well
drug-perturbed states, which can then be used to
prioritize drug candidates relevant to the particular
disease under investigation when these signatures are
anti-correlated [76]. Similarly, gene expression mea-
surements paired with a network containing prior

knowledge on drug-disease data can also be used
for drug candidate identification [77]. Finally, look-
ing ahead, the presented strategy can be applied to
other AD genes or across disease domains such as
psychiatric diseases.
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D, Nöthen MM, Hofman A, Jones L; IGAP Consortium,
Haines JL, Psaty BM, Van Broeckhoven C, Holmans P,
Launer LJ, Mayeux R, Lathrop M, Goate AM, Escott-Price
V, Seshadri S, Pericak-Vance MA, Amouyel P, Williams J,
van Duijn CM, Schellenberg GD, Farrer LA (2016) A novel
Alzheimer’s disease locus located near the gene encoding
tau protein. Mol Psychiatry 21, 108-117.

[36] Todorova V, Blokland A (2017) Mitochondria and synaptic
plasticity in the mature and aging nervous system. Curr
Neuropharmacol 15, 166-173.

[37] Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L,
Washburn MP, Conaway JW, Conaway RC (2010) Subunit
composition and substrate specificity of a MOF-containing
histone acetyltransferase distinct from the male-specific
lethal (MSL) complex. J Biol Chem 285, 4268-4272.

[38] Huang J, Wan B, Wu L, Yang Y, Dou Y, Lei M (2012)
Structural insight into the regulation of MOF in the male-
specific lethal complex and the non-specific lethal complex.
Cell Res 22, 1078-1081.

[39] Gregory PD, Wagner K, Hörz W (2001) Histone acetylation
and chromatin remodeling. Exp Cell Res 265, 195-202.

[40] Peixoto L, Abel T (2013) The role of histone acetylation in
memory formation and cognitive impairments. Neuropsy-
chopharmacology 38, 62-76.

[41] Bahari-Javan S, Sananbenesi F, Fischer A (2014) Histone-
acetylation: A link between Alzheimer’s disease and post-
traumatic stress disorder? Front Neurosci 8, 160.

[42] Farioli-Vecchioli S, Saraulli D, Costanzi M, Leonardi L,
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[55] Hroudová J, Fišar Z (2013) Control mechanisms in mito-
chondrial oxidative phosphorylation. Neural Regen Res 8,
363-375.

[56] Chatterjee A, Seyfferth J, Lucci J, Gilsbach R, Preissl S,
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