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Abstract. Knowing that Alzheimer’s disease (AD) nucleates in the entorhinal cortex (EC), samples of 12 EC specimens
were probed for crystals by a protocol detecting fewer than 1/5000th of those present. Of the 61 crystals found, 31 were
expected and 30 were novel. Twenty-one crystals of iron oxides and 10 atherosclerosis-associated calcium pyrophosphate
dihydrate crystals were expected and found. The 30 unexpected crystals were NLRP3-inflammasome activating calcium
oxalate dihydrate (12) and titanium dioxide (18). Their unusual distribution raises the possibility that some were of AD
origination sites.
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Alzheimer’s disease (AD) nucleates in a small
volume-element of the entorhinal cortex (EC) [1, 2],
spreads in the EC, expands to the hippocampus then
to other parts of the cortex. AD’s hallmark aggregated
amyloid-� (A�) peptide and hyperphosphorylated
tau protein are established propagators of AD, but
it is not known if they are its cause. Their presence
at the EC initiation-point has not been established.
The initiation-point could be microbial [3], choles-
terol comprising [4, 5], or as will be discussed below,
it could comprise pathogenic crystals.

Macrophage [6] and microglial NLRP3 [7–10]
and NLRP1 [11, 12] inflammasomes assemble upon
phagocytosis of species having certain molecular
patterns. The patterns include those of aggregated
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A�42 [7, 8], of aggregated hyperphosphorylated tau
[10, 13, 14], of pathogens or their fragments [13, 15],
and of biogenic and exogenous crystals. The family of
inflammasome-activating biogenic crystals includes
sodium urate [16–18], cholesterol [19, 20], calcium
oxalate dihydrate (COD) [17, 18], calcium pyrophos-
phate dihydrate (CPPD) [16, 17], and cystine [17].
The family of exogenous crystals includes quartz
[21–23], asbestos [21], titanium dioxide (TiO2) [18,
23], and sintered indium tin oxide [24].

Activation of the NLRP3 inflammasome initiates
release of IL-1� and other inflammatory cytokines
and induces, through a multistep process, pyroptosis,
the death of proximal cells. Upon death of proximal
neurons more aggregating A� and hyperphosphory-
lated tau are released and more neurons and synapses
perish [10].

The commonality of microbial patterns [13, 15],
cholesterol [19, 20], A� aggregates [7, 25], and
hyperphosphorylated tau aggregates [10] is that all
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activate the NLRP3 inflammasome. In light of this
commonality, we ask here if there are NLRP3
inflammasome-activating crystals in postmortem EC
specimens of AD donors [17, 18] that could also be
among the point-initiators of AD.

Duplicate 200 mg samples of 12 formalin-fixed
entorhinal cortex specimens, provided by the NIH
Harvard Neurobiobank, were probed. Six of the
specimens were of Braak and Braak stages I or II
[1] and 6 were of stage V [1]. The samples were
homogenized with 1 mL of an aqueous solution con-
taining 40 mg of Proteinase K from Tritirachium
album (Sigma P2308). Instead of using the usual
crystalline zirconia beads that would have introduced
zirconia crystals, the samples were homogenized
using 3 mm-diameter non-crystalline Pyrex glass
beads. After overnight proteolysis at ambient tem-
perature, the fluid was centrifuged at 13,000 G for
1 h, the supernatant was discarded, and the centrifu-
gate was re-suspended in 0.5 mL de-ionized water
and re-centrifuged for 1 h. To strip the water-soluble
salts that would have crystallized upon evaporation
of the water, the centrifugate was re-suspended in
0.5 mL water, centrifuged at 13,000 G for 10 min, and
the supernatant liquid was discarded. The washing-
centrifugation cycle was repeated four times, then
the final centrifugate was suspended in 0.5 mL water.
Five �L of the suspension was withdrawn from the
bottom of the vial and applied to a 3 mm diameter,
314 squares, 200 mesh carbon type-B transmission
electron microscopy grid support (Ted Pella, Redding
CA). The crystals were observed on duplicate grids
from duplicate EC samples, i.e., in 2 × 5 = 10 �L,
applied to each grid-pair. The grid-pairs were TEM
scanned for presence of crystals, then 5 squares of the
grid-pair were probed. Because 10 �L of the 0.5 mL
processed volume was applied to the 2 × 314 = 628
squares, and because only 5 squares were probed,
fewer than 0.015% of the present crystals were
detected; furthermore, because the 2 × 200 mg sam-
ples comprised less than 1/5th of the entorhinal
cortices, each detected crystal signaled the presence
of more than 25,000.

Each detected crystal was TEM-imaged; after
confirmation of its crystallinity by its electron diffrac-
tion pattern, the crystal’s approximate (±5 atom %)
elemental composition was determined by energy-
dispersive X-ray spectroscopy. Oxygen-assays of
those crystals that rapidly lost their water of hydra-
tion in the vacuum of the TEM chamber were less
accurate; and with the TEM grids being of carbon,
and with tissue-residue adhering to the crystals, their

Table 1
Anticipated and found crystals in the AD entorhinal cortex

EC AD Ferrihydrite/ Magnetite CPPD
Specimen Stage Goethite

8191 I 0 2 0
9232 I 1 0 0
9078 I 1 0 3
6675 I 4 1 3
1202 II 0 1 0
17142 II 0 0 3
2818 V 1 0 0
0275 V 1 0 0
13857 V 2 1 1
9540 V 1 0 0
8818 V 0 0 0
3273 V 5 0 0
Total 16 5 10

Table 2
Novel inflammasome-activating crystals in the AD entorhinal

cortex

Donor Age AD Stage COD TiO2

8191 65 I 0 0
9232 58 I 1 0
9078 60 I 1 0
6675 66 I 1 3
1202 74 II 1 0
17142 83 II 0 1
2818 73 V 0 0
275 74 V 2 1
13857 62 V 0 3
9540 86 V 0 3

8818 85 V 6 0

3273 85 V 0 7
Total 12 18

carbon was not assayed. If cholesterol crystals were
present, these would not have been observed because
their 1.05 g cm–3 density prevents their separation by
centrifugation.

Tables 1 and 2 list the 61 detected crystals: Table 1
listing those that we expected and Table 2 listing
those that surprised us. We expected the iron oxide
crystals, including the 16 ferrihydrite crystals dehy-
drating in the TEM’s vacuum chamber to crystalline
goethite (Supplementary Figure 1, top left), and the
5 magnetite crystals, from earlier studies of crystals
in the AD cortex [26–28]. The crystalline oxides of
iron have not been reported to activate the NLRP3
inflammasome. The 10 CPPD crystals, dehydrating
in the TEM’s vacuum chamber to calcium pyrophos-
phate, did not surprise us, because the NIH Harvard
Neurobiobank histopathology reports of their donor
brains included atherosclerotic plaques [29]. We note,
nevertheless, that CPPD is inflammasome-activating
[16].
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The 30 unanticipated crystals are listed in Table 2.
Twelve were COD crystals of 0.8 × 0.5 �m aver-
age imaged area (Supplementary Figure 1, top right)
and 18 were TiO2 crystals of 0.3 × 0.2 �m averaged
imaged area (Supplementary Figure 1, bottom). The
30 crystals were unevenly distributed between the
early and the advanced stage AD specimens, with 22
in the 6 specimens of stage V, and 8 in the 6 specimens
of stages I or II. Specimen 8818 of stage V contained
half of all the 12 COD crystals and specimen 3273,
also of stage V, contained 7 of the 18 TiO2 crystals.

The COD crystals lost their water of hydration,
fracturing, but remaining crystalline in the vacuum
of the TEM chamber, then decomposing under the
electron beam to crytalline calcium carbonate and
finally to crystalline calcium oxide, CaC2O4.2H2O
−→ CaC2O4 + 2H2O↑ −→ CaCO3 + CO↑ −→
CaO+CO2 ↑. Correspondingly, the Ca/O atom ratio
increased from 1 : 6 to 1 : 4, then from 1 : 4 to 1 : 3,
then from 1 : 3 to 1 : 1.

Phagocytized COD crystals are residents of
chronic sterile inflammations of the kidneys and
of the cyst [30]. They are found also in the brain
after xylitol administration [31], after ethylene gly-
col (antifreeze) poisoning [32], and in hyperoxaluria
[33]. We also found these in the substantia nigra of
Parkinson’s disease donors [34].

COD precipitates when the [Ca2+][oxalate]
product-defined solubility-limit is exceeded, i.e.,
when the Ca2+ concentration is high, when the
oxalate concentration is high, or when both are higher
than normal. Because exaggerated endothelial retic-
ulum Ca2+ release, leading to elevation of neuronal
cytosolic Ca2+ concentration, precedes in the mouse
model aggregation of A�42 [35], the precipitation of
inflammasome-activating COD crystals is not likely
to be a result of AD, and can be one of its causes. In
the absence of xylitol or ethylene glycol poisoning
the oxalate precursors in the CNS is ascorbate [36].
The neuronal concentration of ascorbate is as high
as 10 mM [37], twice that of glucose; and the con-
centration of ascorbate in stimulated macrophages
is massive [38], making it likely that it is similarly
massive in stimulated microglia. Excessive ascorbate
concentration is a recognized cause of sterile inflam-
matory COD disease [39].

The TiO2 particles of the observed size constitute
the white pigment of walls. Smaller TiO2 particles,
constituting the white pigment of medications, foods,
and cosmetics, were found in the pancreas of obese
type 2 diabetic donors [40], their number density
scaling with obesity [41].

In conclusion, our study suggests that entorhinal
cortex COD and TiO2 crystals should be added to the
existing list of potential AD initiators, all known to
activate the NLRP3 inflammasome.
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