Journal of Alzheimer’s Disease 74 (2020) 545-561 545
DOI 10.3233/JAD-191163
10S Press

Working Towards a Blood-Derived Gene
Expression Biomarker Specific
for Alzheimer’s Disease

Hamel Patel®*, Raquel Iniesta?, Daniel Stahl?, Richard J.B. Dobson®-¢-d-e.1 gnd

Stephen J. Newhouse®?-¢:d-¢:1

aDepartment of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience,
King’s College London, London, UK

SNIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London
and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN),
King’s College London, London, UK

¢Health Data Research UK London, University College London, London, UK

dInstitute of Health Informatics, University College London, London, UK

®The National Institute for Health Research University College London Hospitals Biomedical Research Centre,
University College London, London, UK

Accepted 13 January 2020

Abstract.

Background: The typical approach to identify blood-derived gene expression signatures as a biomarker for Alzheimer’s
disease (AD) have relied on training classification models using AD and healthy controls only. This may inadvertently result
in the identification of markers for general illness rather than being disease-specific.

Objective: Investigate whether incorporating additional related disorders in the classification model development process
can lead to the discovery of an AD-specific gene expression signature.

Methods: Two types of XGBoost classification models were developed. The first used 160 AD and 127 healthy controls
and the second used the same 160 AD with 6,318 upsampled mixed controls consisting of Parkinson’s disease, multiple
sclerosis, amyotrophic lateral sclerosis, bipolar disorder, schizophrenia, coronary artery disease, rheumatoid arthritis, chronic
obstructive pulmonary disease, and cognitively healthy subjects. Both classification models were evaluated in an independent
cohort consisting of 127 AD and 687 mixed controls.

Results: The AD versus healthy control models resulted in an average 48.7% sensitivity (95% CI =34.7-64.6), 41.9% speci-
ficity (95% CI=26.8-54.3), 13.6% PPV (95% CI=9.9-18.5), and 81.1% NPV (95% CI =73.3-87.7). In contrast, the mixed
control models resulted in an average of 40.8% sensitivity (95% CI=27.5-52.0), 95.3% specificity (95% CI=93.3-97.1),
61.4% PPV (95% CI=53.8-69.6), and 89.7% NPV (95% CI=87.8-91.4).

Conclusions: This early work demonstrates the value of incorporating additional related disorders into the classification
model developmental process, which can result in models with improved ability to distinguish AD from a heterogeneous
aging population. However, further improvement to the sensitivity of the test is still required.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neu-
rodegenerative disorder affecting an estimated one in
nine people over the age of 65 years of age, making it
the most common form of dementia worldwide [1].
Current clinical diagnosis of the disease is primarily
based on a time-consuming combination of physical,
mental, and neuropsychological examinations. With
the rapid increase in the prevalence of the disease,
there is a growing need for a more accessible, cost-
effective, and time-effective approach for diagnosing
and monitoring AD.

For research purposes, brain positron emission
tomography (PET) scans and cerebrospinal fluid can
be used to suggest AD. In particular, decreased
amyloid-B (AB) and increased tau levels in cere-
brospinal fluid have been successfully used to
distinguishing between AD, mild cognitive impair-
ment, and cognitive healthy individuals with high
accuracy. However, as a relatively invasive and costly
procedure, it may not appeal to the majority of
patients or be practical on a large-scale trial basis for
screening the population [2-4]. A peripheral blood-
derived biomarker for AD would be advantageous.

Blood is a complex mixture of fluid and multiple
cellular compartments that are consistently chang-
ing in protein, lipid, RNA, and other biochemical
entity concentrations [5], which may be useful for
AD diagnosis. Recently, a study successfully used
APPgo—711/AB1—42 and AB1—40/AB1—42 ratios and
their composites, to predict individual brain A
load when compared to AB-PET imaging [6]. How-
ever, the test predicts AP deposition, which is also
found in other brain disorders such as frontotem-
poral dementia, and therefore, the test requires AD
specificity evaluation. Another study reviewed 163
candidate blood-derived proteins from 21 separate
studies as a potential biomarker for AD [7]. The
overlap of biomarkers between studies was lim-
ited, with only four biomarkers, «-1-antitrypsin,
a-2-macroglobulin, apolipoprotein E, and comple-
ment C3, found to replicate in five independent
cohorts. However, a follow-on study discovered these
biomarkers were not specific to AD, and were also
discovered to be associated with other brain disorders
including Parkinson’s disease (PD) and schizophre-
nia (SCZ) [8], once again, suggesting the need to
consider other neurological and related disorders in
study designs to enable the discovery of biomarkers
specific to AD.

Several studies have also attempted to exploit
blood transcriptomic measurements for AD
biomarker discovery. Initial research was limited
to the analysis of single differentially expressed
genes (DEG) as a means to distinguish AD from
cognitively healthy individuals [2, 9]. However, the
limited overlap and reproducibility of DEG from
independent cohorts suggests this method alone is
not reliable enough [2]. A solution to this problem
would be to use machine learning algorithms to
identify combinations of gene expression changes
that may represent a biomarker for AD. This tech-
nique has been applied in multiple studies, which
have demonstrated to some extent, the ability to
differentiate AD from non-AD subjects [3, 10-13].
However, small sample size and lack of independent
validation datasets may have led to overfitting. The
decrease in costs associated with microarray tech-
nologies led a study developing an AD classification
model based on a larger training set of 110 AD
and 107 controls and validating in an independent
cohort of 118 AD and 118 controls. The model
achieved 56% sensitivity, 74.6% specificity, and an
accuracy of 66%, which equated to 69.1% positive
predictive power (PPV) and 63% negative predictive
power (NPV) [11]. This was one of the first studies
to demonstrate some validation in an independent
cohort; however, the classification model still lacked
the 90% predictive power desired from a clinical
diagnostic test [14].

Previous studies have demonstrated the potential
use of blood transcriptomic levels to differentiate
between AD and cognitively healthy individuals;
however, they are yet to be precise enough for clin-
ical utility and are yet to be extensively evaluated
on specificity by assessing model performance in
a heterogeneous aging population of multiple dis-
eases. This validation process is critical to determine
whether the classification model is indeed disease-
specific, a general indication of ill health, or an
overfit.

This study developed a microarray gene expression
processing pipeline with reproducibility and clinical
utility in mind. New subjects could be independently
processed and predicted through the same classifica-
tion models without using any prior knowledge on
gene expression variation of the data used to develop
the classification model and without making any
alteration to the classification models itself. XGBoost
classification models were developed using the typ-
ical approach of training in blood transcriptomic
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profiling from AD and cognitively healthy controls.
The models were evaluated in an independent test-
ing set mimicking a heterogeneous aging population
consisting of AD, related mental disorders (PD, mul-
tiple sclerosis [MS], bipolar disorder [BD], SCZ),
common elderly health disorders and other related
diseases (coronary artery disease [CD], rheumatoid
arthritis [RA], chronic obstructive pulmonary disease
[COPDY]), and cognitively healthy subjects to assess
the models ability to distinguish AD from related dis-
eases and otherwise healthy subjects. In addition, a
second approach was used where XGBoost classifica-
tion models were developed using AD, mental health
disorders, common elderly health disorders, and cog-
nitively healthy subjects. The second approach used
independent non-AD samples, and was evaluated on
the same independent testing set as the first approach
to investigate the effects on model performance when
incorporating additional related disorders into the AD
classification development process.

METHODS
Data acquisition

Microarray gene expression studies were
sourced from publicly available repositories Gene
Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/geo/) and ArrayExpress (https://www.
ebi.ac.uk/arrayexpress/) in May 2018. Study inclu-
sion criteria were: 1) microarray gene expression
profiling must be performed on a related, common
elderly health, or mental health disorder; 2) RNA
was extracted from whole blood or a component
of blood; 3) study must contain at least ten human
subjects; and 4) data was generated on either the
[lumina or Affymetrix microarray platform using
an expression BeadArray containing at least 20,000
probes. The microarray platform was restricted to
Affymetrix and [llumina only, as replication between
the two platforms is generally very high [15-18],
and expression BeadArrays restricted to a minimum
of 20,000 probes to maximize the overlap of genes
across studies, while also optimizing the number
studies available for inclusion.

Data processing

The data processing pipeline was designed with
reproducibility and clinical utility in mind. New
subjects could be independently processed and pre-

dicted through the same classification models without
using any prior knowledge on gene expression vari-
ation of the data used to develop the classification
model and without making any alteration to the
classification models itself. All data processing was
undertaken in RStudio (version 1.1.447) using R
(version 3.4.4). Microarray gene expression studies
were acquired from public repositories using the R
packages “GEOquery” (version 2.46.15) and “Array-
Express” (version 1.38.0). For longitudinal studies
involving treatment effects, placebo subjects or ini-
tial gene expression profiling from baseline subjects
before treatment were used. Studies consisting of
multiple disorders were separated by disease into
datasets consisting of diseased subjects and corre-
sponding healthy controls if available.

Raw gene expression data generated on the
Affymetrix platform were “mas5” background cor-
rected using the R package “affy” (version 1.42.3),
log2 transformed and then Robust Spline Normal-
ized (RSN) using the R package “lumi” (version
2.16.0). Datasets generated on the Illumina platform
were available in either a “raw format” containing
summary probes and control intensities with corre-
sponding p-values or a “processed format” where
data had already been processed and consisted of
a subset of probes and samples deemed suitable by
corresponding study authors. When acquiring stud-
ies, preference was given to “raw format” data where
possible, and when available, was “normexp” back-
ground corrected, log2 transformed, and quantile
normalized using the “limma” R package (version
3.20.9).

Sex was then predicted using the R package “mas-
siR” (version 1.0.1) and subjects with discrepancies
between predicted and recorded sex removed from
further analysis. Then, within each gender and dis-
ease diagnosis group of a dataset, probes above
the “X” percentile of the log2 expression scale in
over 80% of the samples were deemed ‘“reliably
detected”. To account for the variation of redundant
probes across different BeadArrays, the “X” per-
centile threshold value was manually adjusted until
a variety of robust literature defined house-keeping
genes were correctly defined as expressed or unex-
pressed in their corresponding gender groups [19].
Any probe labelled as “reliably detected” in any
group (based on gender and diagnosis) was taken for-
ward for further analysis from all samples within that
dataset. This process substantially eliminates noise
[20] and ensures disease and gender-specific signa-
tures are captured within each dataset.
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Next, to ensure homogeneity within biolog-
ical groups, outlying samples were iteratively
identified and removed using the fundamental
network concepts described in [21]. Finally, to
enable cross-platform probes to be comparable,
platform-specific probe identifiers were anno-
tated to their corresponding universal Entrez gene
identifiers using the appropriate BeadArray R
annotation files; “hgul33plus2.db”, “hgul33a.db”,
“hugene10sttranscriptcluster.db”, “illuminaHu-
manv4.db”, and “illuminaHumanv3.db”.

Cross-platform normalization and sample
correlation analysis

A rescaling technique, the YuGene transform,
was applied to each dataset independently to enable
transcriptomic information between datasets to be
directly comparable. YuGene assigns modified cumu-
lative proportion value to each measurement, without
losing essential underlying information on data distri-
butions, allowing the transformation of independent
studies and individual samples [22]. This enables
new data to be added without global renormaliza-
tion and allows the training and testing set to be
independently rescaled. Common “reliably detected”
probes across all processed datasets that contained
both female and male subjects were extracted from
each dataset and independently rescaled using the R
package YuGene (version 1.1.5). YuGene transfor-
mation assigns a value between 0 and 1 to each gene,
where 1 is highly expressed. As samples originated
from publicly available datasets, potential duplicate
samples may existin this study. Therefore, correlation
analysis was performed on all samples using the com-
mon probes to investigate duplicate samples across
different studies.

Training set and testing set assignment

Multiple datasets from the same disease were avail-
able, allowing entire datasets to be assigned to either
the “Training Set” for classification model develop-
ment or the “Testing Set” for independent external
validation. Larger datasets from the same disease
were prioritized to the training set, allowing the
machine learning algorithm to learn in a larger dis-
covery set.

Individual subjects within the training and testing
set were assigned a “0” class if the subject was AD or
“1” if the subject was non-AD (includes healthy con-

trols and non-AD diseased subjects). Grouping the
non-AD subjects into a single class effectively mim-
ics a large heterogeneous aging population where
subjects may have a related mental disorder, neurode-
generative disease, common elderly health disorder,
or are considered relatively healthy.

Classification model development

Two types of classification models were created.
The first was developed using the typical approach,
training in AD subjects and their associated cogni-
tively healthy control samples only. This model is
referred to as the “AD vs Healthy Control” classifi-
cation model. The second classification model was
developed using the same AD and healthy control
samples used for the “AD vs Healthy Control” clas-
sification; however, additional related disorders and
their associated healthy controls were introduced as
additional controls. This model is referred to as the
“AD vs Mixed Control” classification model.

The control group of the “AD vs Mixed Control”
classification model consisted of multiple diseases
and their complementary healthy controls; however,
the number of samples across the individual dis-
eases in this mixed control group were unbalanced.
As all non-AD samples would be assigned a “1”,
the disorder with the largest number of samples
would influence the classification model develop-
ment process more. Therefore, to address this issue,
all the complementary healthy subjects from all dis-
eased dataset were assumed to be disease-free and
were pooled to create a “pooled controls” set. Then,
samples within each disorder were upsampled with
replacement to match the total number of samples in
the “pooled controls” group (excludes AD). This pro-
cess balances the number of samples across disorders
in the mixed control group, which essentially bal-
ances the probability of a sample being selected from
any one of the non-AD diseases or “pooled controls”
during the classification model development process.
This process is further illustrated in Fig. 1.

Classification models were built using the tree
boosting algorithm, XGBoost, as implemented
in the R package “xgboost” (version 0.6.4.1)
[23]. The tree learning algorithm uses parallel
and distributed computing, is approximately 10
times faster than existing methods, and allows
several hyperparameters to be tuned to reduce
the possibility of overfitting [24]. Default tuning
parameters were set to eta=0.3, max_depth=6,
gamma=0, min_child_weight=1, subsample=1,
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Fig. 1. Overview of study design. Two types of XGBoost classification models were developed, optimized, and evaluated. The first (“AD
vs Healthy Control”) used the typical approach, training in Alzheimer’s disease (AD) and cognitively healthy controls (HC), while the
second (“AD vs Mixed Control”) was trained in AD and a mixed controls group. The mixed control group consisted of Parkinson’s disease
(PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), bipolar disorder (BD), schizophrenia (SCZ), coronary artery disease
(CD), rheumatoid arthritis (RA), chronic obstructive pulmonary disease (not represented in the figure), and cognitively healthy subjects.
The individual groups within the mixed controls were upsampled with replacement to avoid sampling biases during model development.
To account for the randomness, a thousand “AD vs Healthy Control” and a thousand “AD vs Mixed Control” classification models were
developed and evaluated. cv, cross-validation; RFE, recursive feature elimination.
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colsample_bytree=1, objective = “binary:logistic”,
nrounds = 10000, early_stopping_rounds parame-
ters=20 and eval_metric ="logloss”. Due to the
unbalanced classes between AD and non-AD sam-
ples, the scale_pos_weight function was incorporated
to assign weights to the smallest class, ensuring the
machine learning algorithm did not bias towards the
largest class during the classification model devel-
opment. The initial model was built and internally
evaluated using 10-fold cross-validation with strati-
fication which calculates a test logloss mean at each
nrounds iteration, stopping if an improvement to the
test logloss means is not achieved in the last 20 itera-
tions. The nrounds iteration that achieved the optimal
test logloss mean was used to build the initial classi-
fication model, reducing the chance for an “overfit”
model.

During the internal cross-validation process, each
feature (gene) was assigned an importance value
(“variable importance feature”), which is based on
how well the gene contributed to the correct predic-
tion of individuals in the training set. The higher the
variable importance value for a gene, the more use-
ful that gene was in distinguishing AD subjects from
non-AD individuals. The genes contributing to the
initial XGBoost model were each assigned a variable
importance value. The least two variable important
features were then iteratively removed, classification
models re-built, and logloss performance measures
re-evaluated. This process was repeated through all
available baseline features, with the minimum logloss
from all iterations used to determine the most predic-
tive genes. This process is referred to as “recursive
feature elimination” and has been shown to improve
classification model performance and reduce model
complexity by removing weak and non-predictive
features [25].

Following the identification of the most predictive
genes, the classification model was further refined by
iteratively tuning through the following hyperparam-
eter values: max_depth (2: 20, 1), min_child_weight
(1:10, 1), gamma (0: 10, 1), subsample (0.5: 1, 0.1),
colsample_bytree (0.5:1, 0.1), alpha (0:1, 0.1),),
lambda (0:1, 0.1), and eta (0.01:0.2, 0.01), while
performing a 10-fold cross-validation with strati-
fication and evaluating the test logloss mean to
select the optimum hyperparameters. Finally, for
reproducibility purposes, the same seed number was
consistently used throughout the upsampling and
model development process. However, to account
for the randomness introduced during the bootstrap
upsampling and model development processes, and

to provide an insight into the stability of the results,
a thousand “AD vs Healthy Control” and a thousand
“AD vs Mixed Control” classification models were
developed, refined, and evaluated. Upsampling and
model development was performed using a differ-
ent seed number ranging from 1: 1000. This would
ensure the subjects that were upsampled were ran-
domized across the 1,000 different “AD vs Mixed
Control” classification models, and as each classifi-
cation model was initially developed using a different
randomized number, this would result in 1,000 dif-
ferent classification models that attempt to solve the
same problem.

Classification model evaluation

Each classification model was validated on the
independent unseen testing set, predicting the diag-
nosis of all subjects as a probability ranging
from O to 1, where AD <0.5>non-AD. The pre-
diction accuracy, sensitivity, specificity, PPV, and
NPV were calculated to evaluate the overall clas-
sification model’s performance. To aid in the
interpretation of the sensitivity and specificity of
the classifiers, AUC scores were generated using
the R package “ROCR” (version 1.07) with the
following recommended diagnostic interpretations
used: “excellent” (AUC=0.9-1.0), “very good”
(AUC=0.8-0.9), “good” (AUC=0.7-0.8), “suffi-
cient (AUC=0.6-0.7), “bad” (AUC =0.5-0.6), and
“test not useful” when AUC value is<0.5 [26].

Furthermore, the clinical utility metrics were
calculated to evaluate the clinical utility of the clas-
sification models. The positive Clinical Utility Index
(CUI+) was calculated as PPV * (sensitivity/100) and
the negative Clinical Utility Index (CUI -) calcu-
lated as NPV * (sensitivity/100). The Clinical Utility
Index (CUI) essentially corrects the PPV and NPV
values for occurrence of that test in each respec-
tive population and scores can be converted into
qualitative grades as recommended: “excellent util-
ity” (CUI > 0.81), “good utility” (CUI> 0.64) and
“satisfactory utility” (CUI > 0.49) and “poor utility”
(CUI<0.49) [27]. As a thousand “AD vs Healthy
Control” and a thousand “AD vs Mixed Control”
classification models were evaluated, the average per-
formance for each metric is calculated along with
the 95% confidence interval (CI). An overview of
the classification model development and evaluation
process is provided in Fig. 1.
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The biological importance of predictive features

The “AD vs Mixed Control” classification models
contain a list of ranked genes derived from analyzing
multiple disorders, which collectively attempt to dif-
ferentiate AD from non-AD subjects. The predictive
genes were analyzed using an Over-Representation
Analysis (ORA) implemented through the Consen-
susPathDB (http://cpdb.molgen.mpg.de) web-based
platform (version 33) [28] in November 2018 to
assess their collective biological significance. For
pathway enrichment analysis, a background gene list
was included, and a minimum overlap of the query
signature and database was set as 2.

Data availability

The data used in this study were all publicly avail-
able with accession details provided in Table 1. All
analysis scripts used in this study are available at
https://doi.org/10.5281/zenodo.3371459.

RESULTS
Summary of data processing

Twenty-one publicly available studies were iden-
tified, acquired, and processed. Separating studies by
disease status resulted in 22 datasets, which consisted
of 3 AD, 3 MS, 3 SCZ, 3 CD, 3 RA, 2 COPD, 2 BD,
2 PD, and 1 ALS orientated dataset. Fifteen datasets
contained both diseased and complementary healthy
subjects, and the remaining 7 contained only diseased
subjects. An overview of the demographics of each
dataset is provided in Table 1.

Independently processing the 22 datasets resulted
in a total of 2,740 samples after quality control (QC),
of which 287 samples were AD. Since 11 different
BeadArrays had been used to expression profile the 9
different diseases, and as 7 datasets were only avail-
ableina “processed format” (GSE63060, GSE63061,
E-GEOD-41890, GSE23848, E-GEOD74143, E-
GEOD-54629, and E-GEOD-42296), each dataset
varied in the number of “reliably detected” genes after
QC (detailed in Table 1). Initially, any probe deemed
“reliably detected” in any one of the 22 datasets was
compiled, resulting in 7,452 genes. In theory, this
would ensure all measurable sex and disease-specific
genes were potentially captured within the data.
However, following the independent transformation
of each dataset, platform and BeadArray-specific
batch effects were observed. This can be primar-

ily explained by different platforms having different
probe designs to target different transcripts of the
same gene, leading to significant discrepancies and
even absence in the measurement of the same gene
by different platforms [15]. Therefore, to address
this platform and BeadArray-specific batch effect,
1,681 common “reliably detected” genes across all
datasets that contained both male and female sub-
jects (20 datasets) were extracted from each dataset
and independently YuGene transformed. Essentially,
these 1,681 genes are expressed at a level deemed
“reliably detected” in all 11 different Bead Arrays and
across both male and female subjects. The expres-
sion distribution of the,1681 genes in each subject
is shown in Figure 2. The variation across the 1,681
“reliably detected” genes prior to YuGene transform
is significantly different across samples and datasets
(Fig. 2a,b), making the data from different datasets
and microarray platforms incomparable. However,
this was addressed by independently normalizing
each sample using only the 1,681 “reliably detected”
common genes, which resulted in a more evenly dis-
tributed gene expression profile across all samples
(Fig. 2c,d), a characteristic desired by machine learn-
ing algorithms.

Correlation analysis was then performed on all
samples, which suggested all samples were highly
correlated, with the maximum per sample correlation
coefficients ranging from 0.86-0.99. No sample was
deemed to be a duplicate, and therefore, no additional
sample was removed following QC.

Training set and testing set demographics

Multiple datasets from the same disease were
obtained in this study, with the largest dataset from
each disease assigned to the training set to improve
discovery. However, three AD datasets were avail-
able, and the two largest datasets were generated on
the [llumina platform with the third originating from
the Affymetrix platform. To address any subtle dif-
ferences in gene expression, which may still exist in
the data due to platform differences, the largest Illu-
mina AD and the Affymetrix AD datasets were both
assigned to the training set.

Following dataset assignment, the training set con-
sisted of 160 AD subjects and 1,766 non-AD subjects,
while the testing set consisted of 127 AD subjects and
687 Non-AD subjects. The Non-AD group in both
the training and testing set consisted of subjects with
either PD, MS, SCZ, BD, CD, RA, COPD, or were
relatively healthy. Only one ALS dataset suitable for
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Table 1
Dataset demographics
Disorder Study ID Platform BeadArray Tissue Demographics Samples removed Demographics Training and
(associated source before QC during QC after QC testing set
publication) assignment
No. Case Control No. No.gender No. No. Case Control No.
probes  sex sex  samples mismatches outlying probes  sex sex  samples
(M/F)  (M/F) sample (M/F)  (M/F)
Alzheimer’s Disease GSE63060 ([31]) I HT-12 v3.0 WB 38323 46/99 42/62 249 2 10 5364 45/93 40/59 237 Training
GSE63061 ([31]) I HT-12 v4.0 WB 32049 51/81  55/87 274 5 4 5241 48/79 54/84 265 Testing
E-GEOD-6613 ([32]) A HG U133A WB 22283  8/15 11/11 45 0 1 4184  8/14  11/11 44 Training
Parkinson’s Disease E-GEOD-6613 ([32]) A HG U133A WB 22283 38/12 0/0 50 0 0 3674 38/12 0/0 50 Training
E-GEOD-72267 ([33]) A HGUI133A2.0 PBMC 22277 23/17  8/11 59 0 0 8742 23/17  8/11 59 Testing
Multiple Sclerosis GSE24427 ([34]) A HG U133A WB 22283 9/16 0/0 25 0 0 6633  9/16 0/0 25 Testing
E-GEOD-16214 ([35]) A HG U133 plus 2.0 PBMC 54675 11/71 0/0 82 0 3 8098  11/68 0/0 79 Training
E-GEOD-41890 ([36]) A Exon 1.0 ST PBMC 33297 2024 12/12 68 0 1 8157 19/24  12/12 67 Training
Schizophrenia GSE38484 ([37]) I HT-12 v3.0 WB 48743 76/30 42/54 202 9 5 6700 69/28 39/52 188 Training
E-GEOD-27383 ([38]) A HG U133 plus2.0 WB 54675 43/0 29/0 72 0 1 11297  42/0 29/0 71 Testing
GSE38481 ([37]) I Human-6 v3 WB 24526 4/11 16/6 37 2 1 8106  11/3 15/5 34 Testing
Bipolar Disorder E-GEOD-46449 ([39]) A HG U133 plus2.0 L 54675 28/0 25/0 53 0 0 9882  28/0 25/0 53 Training
GSE23848 ([40]) I Human-6 v2 WB 48701 6/14 5/10 35 0 0 7211 6/14 5/10 35 Testing
Cardiovascular Disease E-GEOD-46097 ([41]) A HG U133A2.0 PBMC 22277 102/36 60/180 378 0 24 7676  94/36  57/167 354 Training
GSE59867 ([42]) A Exon 1.0 ST WB 33297 85/26 0/0 111 0 3 7936  82/26 0/0 108 Testing
E-GEOD-12288 ([43]) A HG UI113A WB 22283 88/22  84/28 222 0 8 4815 83/22 82127 214 Training
Rheumatoid Arthritis E-GEOD-74143 ([44]) A HTHGUI13plus WB 54715 81/296  0/0 377 1 23 8112 80/273  0/0 353 Training
E-GEOD-54629 ([45]) A Exon 1.0 ST WB 33297 11/58 0/0 69 0 0 11931 11/58 0/0 69 Testing
E-GEOD-42296 ([46]) A Exon 1.0 ST  PBMC 33297 4/15 0/0 19 0 0 10417  4/15 0/0 19 Testing
Chronic Obstructive ~ E-GEOD-54837 ([47]) A HG U133 plus2.0 WB 54675 91/45 57/33 226 0 16 5531 83/44 52/31 210 Training
Pulmonary Disease
E-GEOD-42057 ([48]) A HG U133 plus2.0 WB 54675 52/42  22/20 136 3 4 6445 49/39 2120 129 Testing
ALS E-TABM-940 A HG U133 plus2.0 WB 54675 27/26 18/19 90 3 10 10442 27/25  15/10 77 Training
Total 904/956 486/533 2879 25 114 870/906 465/49 2740

Each study is accompanied by its corresponding publication (if available), where individual study design can be obtained. When possible, datasets were obtained in their raw format, except
for GSE63060, GSE63061, E-GEOD-41890, GSE23848, E-GEOD74143, E-GEOD-54629, and E-GEOD-42296 which were only available in a processed form where the dataset had already
been background corrected, log2 transformed, and normalized by techniques stated in corresponding publications. Multiple datasets from the same disease existed in this study. The dataset with
the largest number of diseased subjects was prioritized into the training set for better discovery. Study IDs initiating with “GSE” and “E-GEOD” were obtained from GEO and ArrayExpress,
respectively. I, Illumina; A, Affymetrix; WB, whole blood; PBMC, peripheral blood mononuclear cell; L, lymphocytes.
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a) Boxplot of common genes before YuGene transform
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b) Density plot of common genes before YuGene transform
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Fig. 2. Distribution of gene expression across all 2,740 subjects in this study. Plots a) and c) are boxplots, where each vertical line represents
an individual, while plots b) and d) represents the expression density of the same 2,740 subjects where each line represents a different
individual. Plots a) and b) shows the variation of the gene expression across subjects prior to YuGene transformation, providing evidence of
batch effects between samples and datasets. In contrast, plots c) and d) reveals a more evenly distributed gene expression profile across all
2,740 subjects when extracting the 1,681 common “reliably detected” genes, and independently YuGene transforming each sample.

in differentiating AD from Non-AD subjects.

Upsampling was performed on the mixed control
group to balance the number of samples across the
individual diseases, preventing bias toward the major-
ity classes during model development. The “pooled
controls” contained 702 samples, and was the largest
group in the training set; therefore, the remaining
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diseases were upsampled to the same number. This
resulted in the “AD vs Mixed Controls” being trained
on 160 AD samples and 6,318 non-AD samples. An
overview of subjects in the training and testing set is
provided in Table 2.

The “AD vs Healthy Control” classification
model development and performance

The “AD vs Healthy Control” classification mod-
els were developed using the only two AD datasets
(GSE63060 and E-GEOD-6613) available in the
training set, which consisted of 160 AD and 127
cognitively healthy controls. A thousand models
were developed, refined and evaluated, each using
a different seed number. The models were initially
built using default parameters, however, after model
refinement, an average of 57 predictive genes (95%
CI=18-101) were selected with optimum hyperpa-
rameters identified as eta=0.13 (95% CI=0.02-0.2),
max_depth=6.3 (95% CI=5-10), gamma=0.2
(95% CI=0-1.5), min_child_weight=1.01 (95%
CI=1-1), subsample =0.99 (95% CI=0.95-1), col-
sample_bytree =0.99 (95% CI=0.8-1), alpha=0.1
(95% CI=0-0.8), lambda=0.9 (95% CI=0.2-1),
and nrounds =54.4 (95% CI=18-211).

The “AD vs Healthy Control” classification mod-
els were evaluated in the independent testing set
and achieved an average sensitivity of 48.7%
(95% Cl=34.7-64.6), a specificity of 41.9% (95%
CI=26.8-54.3), and a balanced accuracy of 45.3%

(95% CI=36.0-56.0). Additional classification per-
formance metrics are provided in Table 3. As this
model was developed and evaluated a thousand times,
each sample in the testing set was predicted a thou-
sand times, each by a different classification model.
The raw probability predictions of all the samples in
the testing set by each of the thousand “AD vs Healthy
Control” classification models are shown in Fig-
ure 3a, where high misclassification can be observed
in all disease groups and controls, demonstrating an
increased false-positive rate and the inability of the
classification models to confidently assign a positive
(0) or negative (1) class to each subject.

The average AUC was calculated as 0.45 (95%
CI=0.34-0.60), which translates to “test is not use-
ful” as a diagnostic test [26]. The average positive
(CUI+ve) and negative (CUI —ve) clinical utility val-
ues are calculated as 0.07 (95% CI=0.04-012) and
0.34 (95% CI=0.2-0.46), respectively. These clini-
cal utility scores suggest the classification model is
“poor” at detecting the presence and absence of AD,
and based on current validation results, has no real
clinical utility [27].

The “AD vs Mixed Control” classification model
development and performance

The thousand “AD vs Mixed Control” classi-
fication models were developed using the entire
training set, which, after bootstrap upsampling,
consisted of 160 AD and 6,318 non-AD subjects.

Overview Training and Testing set subjects

Dataset Training set Testing set Class assignment
for XGBoost
AD vs Healthy AD vs Mixed
Control Control
Alzheimer’s Disease 160* 160* 127 0
Parkinson’s Disease 0 702 (50) 40 1
Multiple Sclerosis 0 702 (122%) 25 1
Schizophrenia 0 702 (97%) 56* 1
Bipolar Disorder 0 702 (28) 20 1
Cardiovascular Disease 0 702 (235%) 108 1
Rheumatoid Arthritis 0 702 (353) 88* 1
Chronic Obstructive Pulmonary Disease 0 702 (127) 88 1
ALS 0 702 (52) 0 1
Pooled Controls 127* 702* 262 1

Entire datasets from each disease were assigned to either the “Training Set” for classification model development or the “Testing Set” for
validation purposes. Datasets with the larger number of diseased subjects were prioritized into the training set to increase discovery. Two
types of classification models were developed, the first (“AD vs Healthy Control”) was developed using only the 160 AD and associated 127
healthy control samples, and the second (“AD vs Mixed Controls”) was developed using the same 160 AD samples, and 6,318 upsampled
mixed controls. The pooled controls in the “AD vs Healthy Control” training set originates only from AD datasets. Sample numbers provided
in brackets are before upsampling. Sample numbers with an asterisk (*) indicates multiple datasets were available, and subject numbers
shown are a sum across these datasets.
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Table 3

Classification model performance

AD vs Healthy Control

AD vs Mixed Control

Sensitivity 48.7% (34.7-64.6) 40.8% (27.5-52.0)
Specificity 41.9% (26.8-54.3) 95.22% (93.3-97.1)
PPV 13.6% (9.9-18.5) 61.35% (53.8-69.6)
NPV 81.1% (73.3-87.7) 89.7% (87.8-91.4)

Balanced Accuracy 45.3% (36.0-56.0) 67.99% (61.9-72.9)
AUC 0.45 (0.34-0.60) 0.86 (0.82-0.90)
AUC Rating Test not useful Very Good
CUI+ve 0.07 (0.04-0.12) 0.25 (0.16-0.32)
CUI+ve Rating Poor Poor

CUI -ve 0.34 (0.2-0.46) 0.85(0.84-0.87)
CUI —ve Rating Poor Excellent

The table provides the average performance measurements form validating a thousand “AD vs Healthy Control”
and a thousand “AD vs Mixed Control” classification models on the same testing set. A students T-test between the
“AD vs Healthy Control” and “AD vs Mixed Control” classification performances reveals a significant difference
for all metrics (p < 2.20¢719). The values provided in brackets () are the 95% confidence interval.

(a) AD vs Healthy Control Classifcation Model Prediction Probabilities
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Fig. 3. Testing set raw prediction comparison by (a) the thousand “AD vs Healthy Control” classification models and (b) the thousand “AD vs
Mixed Control” Classification models. Samples with a probability of < 0.5 are predicted to be AD. Controls represent pooled non-diseased
subjects from all datasets. AD, Alzheimer’s disease; BD, bipolar disease; CD, coronary artery disease; COPD, chronic obstructive pulmonary
disease; MS, multiple sclerosis; PD, Parkinson’s disease; RA, rheumatoid arthritis; SCZ, schizophrenia.

The models were initially built using default param-
eters; however, after model refinement, an average
of 89.4 predictive genes (95% CI=66.0-116.0)
were selected with the optimum hyperparameters
identified as eta=0.12 (95% CI=0.01-0.20),
max_depth=4.1 (95% CI=2-5), gamma=0
(95% CI=0-0), min_child weight=1 (95%
CI=1-1), subsample=1 (95% CI=0.95-1), col-
sample_bytree =0.77 (95% CI=0.5-1), alpha=0.02
(95% CI=0-0.1), lambda=0.9 (95% CI=0.1-1),
and nrounds =1173.1 (95% CI=297.9-6956.3).

The “AD vs Mixed Control” classification mod-
els were evaluated in the testing set and achieved
an average 40.8% (95% CI=27.5-52.0) sensitiv-
ity, 95.2% (95% CI=93.3-97.1) specificity, and a
balanced accuracy of 68.0% (95% CI=61.9-72.9).
Additional classification performance metrics are
provided in Table 3. A students T-test detects a sig-
nificant difference (p <2.20e719) between all of the
“AD vs Healthy Control” and “AD vs Mixed Control”
performance metrics. The “AD vs Mixed Control”
classification performance outperforms the typical
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“AD vs Healthy Control” classification models in
all performance metrics, except for sensitivity, where
a decrease in performance is observed from 48.7%
to 40.8%. Nevertheless, due to the “AD vs Mixed
Control” classification model predicting less false
positives, an increase in the average PPV (61.4%,
95% CI=53.8-69.6) is observed when compared to
the “AD vs Healthy Control” classification models
average PPV (13.6%, 95% CI=9.9-18.5). This is
further emphasized in Fig. 3b, where the raw proba-
bility predictions for all individuals in the testing set
are more correctly and confidently predicted by the
“AD vs Mixed Control” Classification models when
compared to the typical “AD vs Healthy Control”
classification models.

The “AD vs Mixed Control” classification model
average AUC score is 0.86 (95% CI=0.82-0.9)
which translates to a “very good” diagnostic test
[26]; however, the average clinical utility val-
ues (CUI+ve=0.25 [95% CI=01.6-032] and CUI
-ve=0.85 [95%CI =0.84-0.87]) suggests this clas-
sification model is “poor” in detecting AD but
“excellent” to rule out “AD” [27].

The “AD vs Mixed Control” classification
model’s predictive features

The thousand “AD vs Mixed Control” classifi-
cation models identified, on average, 89 predictive
features (genes) to discriminate between AD and non-
AD subjects with an average balanced accuracy of
68% (95%CI=61.9-72.9). Only 800 of the 1,681
available genes were selected by anyone of the thou-
sand models as a predictive feature, with 11 being
consistently selected by all one thousand models.
These 11 genes are KDM3B, THI1L, RARA, SPEN,
NDUFAI1, THYNI1, UBR4, BSDCI1, LDHB, LPP,
and BAGS. Gene set enrichment on these genes iden-
tified “The citric acid (TCA) cycle and respiratory
electron transport” (g-value=0.03) and HIV Infec-
tion (g-value = 0.03) as the only biological pathways
significantly enriched; however, when incorporating
a background gene list (the 1,681 genes available for
selection by the classification model algorithm), no
pathway was significantly enriched.

DISCUSSION

Previous attempts to identify a blood-derived gene
expression signature for AD diagnosis have relied
on the typical approach of training machine learning

algorithms on AD and cognitively healthy subjects
only. This may inadvertently lead to classification
models learning expression signatures that may be
of general illness rather than being disease-specific.
Validating such a classification model in a heteroge-
neous aging population may fail to distinguish AD
from similar mental health disorders, neurodegener-
ative diseases, and common elderly health disorders.
To explore this potential issue, two AD classifica-
tion models were developed and evaluated. The first
model (“AD vs Healthy Control”) was developed in
160 AD and 127 complementary cognitive healthy
subjects, and the second (“AD vs Mixed Control”)
was developed in 160 AD and 6,318 upsampled non-
AD subjects comprising of PD, MS, BD, SCZ, CD,
RA, COPD, ALS, and healthy subjects.

Both types of classification models were evaluated
in the same external independent cohort compris-
ing of AD, PD, MS, BD, SCZ, CD, RA, COPD,
and healthy subjects totaling 814 subjects. A thou-
sand “AD vs Healthy Control” and a thousand “AD
vs Mixed Control” classification models were devel-
oped, refined, and evaluated to account for the
randomness introduced during the bootstrap upsam-
pling and the model development process.

The “AD vs Healthy Control” classification
models perform poorly in a heterogeneous aging
population

The typical approach of developing a classification
model trained on AD and complementary cognitive
healthy control subjects produced models with an
average sensitivity of 48.7% (95% Cl=34.7-64.6)
in an independent cohort of 127 AD subjects. On
average, these models perform worse than a previous
attempt which attained a sensitivity of 56.8% when
validated in an independent testing set of 118 AD
subjects [11]. However, the study in question only
built and evaluated a single model and in this study,
97/1000 models attained a higher sensitivity. Nev-
ertheless, on average, the “AD vs Healthy Control”
models in this study are very much similar to identify-
ing AD samples based on complete randomness alone
(assumed to be 50%). Furthermore, when evaluating
these models in a heterogeneous aging population, a
process often neglected by previous studies, low aver-
age specificity of 41.9% (95% CI=26.8-54.3) was
attained, which equates to a very low average PPV
of only 13.6% (26.8-54.3). This is reiterated in the
high misclassification of PD, MS, BD, SCZ, CD, RA,
COPD, and healthy subjects as AD in the testing set.
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Since misclassification was observed in all groups,
including large portions of the healthy controls, the
“AD vs Healthy Control” classification models are
most likely not capturing signals of AD, dementia, or
general illness, but is most likely a result of technical
noise, individual study batch effects, and overfitting.
This is mirrored in the model’s performance metrics,
which translates to a “poor” clinical utility in detect-
ing the presence and absence of AD. Overall, the
typical approach of AD classification model devel-
opment failed to accurately distinguish AD subjects
in aheterogeneous aging population consisting of PD,
MS, BD, SCZ, CD, RA, COPD, ALS, and relatively
healthy controls.

The “AD vs Mixed Control” classification
models outperforms the typical “AD vs Healthy
Control” classification models

The “AD vs Mixed Control” classification mod-
els attained a validation PPV average of 61.4% (95%
CI=53.8-69.6) and an NPV average of 89.7% (95%
CI=87.8-91.4), which outperforms the validation
PPV average of 13.6% (26.8-54.3) and NPV aver-
age of 81.1% (73.3-87.7) achieved by the “AD vs
Healthy Control” classification models. However,
this improvement was at the cost of sensitivity, which
was reduced from an average of 48.7% (“AD vs
Healthy Control”) to an average of 40.8% (“AD vs
Mixed Control”). Nevertheless, an overall increase in
the clinical utility of the “AD vs Mixed Control” clas-
sification model was measured and according to the
recommended CUI interpretations in [27], the model
is “poor” in “ruling in”” AD but “excellent” in “ruling
out” AD.

The increase performance of the “AD vs Mixed
Control” classification model is most likely the result
of incorporating additional related mental health and
common elderly health disorders into the classifi-
cation model development process, which allowed
the machine learning algorithm to learn more com-
plex relationships between genes to differentiate
between AD and non-AD subjects. This is reflected
in the average 57 (95% CI=18-101) genes and 54
(95%CI = 18-211) nrounds (trees) being used for pre-
diction in the “AD vs Healthy Control” classification
models, which is increased to an average 89 (95%
CI=66-116) genes and 1173 (95% CI=298-6956)
nrounds for the “AD vs Mixed Control” classification
models. Together with the CUI interpretations, the
classification model seems to have learned expression
signatures that are typically not AD, rather than iden-

tifying AD. Although this has improved the ability to
distinguish AD from other related diseases and cog-
nitively healthy controls, the sensitivity of the model
was reduced and needs to be further improved for this
type of research to be beneficial in the clinical setting.

Predictive features consist of age-related markers

Age is one of the most significant risk factors
for AD, and the prevalence of the disease is known
to increase with age. A meta-analysis study investi-
gating blood transcriptional changes associated with
age in 14,983 humans, identified 1,496 differentially
expressed genes with chronical age [29], of which
two genes (LDHB and LPP) are consistently used
as a predictive feature in all one thousand “AD vs
Mixed Control” classification models. The datasets
used in this study were publicly available, and as such,
were accompanied with limited phenotypic informa-
tion, including age. Therefore, age was not accounted
for during the classification model developmental
process. However, as this study uses a variety of
common elderly health disorders, in addition to the
3 AD datasets, and study designs generally incor-
porate complementary age-matched controls, it is
highly unlikely the classification model is predict-
ing age alone but is more likely using a combination
of signals including age to distinguish AD. Without
age information for all subjects, this study is unable to
conclude how age is influencing the model prediction
process.

Limitations

All data used in this study were publicly avail-
able, and as such, many were accompanied by limited
phenotypic information, including sex, which was
predicted based on gene expression when miss-
ing. Therefore, this study was unable to incorporate
additional phenotypic information during the clas-
sification model building process, which has been
shown to improve model performance [11]. Informa-
tion such as comorbidities, age, and medications are
unknowns, which could be affecting model perfor-
mances in this study. For instance, control subjects
in this study that originated from non-AD datasets
were screened negative for their corresponding dis-
ease of interest but were not screened for cognitive
function, i.e., control subjects from the CD datasets
were included in their retrospective dataset if they did
not have CD, they were not necessarily checked for
cognitive impairment. Therefore, some misclassified
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control subjects may indeed be on the AD spectrum,
and it is important to note subjects from the pooled
control group were most misclassified as AD by the
“AD vs Mixed Control” classification models. How-
ever, it is also important to note the training set used
to develop the “AD vs Mixed Control” classifica-
tion model also contains these controls which have
not been screened for AD. If these controls or age-
related disease subjects are comorbid with AD, the
classification model may have inadvertently learned
to be biased toward a subgroup of AD subjects with
no comorbid with any other disease, hence the low
sensitivity validation performance when introduc-
ing additional datasets into the classification model
developmental process.

This study involved a number of subjects clinically
diagnosed with a health issue, and therefore were
most likely on some sort of therapeutic treatment to
manage or treat the underlying disease, another piece
of vital information generally missing from publicly
available datasets and from this study. As therapeutic
drugs have been well-known to affect gene expression
profiling, including memantine, a common drug used
to treat AD symptoms [30], the “AD vs Mixed Con-
trol” classification models may have inadvertently
learned gene expression perturbations due to ther-
apeutic treatment rather than disease biology, and
would, therefore, fail in the clinical setting to diag-
nose AD subjects who are not already on medication.
To address this issue along with co-morbidity, clear
and detailed phenotypic information would be needed
for all subjects, which is encouraged for future studies
planning to submit genetic data to the public domain.

Finally, this study used datasets generated on
11 different microarray BeadArrays, resulting in
datasets ranging from 22277-54715 probes prior
to any QC. Coupled with differences in BeadAr-
rays designs across platforms, the overlap of genes
was drastically reduced to 1,681 common “reli-
able detected” genes across all datasets, and most
likely may have also inadvertently lost some disease-
specific changes. To address this issue, these subjects
need to be expression profiled on the same microarray
platform and ideally the same expression BeadArray,
which currently does not exist in the public domain.
However, the advances in sequencing technologies,
which can capture expression changes across the
whole transcriptome, can potentially solve this issue
and future studies are encouraged to replicate this
study design with RNA-Seq data with detailed pheno-
typic information when/if available, albeit, this may
bring new challenges.

Conclusion

This study relied on publicly available microarray
gene expression data, which too often lacks detailed
phenotypic information for appropriate data analysis
and needs to be addressed by future studies. Nev-
ertheless, with the available phenotypic information
and limited common “reliably detected” genes across
the different microarray platforms and BeadArrays,
this study demonstrated the typical approach of
developing an AD blood-based gene expression clas-
sification model using only AD and complementary
healthy controls fails to accurately distinguish AD
from a heterogeneous aging population. However,
by incorporating additional related mental health
and common elderly health disorders from differ-
ent microarray platforms and expression chips into
the classification model development process can
result in a model with improved “predictive power”
in distinguishing AD from a heterogeneous aging
population. Nevertheless, further improvement is still
required in order to identify a robust blood transcrip-
tomic signature more specific to AD.
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