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Abstract. Clinical specialization is not only a force for progress, but it has also led to the fragmentation of medical knowledge.
The focus of research in the field of Alzheimer’s disease (AD) is neurobiology, while hepatologists focus on liver diseases
and lipid specialists on atherosclerosis. This article on AD focuses on the role of the liver and lipid homeostasis in the
development of AD. Amyloid-� (A�) deposits accumulate as plaques in the brain of an AD patient long before cognitive
decline is evident. A� generation is a normal physiological process; the steady-state level of A� in the brain is determined
by balance between A� production and its clearance. We present evidence suggesting that the liver is the origin of brain A�
deposits and that it is involved in peripheral clearance of circulating A� in the blood. Hence the liver could be targeted to
decrease A� production or increase peripheral clearance.
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INTRODUCTION

In an ever more algorithmically-driven world,
medical super-specialization often leads to blinkered
thought and academic compartmentalization of med-
ical care. Those with multisystem disorders are often
looked after by a clutch of different specialists, while
the rush to medical specialization leaves little time
for those giving care to think laterally. Few neurol-
ogists or neuropsychiatrists dual accredit in General
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Internal Medicine and time precludes them following
advances in other specialties. Among hepatologists,
little thought is given to the extrahepatic sequelae
of liver disease, while still fewer in the discipline
recognize that many diseases which traditionally are
thought to be specific to other organs may actu-
ally have a major hepatic component. Alzheimer’s
disease (AD), the most common form of demen-
tia, is a case in point. In the second most common
neurodegenerative disorder, Parkinson’s disease, new
research is suggesting a role for the microbiota-gut-
brain axis in alpha-synuclein pathology in the brain
(reviewed in [1]).

This review of AD, written from the perspective
of hepatology and lipidology, presents evidence sug-
gesting that the liver is the origin of brain amyloid-�
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(A�) deposits and that it is involved in peripheral
clearance of circulating A� in the blood. Further-
more, useful new drugs for dementia may be focused
on decreased hepatic production or increased periph-
eral clearance of A� protein.

AD affects more than 40 million people globally
and is expected to hit 75.6 million by 2030. AD is the
sixth leading cause of mortality in the United States,
accounting for 3.6% of all deaths in 2014 [2]. In the
United Kingdom, almost one in eight people (12.8%)
died from AD in 2018; it is the biggest killer in women
at 15.3% and the second biggest killer in men at
8%. The most common form of AD, which occurs
sporadically late in life (late-onset AD, LOAD) is
typified by deposition of A� within the brain [3, 4].
A� generation is a normal physiological process; the
steady-state level of A� in the brain is determined by
the balance between A� production and its clearance
and an imbalance in the A� production/excretion rate
is the basis of increased A� levels in AD.

AMYLOID-� HOMEOSTASIS

Altered production or clearance of a protein might
be a trait (that is, lifelong) marker that precedes build-
up of the protein in inclusions or aggregates.

Production

Three loci that modify A� accumulation and depo-
sition in the brains of a mouse model of AD have
been previously described: amyloid-� protein pre-
cursor (A�PP), presenilin 1 (PSEN1), and presenilin
2 (PSEN2). Mutations in these loci result in abnor-
mal processing of A�PP and increased generation
of A�42, which aggregates as insoluble �-pleated
sheets [5]. One of these, the PSEN2 gene encoding
presenilin 2, a component of the �-secretase activ-
ity is responsible for generating A� by proteolysis.
Activity of mouse PSEN2, as measured by levels of
mRNA accumulation, has unexpectedly been shown
to be heritable in the liver, but not the brain, suggest-
ing that the liver is the origin of brain A� deposits
[6]. Sutcliffe and colleagues showed that peripheral
administration of the anticancer drug, Imatinib, com-
monly known as Gleevac (a specific inhibitor of a
number of tyrosine kinase enzymes), resulted in a
50% reduction in plasma and brain A� levels. As Ima-
tinib does not cross the blood-brain barrier (BBB),
this provided evidence that A� produced peripher-
ally was contributing to brain A�. Imatinib lowers
A� levels through indirect inhibition of �-secretase

activity [7]. Imatinib also renders A�PP less suscep-
tible to proteolysis by �-secretase (BACE) without
inhibiting BACE enzymatic activity or the process-
ing of other BACE substrates [8]. However, plasma
levels of A�42 did not change in patients with chronic
myeloid leukemia treated with Imatinib [9], bringing
into question whether it may have a role in individuals
with A� dyshomeostasis.

The important study by Sutcliffe et al. [6] built on
earlier findings that peripherally derived A�40 and
A�42 can cross the BBB and that circulating A�
could thus contribute to neurotoxicity [10, 11]. The
implication that A� homeostasis was an intercon-
nected system involving the liver and BBB to regulate
brain A� was discussed at the time [12] but needs re-
emphasizing now, with the addition of new data from
the last decade.

The A�PP gene is located at chromosome 21q21
and individuals with Down’s syndrome, which results
from trisomy of chromosome 21, develop AD neu-
ropathology (reviewed in [13]). Individuals with
partial trisomy of chromosome 21, which does
not include the A�PP gene, fail to develop AD
neuropathology, demonstrating that excess A� pro-
duction is sufficient to cause AD (Fig. 1). In addition,
recent tissue-specific metabolomic analysis revealed
that the liver was the earliest affected organ in
A�PP/PS1 mice during amyloid pathology progres-
sion [14]. Genetic variants affecting A�PP and A�
processing are associated not only with early-onset
autosomal dominant AD but also with LOAD [15].

Generation of the A�PP by �- and �-secretases
occurs in early endosomes, followed by routing of
A� to multivesicular bodies in HeLa and N2a cells
and subsequently, a minute fraction of A� peptides
can be secreted from the cells in association with exo-
somes [16]. Exosomes are extracellular membrane
vesicles actively secreted by cells into the circula-
tion that are involved in cell-to-cell communication in
normal homeostasis. They can carry cargo across the
BBB [17] and are carriers of A� in AD [18]. The BBB
keeps neurotoxic plasma derived components out of
the central nervous system, but recent studies suggest
an early BBB breakdown in AD [19]. The receptor for
advanced glycation end products (RAGE) has been
implicated in the transport of A� across the BBB [11,
20]. Inhibiting RAGE has been shown to have signif-
icant therapeutic benefit in AD models [21]. High
dietary advanced glycation end products have also
been found to accelerate A� deposition in an AD
murine model mediated by overexpression of RAGE
[22].
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Fig. 1. Some factors altering the balance between amyloid A� production and clearance leading to dyshomeostasis. Peripheral clearance
can remove 40–50% of A� burden in the brain [25, 26]. A�, amyloid-�; A�PP, amyloid-� protein precursor, LRP1, low-density lipoprotein
receptor-related peptide 1; LDLR, low-density-lipoprotein receptor; P-gp, P-glycoprotein.

Clearance

LOAD, the common form of AD, is characterized
by an overall impairment in A� clearance [23]. A�
clearance is a complex event that involves more than
neurons and microglia [24]. Peripheral clearance of
brain-derived A� exists physiologically. Efflux of A�
to peripheral blood accounts for 50% of total brain
A� clearance in humans [25], suggesting that the
physiological A� clearance capacity of the periph-
eral system provides an important mechanism against
A� accumulation in the brain. Hence, dysfunction of
peripheral A� clearance may contribute to the devel-
opment of AD.

In a murine model of AD using parabiosis (the
anatomical joining of two animals for physiological
research), it has been shown that parabiosis reduces
brain A� burden through clearance by peripheral
tissues and organs, including the liver [26]. In this
model, it was calculated that the periphery can
remove 40% of A� burden in the brain, similar to
other estimates of the importance of peripheral phys-
iological A� clearance [25]. Studies in another model
system found a short half-life of both A�40 and A�42
after injection of only 2.5–3.0 min with the liver being
the major organ responsible for plasma clearance,
accounting for > 60% of the peptide uptake. Indeed, it
was suggested that the capability of the liver to take-
up, catabolize, and excrete large doses of A�, several
orders of magnitude above its physiologic concen-

tration may explain not only the femtomolar plasma
levels of A�, but also the minor fluctuation observed
with age and disease stages [27].

There are several potential pathways for the efflux
of brain A� into the periphery. These include clear-
ance via the glial-lymphatic (glymphatic) system [28]
and transport across the BBB, mediated by low-
density lipoprotein receptor-related peptide 1 (LRP1)
[29, 30] and the low-density-lipoprotein receptor
(LDLR). In animal models of AD, lack of LDLR
enhances amyloid deposition in the brain [31], while
LDLR overexpression increases the rate that A�
enters the blood from the brain [32].

In plasma, a soluble form of LRP1 (sLRP1) is
the major transport protein for peripheral A� [33].
Improving the binding of A� to a sLRP1 variant has
been shown to increase the efficiency of A� clearance
[34], suggesting that this binding prevents re-entry of
A� to the brain. Impaired sLRP1 binding of plasma
A� has also been reported to be an early biomarker
for mild cognitive impairment preceding AD [35].
Brain-derived A� in the arterial blood is cleared
physiologically when it goes through the capillary
bed of the peripheral organs and tissues, including
the liver [26]. LRP1 is the major receptor respon-
sible for the saturable uptake of plasma free A�40
by the liver [36]. The remarkable therapeutic effect
of the ayurvedic agent, Withania somnifera (also
known as poison gooseberry or winter cherry, from
the nightshade family), mediated through upregula-
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tion of liver LRP indicates that targeting the periphery
offers a unique mechanism for A� clearance as this
therapy reverses the behavioral deficits and pathol-
ogy seen in AD models [37]. Atorvastatin has also
been shown to upregulate liver LRP1 and this effect
is mediated by the sterol response element-binding
protein-2 (SREBP-2) in vitro and in vivo [38]. Statins
can reduce AD risk and the effect varies with statin
molecule, sex, and race/ethnicity [39].

Transthyretin, a protein involved in the transport
of thyroid hormones and retinol, has been proposed
as a protective protein in AD [40]. Transthyretin acts
as a carrier of A� at the BBB and liver using LRP1
[41].

Thus, LRP1 is involved in three stages of the
homeostatic control of A� clearance including 1)
cell-surface LRP1 at the BBB and cerebrovascu-
lar cells, mediating brain-to-blood A� clearance, 2)
circulating LRP1 providing a key endogenous periph-
eral ‘sink’ activity for plasma A� which prevents free
A� access to the brain [42], and 3) LRP1 in the liver
mediating systemic A� clearance [43] (Fig. 2).

In a human study using amyloid PET with
[11C]PiB, the C667T polymorphism of the LRP1
gene has been shown to be moderately, but signifi-
cantly associated with global and regional amyloid
deposition [44]. This finding is compatible with the
A� hypothesis that impaired amyloid clearance con-
tributes to amyloid deposition in LOAD.

LRP1 is capable of recognizing a wide vari-
ety of structurally-distinct ligands; Apolipoprotein E
(ApoE) is one. ApoE polymorphic alleles are major
genetic determinants of AD. Individuals carrying the
epsilon (�) 4 allele (APOE �4) are at increased risk of
AD, compared to those carrying the more common
�3 allele, whereas the �2 allele decreases risk. Thus,
at age 85 years, the lifetime risk of AD without refer-
ence to APOE genotype is 11% in males and 14% in
females, compared to 51% for male APOE4 homozy-
gotes and 60% for female APOE4 homozygotes,
consistent with autosomal co-dominant inheritance
of a moderately penetrant gene variant [45]. In a
murine model, A� was mainly sequestered in the
liver and its peripheral clearance was by influenced
by ApoE [46]. A number of subsequent studies sug-
gest that ApoE4 inhibits A� clearance and/or is less
efficient in mediating A� peripheral clearance com-
pared with ApoE3 and ApoE2 [47] (reviewed in [48,
49]). A biologically inspired nanostructure, ApoE3-
reconstituted high-density lipoprotein, with high
binding affinity to A�, rescues memory loss of mice
with AD by accelerating the clearance of A� [50].

ApoE expression is transcriptionally induced
through the action of the nuclear receptors
peroxisome proliferator-activated receptor gamma
(PPAR�) and liver X receptor (LXR) in coordination
with retinoid X receptors (RXRs).

In the liver, LRP1 functions in concert with LDLR
in the clearance of ApoE-containing particles cir-
culating in plasma [51]. Biliary clearance of A� is
not only mediated by LRP1, but also by the drug
efflux pump, P-glycoprotein encoded by ABCB1 gene
[52]. P-glycoprotein dysfunction in BBB active efflux
of xenobiotics has been shown by imaging studies
in individuals with early AD [53]. This raises the
possibility that common pharmacological inhibitors
of P-glycoprotein, such as amiodarone, lansopra-
zole, omeprazole, and other proton-pump inhibitors,
tamoxifen and verapamil [54], could impact on
A� clearance. A recent in vitro study using syn-
thetic fluorescein-labelled A�40 and A�42 spiked into
human liver homogenates has shown that A� degra-
dation rates are lower in AD-derived homogenates
as compared with those from non-demented control
subjects, even after accounting for the covariates of
age, sex, and APOE genotype. The authors conclude
that their results “support the possibility that impaired
hepatic A� degradation could be a factor contribut-
ing to increased brain A� accumulation and AD”
[55]. In addition, serum-based bile acid metabolites
are associated with AD biomarkers, providing fur-
ther evidence that bile acid pathways play a role in
AD pathophysiology [56].

Plasma assays as screening tests for AD

Plasma A� levels tend to be nearer the lower
limits of detection, but there is emerging consen-
sus that “recent improvements in technologies to
assess plasma levels of amyloid beta indicate that
a single sample of blood could provide an accu-
rate estimate of brain amyloid positivity” [57]. For
example, measurement of plasma A� biomarkers by
immunoprecipitation coupled with mass spectrome-
try has recently been shown to correlate with brain
A� burden and levels of A�42 in cerebrospinal fluid
(CSF) [58]. The biomarkers measured were ratios of
A�PP669-711/A�42 and A�40/A�42 and their com-
posites, confirming that plasma A� might reflect
brain amyloid deposition. Another group has shown
that the secondary structure distribution of A� in
blood plasma, measured by an immuno-infrared sen-
sor, is an excellent biomarker for AD, reflecting
the A� burden in the brain [59]. The performance
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Fig. 2. Schematic representation of Alzheimer’s disease homeostasis showing amyloid-� (A�) production from amyloid-� protein precursor
(A�PP) in the liver, dysregulated influx/efflux across blood-brain barrier (BBB) (1), transport in serum via soluble LRP1 (2) and exosomes
[61] and saturable uptake of A� by liver via low-density lipoprotein receptor-related peptide 1 (LRP1) and low-density-lipoprotein receptor
(LDLR) (3) with subsequent biliary clearance. RAGE, receptor for advanced glycation end products.

of Elecsys (Roche Diagnostics, Basel, Switzerland)
immunoassays to measure plasma A�42 and A�40 has
also recently been shown to predict A� status in all
stages of AD and their accuracy can be increased by
analyzing APOE genotype [60]. A recently reported
promising approach is measuring exosome-bound
A�; this has shown to better reflect PET imaging of
brain amyloid plaques than unbound or total circulat-
ing A� and hence enable early diagnosis and disease
monitoring [61].

Circadian rhythm

A rapidly growing body of research suggests that
disturbances in the circadian system precede the
emergence of the characteristic cognitive and motor
symptoms of AD [62]. Aggregation of A� into extra-
cellular plaques in the brain likely begins 20 years
before the onset of dementia. A� concentrations in
both humans and mouse models show A� concentra-
tions rise during wakefulness and fall during sleep,
that is, an A� diurnal pattern. Studies on sleep raise
the possibility that altering sleep quality might impact
A� deposition and may also regulate the clearance
of A� from the brain [63]. Indeed, sleep has been
identified as a factor which alters the production
and/or clearance of A� in stable isotope labelling

kinetic (SILK) studies measuring A� turnover in
blood and within the brain [64]. SILK studies have
shown that the A�42:A�40 turnover rate positively
correlates with amyloid plaque load and demonstrate
that understanding A� dynamics in different com-
partments including CSF, blood, and brain tissue is
crucial to improving therapy. Thus, studies show-
ing significantly lower levels of CSF A�42 in AD
patients with more severe cognitive impairment [65]
are unable to provide information on changes in A�
turnover occurring either during the circadian cycle
or during the progression of disease.

The clearance of amyloid from the brain dur-
ing sleep is primarily via the glymphatic pathway
[66, 67]. These lymphatic vessels exit the cranium
along veins and arteries associated with the mid-
dle meningeal arteries, transporting waste via the
deep cervical lymph nodes to the systemic circu-
lation (reviewed in [68]). Initial functional studies
in the sleeping brain have shown the importance
of the glymphatic pathway in animal models. More
recent research has demonstrated glymphatic efflux
in patients with AD [69].

Proper functioning of the circadian system is
determined by the orchestration of the suprachias-
matic nucleus in the hypothalamus and synchronized
peripheral clocks in local tissues, including the
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liver. Mass spectrometry analyses of the mouse liver
proteome has shown that many secreted proteins
accumulate with a diurnal rhythm [70]. Circadian
post-transcriptional and post-translational mecha-
nisms play a key role in the temporal orchestration
of liver-specific metabolic pathways [71]. Among
those enriched in the liver cycling proteome are pri-
mary bile acid biosynthesis, bile secretion, protein
processing in the ER, PPAR signaling pathway, and
metabolism of xenobiotics. Hence poor sleep may
be impacting on the hepatic production and biliary
clearance of A�, as well as directly on the brain.
The unfolded protein response (UPR) and circa-
dian rhythm are intimately linked in the liver [72]
and the UPR is emerging as a pharmaceutical can-
didate to combat neurodegenerative diseases [73].
It would hence be of interest to measure the diur-
nal pattern of plasma biomarkers of AD in relation
to therapy.

THERAPEUTIC IMPLICATIONS OF
PERIPHERAL PRODUCTION AND
CLEARANCE OF A�

The aim of the G8 summit held in London in 2013
was “to create disease modifying treatment to stop,
slow, or reverse the condition”, but, under the current
conditions, only drugs currently in late phase I or later
will have a chance of being approved by 2025 [74].
Drug development is costly, as is exemplified by anti-
A� monoclonal antibodies (mAbs), some of which
have progressed to evaluation in phase II and phase
III trials [75]. To date, the most promising is Adu-
canumab (BIIB037; Biogen, Inc., Cambridge, MA),
a fully human IgG1 mAb, which selectively reacts
with A� aggregates, including soluble oligomers and
insoluble fibrils [76]. This mAb has been shown to
enter the brain, bind parenchymal A�, and reduce sol-
uble and insoluble A� in a dose-dependent manner.
However, some medications that are already licensed
for other indications may be beneficial in AD by
altering the peripheral pathways involved in the phys-
iological homeostasis of A�. Therapies which could
be repurposed include both licensed drugs and herbal
remedies, for example:

Tauroursodeoxycholic acid (TUDCA) is the tau-
rine conjugate of ursodeoxycholic acid (UDCA), a
US Food and Drug Administration (FDA)-approved
hydrophilic bile acid for the treatment of certain
cholestatic liver diseases [77]. There is a growing
body of research on the mechanism(s) of TUDCA

and its potential therapeutic effect on a wide variety of
non-liver diseases [78], including amyotrophic lateral
sclerosis [79]. In a mouse model of AD, TUDCA sup-
plementation has been shown to reduce hippocampal
and pre-frontal amyloid deposition [80]. TUDCA
affects biliary excretion and may predominantly act
by altering the production/clearance dynamics of A�
in the periphery. In AD patients an altered bile acid
profile (increased ratio of deoxycholic acid:cholic
acid, which reflects 7�-dehydroxylation of cholic
acid by gut bacteria), has been shown to associate
with cognitive decline, suggesting a possible role
of gut-liver-brain axis in the pathogenesis of AD
[81], analogous to Parkinson’s disease [1]. TUDCA
is now being used in a phase II trial in combination
with another repurposed drug, sodium phenylbu-
tyrate, produced by Amylyx Pharmaceuticals Inc.
(Cambridge, Mass, USA) (AMX0035), supported by
the Alzheimer’s Drug Discovery Foundation and the
Alzheimer’s Association.

Bile acids (chenodeoxycholic acid and cholic
acid) are physiological ligands/activators of the
nuclear receptors, farnesoid-X-receptor, pregnane-X-
receptor (PXR) and constitutive androstane receptor,
while lithocholic acid is a ligand for the Vitamin
D receptor (VDR) and PXR [82]. These receptors
generally form heterodimers with RXR [83].

Other nuclear receptor agonists

PPAR� may act as a master regulator of the
transcription of several genes involved in LOAD
pathogenesis [84]. PPAR� agonists such as the gli-
tazone, pioglitazone, prescribed for the treatment of
type 2 diabetes, promote amyloid clearance in animal
models of AD [85]. A phase II study of pioglitazone
in AD showed that it is safe and well tolerated and
two large phase III trials are ongoing [86]. In patients
with diabetes, pioglitazone treatment is a time- and
dose-dependent protective factor against dementia
[87]. Cilostazol enhances LRP1 expression in liver
by activating PPAR� through the peroxisome prolif-
erator response element in the LRP1 promoter [88].
In mice, combined PPAR� /LXR agonist treatment
also reduces soluble and deposited forms of A� [89].

The RXR agonist, bexarotene (brand name: Tar-
gretin), which is approved by both the FDA and
European Medicines Agency (EMA) for use in cuta-
neous T cell lymphoma, stimulates physiological A�
clearance mechanisms, resulting in the rapid rever-
sal of a broad range of A�-induced deficits in mouse
models [90].
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VDR - 1,25-dihydroxyvitamin D3(1,25(OH)
2D3) treatment has been shown in vitro to enhance
both A�40 efflux across the BBB and hepatic uptake
by HepG2 cells, accompanied by increased LRP1
expression. It was suggested that the effect was
exerted via the nuclear VDR and could explain
how 1,25(OH)2D3 exerts neuroprotection against
AD [91].

Flavonoids

Genistein is an isoflavone derived from the dyer’s
broom plant, Genista tinctoria, which activates
PPARs. Treatment of an AD mouse model with genis-
tein results in improvement in various parameters of
cognition, associated with a lowering of A� levels
in brain and in the number and the area of amyloid
plaques [92]. The authors conclude that “our results
strongly suggest that controlled clinical trials should
be performed to test the effect of genistein as treat-
ment of human AD”.

Newly identified flavonoids which selectively tar-
get another nuclear receptor/pathway, LXR� have
also been found to reduce total brain A� and plaque
burden in A�PP/PS1 double transgenic mice [93].

Silymarin, the main flavonoid extracted from milk
thistle, has long been used as a medicinal herb for liver
diseases. In a mouse model, it has been shown that
Silymarin treatment was associated with a decline
in A� oligomer production [94]. Silymarin can con-
trol the production of A� by inhibiting the precursor
substance of A�, A�PP, and has potential for the
treatment of AD [95].

Gene silencing and genome editing

The property of a therapeutic agent in AD to
penetrate the BBB has generally been regarded as
a prerequisite for new drugs [96]. Recognition of
the importance of the liver in A� production and
clearance means that targeting the liver might be a
promising therapeutic approach.

The last decade has witnessed renewed inter-
est in novel therapeutic agents aiming to prevent
the production of disease-causing proteins at
the level of mRNA, reviewed in [97]. Broadly,
two oligonucleotide-based technologies are being
deployed in this way, antisense oligonucleotides
(ASO) and small interfering RNAs (siRNA), which
respectively prevent translation or trigger RNA
induced silencing complex (RISC)-dependent cleav-
age of a specific RNA target. A large number of

disease targets reside in the liver where they are sus-
ceptible to modulation by oligonucleotide therapies
[98]. The ASO mipomersen, targeting apolipoprotein
B in the liver to treat familial hypercholesterolemia,
was among the first such agents to be marketed [99].
The recent entry of large numbers of gene silencing
agents into clinical trials owes much to the develop-
ment of conjugates that enable specific delivery of the
oligonucleotide to the cytoplasm of the desired target
cell, allowing lower doses with fewer side effects. In
particular, addition of N-Acetylgalactosamine conju-
gates, which bind with high specificity and affinity
to the asialoglycoprotein receptor on hepatocytes has
elicited robust gene silencing in vivo [100].

Proof of concept for silencing the production of
a form of aberrant amyloid by the liver in order to
prevent or reverse damage to the nervous system is
provided by the rare metabolic disease, hereditary
transthyretin amyloidosis. In this condition, mutant
transthyretin is produced in the liver resulting in
amyloid fibril deposition in various organs and het-
erogeneous clinical symptoms including peripheral
neuropathy and cardiomyopathy [101]. Patirisan, a
gene silencing agent delivered to the hepatocyte in a
lipid nanoparticle, reduces the production of abnor-
mal transthyretin and can halt or even reverse the
process. Both Patirisan, an siRNA and Inotersen, an
untargeted ASO, are approved by the FDA and EC
for this disorder [102].

Whereas gene silencing provides a temporary fix,
all be it with single dose duration of action above
six months now regularly achievable, the ability to
permanently alter the human genome remains an
attractive possibility for patients with deleterious
genetic mutations. This has been made possible by a
series of technologies collectively known as genome
editing for which CRISPR-Cas9 was the archetype.
In murine models, liver-directed somatic genome
editing with CRISPR-Cas9 is a novel and versatile
approach with therapeutic potential in metabolic dis-
orders [103]. The proof of principle that a gene can
be targeted in mammalian hepatocytes in vivo would
suggest that sequence-specific gene editing might
be viable in humans [104–107]. In the future, liver-
specific gene editing may be used to alter hepatic gene
transcription for therapeutic purposes in AD. It is
tempting to speculate that mutations in A�PP, PSEN1
[108], and ApoE4 [109] could be targeted with these
technologies. In addition, as lifelong overexpression
of wild-type A�PP causes AD in individuals with
trisomy 21 (Down’s syndrome), so the normal hep-
atic A�PP gene could be targeted in AD to decrease
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production and alter the balance in favor of A�42
clearance.

LIVER DISEASES AND DEMENTIA

It is recognized that hepatic functionality should be
considered when A� balance is addressed [24]. This
is reflected in the situation of orthotopic liver trans-
plantation (OLT) where the recipient passes through
an anhepatic phase to reperfusion of the new organ.
Postoperative cognitive dysfunction is observed in
11% to 44% of OLT patients and is unrelated with the
success of a surgery. It is associated with an increase
in the serum biomarkers of dementia including A�
protein 24 h after surgery [110], presumably reflect-
ing alterations in the clearance of A� as a result of
OLT.

90% of people who die from liver disease are under
the age of 70, but the majority of AD cases occur
late in life (>65 years). However, a recent large epi-
demiological study demonstrated that comorbidities
significantly associated with mild cognitive impair-
ment and dementia were cirrhosis (OR 3.29, CI
1.29–8.41), cerebrovascular disease (OR 3.35, CI
2.62–4.28), asthma (OR 1.56, CI 1.07–2.27), and
diabetes mellitus (OR 1.24, CI 1.07–1.44) [111]. In
addition, some studies have shown associations of
AD with specific liver diseases.

Hepatitis C virus (HCV)

Chronic HCV infection has been found to be asso-
ciated with dementia in a large population-based
cohort (Hazard ratio 1.36 [95% CI 1.27–1.42]) [112].
More recently, a predictor of cirrhosis in chronic HCV
infection, an elevated aspartate aminotransferase to
alanine aminotransferase ratio, has been reported to
be associated with AD diagnosis (Odds ratio: 7.932)
[113]. ApoE, a critical player in A� homeostasis, is
intimately involved in production of infectious HCV
particles [114] and is important in HCV cell entry.
HCV may cross the BBB leading to neuroinflamma-
tion and neuropsychiatric symptoms [115]. We have
reported ApoE deficiency in HCV associated depres-
sion [116]. Interestingly low plasma levels of ApoE
are associated with increased risk of future AD and
all dementia in the general population, independent
of �2/�3/�4 APOE genotype [117].

NAFLD, metabolic syndrome, and type 2 diabetes

Non-alcoholic fatty liver disease (NAFLD) is a
chronic liver disease which is increasing in preva-

lence, in tandem with the obesity epidemic. NAFLD
defines a spectrum of conditions from simple steato-
sis to non-alcoholic steatohepatitis and cirrhosis
and is regarded as the hepatic manifestation of the
metabolic syndrome. Hepatic insulin resistance is
associated with NAFLD and is a major factor in the
pathogenesis of type 2 diabetes and the metabolic
syndrome [118].

Various epidemiological studies have shown that
metabolic syndrome and type 2 diabetes [119] [120]
are correlated with AD. In addition, short sleep dura-
tion and poor sleep quality are associated with an
increased risk of both NAFLD [121] and AD [62].

In murine models, correlations between a high fat
diet and elevated brain and serum A�42 have been
observed [122], and NALFD induces signs of AD in
wild-type mice and accelerates pathological signs of
AD [123]. Advanced glycation end-products exacer-
bate progression of experimental NAFLD [124] and
AD [22].

SUMMARY

An imbalance in the A� production/excretion rate
underlies the increased brain concentrations of A�
in AD. There is evidence suggesting that the liver
is the origin of brain A� deposits and that it is
involved in peripheral clearance of plasma A�. LRP-
1 is the major receptor responsible for the saturable
uptake of plasma free A� by the liver. A number
of medications that are already licensed for other
indications and herbal remedies that are currently
available improve the A� balance in animal models
via decreased hepatic production or increased biliary
clearance. Hepatic functionality should be considered
when A� balance is addressed and future develop-
ments could include liver-directed somatic genome
editing and/or therapeutic gene silencing. Cirrho-
sis, chronic hepatitis C infection, and NAFLD, the
hepatic manifestation of metabolic syndrome, are
associated with an increased risk of AD, despite
chronic liver disease leading to an early death (under
the age of 70 years) in 90% of patients and LOAD
manifesting after the age of 65 years.

Clinical specialization, subspecialization, and sub-
subspecialization has some advantages in terms of
creating standards but could be said to be leading
to a growing fragmentation of medical care [125].
Hence, when a variant in the ATP-binding cassette
A7 (ABCA7) gene which encodes for a phospho-
lipid transporter, is shown to be associated with
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LOAD [126], subsequent research focuses on brain
mRNA and protein expression [127]. Conversely,
hepatologists, who have highly focused knowledge
and skills, do not see patients with dementia or keep
abreast with the scientific progress in the field of
AD. Most patients with long-term conditions and
co-morbidities want physicians who see them as
a whole person and can deliver holistic care. Per-
haps the time has come for a more physiological
approach to AD, looking at the integrative function of
organs and a multidisciplinary approach to reversing
the epidemic?
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