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Abstract.
Background: Several positron emission tomography (PET) studies have explored the relationship between amyloid-� (A�),
glucose metabolism, and the APOE �4 genotype. It has been reported that APOE �4, and not aggregated A�, contributes to
glucose hypometabolism in pre-clinical stages of Alzheimer’s disease (AD) pathology.
Objective: We hypothesize that typical measurements of A� taken either from composite regions-of-interest with relatively
high burden actually cover significant patterns of the relationship with glucose metabolism. In contrast, spatially weighted
measures of A� are more related to glucose metabolism in cognitively normal (CN) aging and mild cognitive impairment
(MCI).
Methods: We have generated a score of amyloid burden based on a joint singular value decomposition (SVD) of the cross-
correlation structure between glucose metabolism, as measured by [18F]2-fluoro-2-deoxyglucose (FDG) PET, and A�, as
measured by [18F]florbetapir PET, from the Alzheimer’s Disease Neuroimaging Initiative study. This SVD-based score reveals
cortical regions where a reduced glucose metabolism is maximally correlated with distributed patterns of A�.
Results: From an older population of CN and MCI subjects, we found that the SVD-based A� score was significantly
correlated with glucose metabolism in several cortical regions. Additionally, the corresponding A� network has hubs that
contribute to distributed glucose hypometabolism, which, in turn, are not necessarily foci of A� deposition.
Conclusions: Our approach uncovered hidden patterns of the glucose metabolism-A� relationship. We showed that the
SVD-based A� score produces a stronger relationship with decreasing glucose metabolism than either APOE �4 genotype
or global measures of A� burden.

Keywords: Alzheimer’s disease, amyloid-�, cross-correlation, glucose metabolism, positron emission tomography, singular
value decomposition
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INTRODUCTION

Regional glucose hypometabolism and the accu-
mulation of fibrillar amyloid-� (A�) plaques are
considered to be prominent features of mild cog-
nitive impairment (MCI) and Alzheimer’s disease
(AD) [1–4]. The “amyloid cascade hypothesis”[5–7]
points to A� deposition as the key triggering event
that induces reduced glucose metabolism, brain atro-
phy, cognitive impairment, and dementia. As such,
investigators have extensively tested the amyloid
cascade hypothesis to gain a better understand-
ing of the relationship between A� deposition and
AD-associated pathophysiological changes, such as
glucose hypometabolism.

In an early study, Mega et al. [8] found an inverse
relationship between [18F]2-fluro-2-deoxyglucose
(FDG) positron emission tomography (PET) signal
and biochemical measures of soluble and insolu-
ble A� in prefrontal and parieto-occipital cortical
regions, thereby providing a basis for further inves-
tigations into the association between regional
metabolic deficits and A� burden. While Drzezga
et al. [9] found the relationship between A� depo-
sition and glucose metabolism to be the same in
normal aging and AD, more recent studies [10–12]
suggest that fibrillar A� load and cerebral glucose
metabolism follow temporally-divergent evolution
paths across AD progression [13], starting from the
early, preclinical stages of the disease. Some investi-
gations [10, 14] have found subtle hypometabolism in
AD-signature regions for young, cognitively normal
(CN) subjects who are apolipoprotein E �4 (APOE
�4) carriers, but with no evidence of A� accumula-
tion. Similarly, Jack et al. [10] showed that a high
percentage of cognitively normal, elderly subjects
had strong evidence of FDG PET hypometabolism
before any signs of A� deposition. These studies
have generally interpreted AD progression as a sce-
nario where the APOE �4 status alone can induce
hypometabolism, but A� deposition alone can also
induce similar hypometabolism, especially in AD-
signature cortical regions [14]. More generally, Kadir
et al. [15] found an increase in fibrillar A� load in
MCI patients followed by stabilization at the AD
stage, while regional cerebral glucose metabolism
declined in MCI patients and worsened with subse-
quent cognitive decline.

It has been also reported that APOE �4, and
not aggregated fibrillar A�, contributes to glucose
hypometabolism in CN [16] and MCI [17] sub-
jects. Similarly, Knopman et al. [18] reported that

the effect of APOE �4 on glucose metabolism was
not completely driven by the effect of A� depo-
sition in CN. This work suggested that a set of
AD-signature regions in AD progression might sim-
ply have unique susceptibility to both aging and
APOE �4-related effects. In contrast, Yi et al. [19]
found that, for CN subjects carrying the APOE �4
genotype, hypometabolism in AD-signature regions
is primarily mediated by global cortical A� deposi-
tion. More general results suggest that, independently
of the APOE �4 genotype, A� accumulation and
hypometabolism are more likely to occur simulta-
neously through the spectrum of brain A� levels in a
dose-dependent manner [20, 21].

A potential limitation of these previous stud-
ies has been the representation of A� by a single
global index, computed either from the whole cor-
tex or from a pre-specified target region-of-interest
(ROI) with relatively high A� burden. As such,
the global-to-distributed view of the relationship
A�-glucose metabolism has dominated the field. In
order to overcome this limitation, some studies have
focused on different spatial aspects of such a rela-
tionship, namely, the regional-to-regional view [20,
22, 23] (i.e., spatially concurrent measures of A�
and metabolism) and the distributed-to-distributed
view [24]. La Joie et al. [23] provided early evidence
for regional variations in the relationship between
A� load and hypometabolism, while Lowe et al.
[20] showed strong associations between regional
hypometabolism and regional Pittsburgh compound
B (PiB) PET in CN subjects, particularly in typi-
cal AD-signature regions. However, for a combined
cohort of CN and MCI subjects, regional A� accu-
mulation showed little to no impact on concurrent
regional glucose metabolism [22]. Similarly, using
parallel independent component analysis (ICA) of
FDG PET and PiB PET, A� showed only remote
effects on brain metabolism in probable AD [24].

Given the amount of reported contradictory results,
we focus on revealing distributed-to-distributed
and local-to-distributed views of the A�-glucose
metabolism relationship in CN and MCI subjects.
Despite the fact that MCI is broadly considered a
prodromal stage of AD, not all patients with MCI
progress to AD, and even those individuals who
convert show different rates of reduction in glucose
metabolism and A� accumulation. Similarly, aging
CN subjects may show incipient signatures of patho-
logical AD, particularly those carrying the APOE �4
genotype. As such, it is extremely important to inves-
tigate the glucose metabolism-amyloid accumulation
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relationship at the earliest as possible stage of cog-
nitive deterioration, namely aging CN and MCI. For
such purpose, we employ a singular value decompo-
sition (SVD) [25], which is a data-driven technique
that generalizes both principal components analysis
(PCA) [26] and partial least squares (PLS) [27] to
the case of two different image modalities. Essen-
tially, SVD seeks to express the cross-correlation
structure by a small number of pairs of “principal
components”, each associated with random weights
or loadings that vary over subjects [25].

In the current work, we hypothesize that the tradi-
tional choice of global A� measurements, either the
whole cortex or pre-defined anatomical target ROIs
with high A� uptake, limits our ability to uncover sig-
nificant effects of A� burden on glucose metabolism.
We also hypothesize that distributed-to-distributed
and local-to-distributed patterns of the A� burden-
glucose metabolism relationship are likely to appear
in aging populations with varying degrees of cogni-
tive impairment.

MATERIALS AND METHODS

Subjects and image acquisition

Data used in the preparation of this arti-
cle were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial mag-
netic resonance imaging (MRI), PET, other biological
markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of
MCI and early AD.

The sample for this study consisted of 607
subjects from the ADNI study who had avail-
able [18F]florbetapir PET, [18F]FDG PET, 3D
T1-weighted anatomical MRI, and APOE geno-
typing. CN subjects had Mini-Mental State Exam
(MMSE) scores between 24 and 30 inclusively,
a Clinical Dementia Rating (CDR) of 0, and did
not have depression, MCI, or dementia. Early MCI
(EMCI) subjects had MMSE scores between 24 and
30 inclusively, CDR of 0.5, a reported subjective
memory concern, an absence of dementia, an objec-
tive memory loss measured by education-adjusted
scores on delayed recall of one paragraph from Wech-
sler Memory Scale Logical Memory (WMSLM) II,
essentially preserved activities of daily living, and

no impairment in other cognitive domains. Late
MCI (LMCI) subjects had the same inclusion cri-
teria, except for objective memory loss measured by
education adjusted-scores on delayed recall of one
paragraph from (WMSLM) II. The sample demo-
graphics are shown in Table 1.

A detailed description of the ADNI MRI and
PET image acquisition protocols can be found at
http://adni.loni.usc.edu/methods. ADNI studies are
conducted in accordance with the Good Clinical Prac-
tice guidelines, the Declaration of Helsinki, and U.S.
21 CFR Part 50 (Protection of Human Subjects),
and Part 56 (Institutional Review Boards), where
informed written consent was obtained from all par-
ticipants at each site.

The 607 [18F]florbetapir PET scans were visu-
ally assessed by three independent experts that
successfully completed the training program
described in Amyvid Prescribing Information
(https://pi.lilly.com/us/amyvid-uspi.pdf). The pur-
pose of this visual assessment was to classify subjects
into positive (A�+) and negative (A�-) amyloid
subjects. Each of the three independent experts
provided a single assessment of each [18F]florbetapir
PET scan and the final classification was based on
the most prevalent assessment among the trained
experts.

Image processing

MRI and PET images were processed using the
PIANO™ software package (Biospective Inc., Mon-
treal, Canada). T1-weighted MRI volumes underwent
image non-uniformity correction using the N3
algorithm [28], brain masking, linear spatial normal-
ization utilizing a 9-parameter affine transformation,
and nonlinear spatial normalization to map individ-
ual images from native coordinate space to Montreal
Neurological Institute (MNI) reference space using a
customized, anatomical MRI template derived from
ADNI subjects. The resulting image volumes were
segmented into gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF) using an artifi-
cial neural network classifier [29] and partial volume
estimation [30].

The [18F]florbetapir and [18F]FDG PET images
underwent several pre-processing steps, including
frame-to-frame linear motion correction, smooth-
ing with scanner-specific blurring kernels to achieve
8 mm FWHM [31], and averaging of dynamic frames
into a static image. The resulting smoothed PET
volumes were linearly registered to the subject’s

http://adni.loni.usc.edu
http://adni.loni.usc.edu/methods
https://pi.lilly.com/us/amyvid-uspi.pdf
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Table 1
Summary of subject characteristics

All CN EMCI LMCI

Sample Size 607 223 201 183
Age 73.85 ± 7.37 75.61 ± 6.25 71.52 ± 7.49 74.24 ± 7.84
Gender (F/M) 284/323 120/103 89/112 75/108
APOE �4 (Carrier/Non-Carrier) 237/370 51/172 86/115 100/83
Visual Read A� (+/ –) 184/423 28/194 58/143 98/86
MMSE 28.09 ± 2.38 28.95 ± 1.30 28.45 ± 1.53 26.67 ± 3.32
ADAS-Cog 13.86 ± 8.31 9.46 ± 4.43 12.84 ± 5.59 20.34 ± 10.11
Sample Size CSF 381 148 119 114
CSF-A�1-42 (pg/mL) 183.13 ± 54.36 201.13 ± 52.84 182.31 ± 52.30 160.61 ± 50.13
CSF-tau (pg/mL) 82.42 ± 48.27 67.88 ± 32.53 80.09 ± 44.90 104.52 ± 60.32
CSF-ptau (pg/mL) 40.08 ± 23.21 36.79 ± 19.78 36.43 ± 20.61 48.21 ± 27.65

T1-weighted MRI and, subsequently, spatially nor-
malized to reference space using the linear and
nonlinear transformations derived from the anatomi-
cal MRI registration. The GM density map for each
subject was transformed to the same final spatial res-
olution (i.e., re-sampled to the same voxel size) as the
FDG PET data in order to account for confounding
effects of atrophy in the group level statistical model.
Standardized uptake value ratio (SUVR) maps of
the images were generated from [18F]florbetapir PET
using the full cerebellum as reference region. Simi-
larly, SUVR maps for [18F]FDG PET were generated
using the pons as a reference region.

Statistical analysis

The methodology introduced here is composed of
three main analyses:

1) Singular value decomposition (SVD) of the
multi-modality cross-correlation matrix and
computation of individual SVD-based amyloid
scores

2) Voxelwise general linear model (GLM) for sta-
tistical assessment of the effect of SVD-based
A� scores on FDG PET SUVR

3) Voxelwise GLM for the statistical assessment of
the effect of seed-based amyloid on FDG PET
SUVR

The eigenimages and individual SVD-based scores
resulting from step 1) above will then be used on
the subsequent steps. Indeed, while the individ-
ual A� scores can be straightforwardly regressed
against the FDG PET maps, the corresponding
A� eigenimages also provide useful information
about regions highly contributing to a local-to-
distributed relationship between A� burden and
glucose metabolism. Hence, steps 2) and 3) assess the

statistical significance of the main effect of A� SVD-
based and local (seed)-based scores on metabolism,
respectively. The remainder of this section con-
tains detailed explanations about each of these three
steps.

Cross-correlation and SVD Analysis

In this section, we present a brief summary of
the SVD procedure [25]. Let X and Y be two sets
of N PET images (e.g., florbetapir and FDG SUVR
images), where the rows are the image values and
the N columns are the number of subjects. The num-
ber of subjects must be identical for the two image
modalities, while the number of voxels may dif-
fer. We also assume that the columns of X and Y
are centered by subtracting their mean value over
subjects and normalized by dividing by their root
sum of squares, respectively. The cross-correlation
voxels×voxels matrix between X and Y is defined as

C = XY ′.

Since the size of the cross-correlation matrix C is
usually much larger than its rank (i.e., many more
voxels than subjects), the statistical inference over
this matrix, or even its storage, becomes impractical.
As such, dimensionality reduction techniques based
on matrix decompositions are required. The SVD of
the cross-correlation matrix C is given by

C = UWV ′,

where U and V are orthonormal matrices whose
columns are the so-called eigenimages or spatial
loadings for X and Y respectively, and W is a diago-
nal matrix of component weights (i.e., eigenvalues).
In practice, C is approximated by the first few compo-
nents, ordered according to the values of the weights
in W. Thus, there is no need to re-construct the matrix
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C for extracting significant cross-correlations pat-
terns, but they can be straightforwardly obtained from
the spatial loadings U and V. Within-modality, voxels
with high spatial loading in U and V values co-vary
together (i.e., are positively correlated), while voxels
with high opposite signed values are negatively cor-
related. Thus, high spatial loadings of an eigenimage
in U can be interpreted as a spatial network of highly
correlated voxels that are, in turn, maximally cross-
correlated (i.e., in the sense of canonical correlations)
with the spatial network of voxels showing high
values in the matched eigenimage V. Hence, taken
together, the ordered (i.e., according to the eigenval-
ues in W) pairs of eigenimages in U and V produce
partial, but maximally, cross-correlated distributed-
to-distributed views of full cross-correlation matrix
C. Indeed, the corresponding subject’s scores cor-
responding to U and V are the weighted (i.e., by
the spatial loadings) spatial averages of each PET
modality that produce the largest possible between-
modality cross-correlations.

Additionally, the dot product between a matched
pair of eigenimages resembles the so-called homol-
ogous correlation (i.e., correlation between corre-
sponding voxels), which is simply the diagonal of
the voxel x voxel matrix C. Note that such homol-
ogous correlation would produce a local-to-local (at
the voxel level) distributed view of the correlation
between amyloid and FDG SUVR images.

A straightforward computational way of finding
analytical expressions for the matrices U, V, and W,
as well as for the corresponding subject scores or
eigenvectors, has been reported by Worsley et al. [25].
In particular, SVD-based A� scores (SUVRSVD)
are easily obtained by mapping the florbetapir data
matrix X onto the space of the orthogonal eigenim-
ages U (i.e., U’X). By definition, the SUVRSVD scores
are (distributed) weighted averages of the whole cor-
tex A� burden that maximally correlate with specific
metabolic spatial network. Since the eigenvalues in
W come in an ordered fashion, the pair of compo-
nents corresponding to the first columns of U and
V provide the maximum distributed-to-distributed
cross-correlation pattern between A� burden and
metabolism. In the following description, SUVRSVD
will refer to the first (i.e., corresponding to the max-
imum eigenvalue in W) amyloid score (i.e., first row
of U’X).

Note that the computation of the individual scores
described above depends on the eigenimages that
have been, in turn, derived from the whole sample. In
order to overcome any possible circularity effect, we

have employed a leave-one-out cross-validation tech-
nique to produce the individual SVD-based scores.
Thus, leaving each sample out one-at-a-time, the
SVD and corresponding eigenimages are produced
from the rest of the sample (as previously described).
Then, the individual scores SUVRSVD for the left-out
sample is computed by mapping it onto the space of
the orthogonal eigenimages corresponding to the rest
of the sample.

Assessment of global and local amyloid scores

A voxelwise analysis-of-covariance (ANCOVA)
model that included FDG SUVR as dependent, pre-
dicting variable (YFDG ); age, gender, and cognitive
measurements (MMSE and ADAS-Cog) as global
confounding covariates; GM density as a voxelwise
confounding covariate (grouped as XCov ); and A�
burden (Amyloid), APOE �4 status, and Amyloid x
APOE �4 status interaction as predictors-of-interest
was assessed:

YFDG = b0 + bCovXCov + bAmyAmyloid

+ bApoApoEε4 + bIntAmyloid × ApoEε4 (1)

Note that the GM density was also included as
a covariate in order to minimize the potential con-
founding effect of inter-subject differences in brain
atrophy [32]. Post-hoc, two-tailed Student’s t-tests
were performed to assess the main effects-of-interest
and interaction terms.

Three different A� burden predictors were eval-
uated with this model. The first and second cases
correspond to the SVD-based score (SUVRSVD) and
the average of A� burden within a composite ROI
(SUVRCMP), respectively. Here, the ROI is composed
of typical anatomical brain regions with high A�
load in AD, and includes the frontal, temporal, and
parietal cortices, as well as the precuneus. A third
variant includes local A� measurements (SUVRseed)
taken from 10 mm seeds centered on areas highly
contributing (e.g., local maxima) to the first SVD-
based amyloid eigenimage. Our intention here is to
reveal local-to-distributed patterns on the relationship
between (local at the seed level) A� and (distributed)
glucose metabolism.

The voxelwise statistical analysis was per-
formed using the SurfStat toolbox (http://www.math.
mcgill.ca/keith/surfstat), where statistical maps were
projected onto the cortical surface for visualization
purposes only. The t-statistic maps corresponding
to each effect-of-interest were thresholded using the

http://www.math.mcgill.ca/keith/surfstat
http://www.math.mcgill.ca/keith/surfstat
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Fig. 1. SVD analysis for the cross-correlation between A� and metabolism across the whole sample of florbetapir and FDG PET images.
Cortical surface projections for the pair of spatial loadings of (A) A� and (B) glucose metabolism corresponding to the first principal
component, which accounted for 27.84% of the total co-variability. The strongest positive weights in (A) are regions maximally related
to the reduction of glucose metabolism observed in (B), namely, in the angular and inferior temporal gyri. C) Histograms and empirical
density distribution of the SVD-based A� scores for each clinical sub-population. The CN and EMCI scores show unimodal distributions with
maximum peaks around SUVR = 1.2. The LCMI scores show a bi-modal distribution with two peaks around SUVR = 1.2 and SUVR = 1.6. D)
Box-plots of the A� subject loadings for each cognitive group. The mean SUVRSVD amyloid increases with the cognitive decline (F = 30.84,
p < 0.001).

False Discovery Rate (FDR) procedure (�=0.05) to
control for multiple comparisons [33].

RESULTS

Cross-correlation Analysis

The first (Fig. 1A, B), second, and third SVD
components accounted for 27.84%, 3.41%, and
2.93% of the total co-variability between the flor-
betapir and FDG PET images, respectively. The
strongest positive weights in the first A� eigenim-
age (Fig. 1A) correspond to the medial prefrontal
and posterior cingulate cortices, precuneus, lateral
inferior temporal gyrus, and fusiform gyrus, which

are regions maximally related to the reduction of
glucose metabolism in the angular and inferior
temporal gyri (Fig. 1B). Figure 1 C shows the dis-
tribution (over subjects) of the first SVD-based
A� score (SUVRSVD), as well as an estimation of
the probability distribution functions for the CN,
EMCI, and LMCI subpopulations. While the CN and
EMCI show unimodal distributions of SVD-based
scores with maximum peak around SUVR = 1.2, the
LMCI presents a clear bi-modal distribution with
peaks around SUVR = 1.2 and SUVR = 1.6, respec-
tively. Figure 1D shows box-plots corresponding to
the individual SUVRSVD A� scores for the three
different clinical classification groups. The mean
SUVRSVD A� scores were SUVR = 1.29 ± 0.18,
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1.33 ± 0.21, and 1.44 ± 0.24 for the CN, EMCI,
and LMCI groups, respectively. Indeed, these val-
ues were statistically significant different across the
clinical classification (F = 26.86, p < 0.001), as well
as between APOE �4 carriers (SUVR = 1.45 ± 0.22)
and APOE �4 non-carriers (SUVR = 1.28 ± 0.19)
(t = 10.09, p < 0.001). Statistically significant cor-
relations were found between the SUVRSVD A�
scores and MMSE (r = –0.33, p < 0.001), ADAS-
Cog (r = 0.37, p < 0.001), CSF A�1-42(r = –0.67,
p < 0.001), CSF tau (r = 0.45, p < 0.001), and CSF
p-tau (r = 0.48, p < 0.001).

SVD-based Aβ scores analysis

The main effects of APOE �4 status and SVD-
based A� scores on FDG SUVR were assessed by
statistical inference over the coefficients bApo and
bAmy in Model (1), respectively.

Although showing an overall trend of relation-
ship with glucose metabolism, the main effect of
APOE �4 after controlling for SVD-based A� only
appeared to be statistically significant in small regions
corresponding to inferior frontal gyrus (Fig. 2A).
Statistically significant A�-related decreases in
metabolism were observed in a number of regions,
including the bilateral right angular gyrus, inferior
temporal gyrus, and precuneus (Fig. 2B). Note a more
limited set of significant regions when using the com-
posite ROI average of A� burden (Fig. 2C).

We subsequently re-evaluated the corresponding
SVD-based A� scores for each of the subpopulations
of CN, EMCI, and LMCI subjects. Supplemen-
tary Figure 1 shows the first SVD A� (A, C, E)
and FDG (B, D, F) components, which accounted
for 15.21%, 25.17%, and 28.55% of the total co-
variability, respectively. It is interesting to note that,
while the topographical distribution of the first FDG
eigenimage appeared to be similar across the three
subpopulations, the A� eigenimage seems to be
shifted from inferior parietal regions in CN subjects
to inferior temporal regions in the LCMI cohort. For
the CN group, the strongest positive weights in the
first A� eigenimage (Supplementary Figure 1A) cor-
respond to the posterior cingulate cortex, precuneus,
lateral inferior temporal gyrus, and right angular
gyrus, while the strongest negative FDG weights
appear in the right angular gyrus (Supplementary
Figure 1B). The A� eigenimage corresponding to
the EMCI group does not appear to be strong in the
right angular gyrus (Supplementary Figure 1 C), but
it maintains strong concurrent negative FDG weights

(Supplementary Figure 1D). However, the spatial pat-
terns of the SVD components in the LMCI group are
similar to those corresponding to the whole sample
(Supplementary Figure 1E, F). There was no sig-
nificant effect of SVD-based scores or APOE �4
on metabolism for the individual sub-populations
corresponding to CN and EMCI subjects (figures
not shown here). In contrast, we observed (weak)
statistically significant relationships between SVD-
based A� and glucose metabolism in the angular
gyrus and middle temporal gyri in the LMCI cohort
(Fig. 2D).

Similar to the previous SVD analysis on each par-
ticular cognitive cohort, we also assessed the value
of the SVD-based A� scores on the two groups of
subjects labelled as A�+ and A�- based on visual
reads. Supplementary Figure 2 shows the first SVD
amyloid (A, C) and FDG (B, D) components for the
A�- and A�+ groups, which accounted for 12.19%
and 10.85% of the total co-variability, respectively.
While the strongest negative FDG weights appear
in the right angular gyrus, posterior cingulate, and
precuneus areas for the A�- cohort (Supplementary
Figure 2B), no clear indication of a focal relation-
ship with distributed A� appear in the group of A�+
subjects (Supplementary Figure 2D). The topograph-
ical distribution of the first A� eigenimage in the
A�- subjects (Supplementary Figure 2A) appears
to be strong in the posterior cingulate cortex, pre-
cuneus, lateral inferior temporal gyrus, insula, medial
prefrontal cortex, and right angular gyrus. In con-
trast, the A�+ group shows a more homogenous and
globally distributed pattern of A� related to glucose
metabolism (Supplementary Figure 2 C), particularly
in the frontal cortex. Figure 3A shows the t-test
parametric maps of the relationship between glucose
metabolism and SVD-based A� scores correspond-
ing to the A�- cohort. Some areas of statistically
significant correlations are observed in the right
angular gyrus and the posterior cingulate cortex. As
a comparison, note a weaker relationship for the
case of the composite A� ROI (Fig. 3B), despite
both A� measurements producing scores of sim-
ilar magnitudes (see Fig. 3D). As evidenced by
Figure 3D, the boxplots of the SVD-based and
composite ROI metrics show similar mean values
in both cohort of subjects. In contrast, between-
cohort comparisons show much higher (t = 24.05,
p < 0.001) SVD-based score values for the case of
A�+ (1.58 ± 0.19) as compared to the A�- subjects
(1.22 ± 0.16). Note, however, that the SVD-based
amyloid scores do not produce a strong relationship
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Fig. 2. Statistical assessment of APOE �4 and two different A� predictors on glucose metabolism. A) Cortical surface projections of t-statistic
maps for the main effect of APOE �4. FDR-based thresholding showed no significant regions. FDR-thresholded statistically significant regions
for the main effect of SVD-based A� scores (B) and composite ROI amyloid burden (C) as predictors of cortical metabolism. The effect of
composite ROI A� burden on metabolism is less spatially extended compared to the SVD-based A� score, particularly in the bilateral right
angular gyrus, inferior temporal gyrus, and precuneus. D) Regions surviving FDR thresholding for the main effect of SVD-based A� scores
corresponding to the LMCI cohort. Significant regions appear to be weaker and less spatially extended as compared to the whole sample.

with glucose metabolism in the cohort of A�+ sub-
jects (Fig. 3 C).

Seed-based amyloid analysis

Several seed regions were identified as local max-
ima in the first A� eigenimage: medial prefrontal
cortex (with Talairach coordinates [-6 50 -16] and
[6 50 -16]), precuneus ([-6 -62 38] and [6 -62 38]),
fusiform gyri ([-28 -44 -18] and [28 -44 -18]), pars
opercularis ([-52 14 6], and [52 14 6]), and lateral
inferior temporal gyri ([-56 -42 -12] and [56 -42 -12]).
Based on local minima of the first FDG eigenimage,
two additional seeds were also placed in the left ([-42
-50 36]) and right angular gyri ([42 -50 36]).

A detailed seed-based analysis is presented for two
seed regions: (a) the right angular gyrus (RANG),
a region that showed significant hypometabolism

related to the SVD-based A� load; and (b) the left
fusiform gyrus (LFUSI), a region highly contributing
(i.e., local maxima) to the spatial pattern of the first
SVD-based spatial amyloid loadings. Figure 4A and
4B show the spatial distribution of the A� pattern of
spread or “amyloid network” corresponding to each
of these two seeds, respectively. As expected, rela-
tively strong correlation values were obtained around
the seed location. However, the seed-based amyloid
network relative to the RANG seed (Fig. 4B) appears
to be stronger and has a larger spatial extent compared
to the one corresponding to the LFUSI seed (Fig. 4A).
In fact, the network relative to the RANG seed fol-
lows a spatial pattern similar (although weaker in
magnitude) to the one resulting from the composite
ROI amyloid “seed” (Fig. 4 C). Pearson’s correla-
tion between local A� and local glucose metabolism
(i.e., at the same seed location) in the LFUSI and
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Fig. 3. Statistical assessment of different A� predictors on glucose metabolism for the cohort of A�- and A�+ subjects. A) Strong areas of
relationship between SVD-based A� scores and glucose metabolism are observed in the bilateral angular gyri and the posterior cingulate
cortex for the A�- subjects. B) A much weaker association is observed for the composite ROI A� score. C) A weak association between
SVD-based scores and metabolism is also observed for A�+ subjects. D) Boxplots for the SVD-based A� scores and composite ROI amyloid
show similar mean values in both cohorts of subjects.

RANG were r = –0.1613 (p < 0.001) and r = –0.2562
(p < 0.001), respectively. Figure 4D shows box-plots
corresponding to the individual LFUSI and RANG
SUVRseed amyloid measurements for the three dif-
ferent clinical classification groups. Note that, for
each of the three clinical cohorts, the LFUSI seed
region shows relatively lower A� burden than the
RANG seed region. However, these local measures
of amyloid showed distinct local-to-distributed pat-
terns of cross-correlation with glucose metabolism
(Fig. 5A, B). The pattern observed with LFUSI
A� (Fig. 5A) showed negative statistically signif-

icant correlations with glucose metabolism in the
inferior temporal-parietal cortex, posterior cingulate
cortex, and precuneus, which resembles the signifi-
cant regions obtained with the SVD-based amyloid
burden (i.e., Fig. 2B). In contrast, as observed in
Figure 5B, the A� burden in the RANG was neg-
atively related to glucose metabolism in a small
cluster within the RANG itself (i.e., local-to-local
relationship). Remarkably, the strengths of these dis-
tinct seed-based correlation patterns seem to go in
opposite direction as compared the corresponding
A� networks (Fig. 4A, B). While the A� network
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Fig. 4. The A� seed-based network corresponding to (A) left fusiform gyrus (LFUSI) seed, (B) right angular gyrus (RANG) seed, and (C)
composite ROI A� burden. High correlation values are observed around the seed locations represented by black arrows. The A� network
relative to the LFUSI seed is weaker and less spatially extended than that of the RANG seed. D) Box-plots of the seed-based A� measurements
for each cognitive group. For each of the three clinical cohorts, the LFUSI seed region shows lower amyloid values than the RANG seed
region.

for the LFUSI seed appears to be weaker in mag-
nitude and spatial extent than that corresponding to
the RANG seed, the seed-based correlations with
glucose metabolism follow a reverse relationship.
In contrast, the local-to-distributed correlation pat-
terns of the LFUSI seed with glucose metabolism
seem to be stronger and more spatially extended
than those relative to the RANG seed. Figure 5 C
shows the local-to-distributed patterns of relation-
ships with glucose metabolism corresponding to the
LFUSI seed in the LMCI cohort. Here, we observed
statistically significant local effects of LFUSI A�,
particularly in the angular gyrus and lateral middle

and inferior temporal gyri. There was no statistically
significant local-to-distributed effect of LFUSI amy-
loid on metabolism for the individual sub-populations
corresponding to CN and EMCI subjects (figures
not shown here). The local-to-local LFUSI seed cor-
relations for the CN, EMCI, and LMCI cohorts
were r = –0.0525 (p = 0.435), r = –0.1301 (p = 0.065),
and r = –0.1884 (p = 0.011), respectively. For the
case of the RANG seed, no statistically significant
regions survived multiple comparisons (FDR-based
thresholding) in any of the three subpopulations.
The local-to-local RANG seed correlations for the
CN, EMCI, and LMCI groups were r = –0.1322
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Fig. 5. Statistical assessment of seed-based A� predictors on glucose metabolism. Cortical surface projections of FDR-thresholded statis-
tically significant regions for the main effect of (A) LFUSI amyloid seed and (B) RANG amyloid seed on metabolism. The A� LFUSI
seed predicts a significant reduction of glucose metabolism mainly in the inferior temporo-parietal cortex, posterior cingulate cortex, and
precuneus. The A� RANG seed only predicts a spatially concurrent significant reduction of metabolism in the right angular gyrus itself. C)
Effect of LFUSI amyloid seed in metabolism corresponding to the LMCI cohort. Significant regions essentially match those for the case of
the whole sample.

(p = 0.0486), r = –0.2157 (p = 0.002), and r = –0.2757
(p < 0.001), respectively.

DISCUSSION

In this manuscript, we have proposed a joint SVD
cross-correlation and seed-based correlation analysis
that allowed us to handle multi-modality interac-
tions in a more integrative manner. We applied
these techniques to a set of florbetapir and FDG
PET images from a cohort of CN and MCI ADNI
subjects. Our analysis highlighted a set of spa-
tially distributed regions covering not only typical
areas of high A� burden, but also specific areas
of relative low burden (e.g., fusiform gyrus) that
are related to the reduction of glucose metabolism.
We then derived an SVD-based score that does not
only differentiate between A�- and A�+ subjects,
but also accounts for a significant relationship with
glucose metabolism on those subjects showing rela-
tively lower values of A� burden. Additionally, our
seed-based correlation analysis showed that focal
regions with relatively low A� burden (e.g., fusiform
gyrus) may exhibit a much stronger association to

distributed patterns of decreasing metabolism than
other regions with higher amyloid load (e.g., angular
gyrus).

It has been a common practice to express A�
burden by a global index that represent the A� accu-
mulation in regions with relatively high burden. Such
practice may originate in early studies that showed
strong topographical overlap between the distribution
of A� burden and FDG hypometabolism, particu-
larly in lateral parieto-temporal, posterior cingulate,
and precuneus regions [34, 35], and more generally,
within the so-called intrinsic connectivity networks
(e.g., default model network) [36, 37]. Despite some
more recent studies [38] having shown a mismatch
between regional metabolic alterations and toxic A�
presence, the use of a composite ROI for describing
A� burden is still dominant in the field. In fact, stud-
ies of potential therapeutic agents designed to reduce
A� have employed composite ROI scores as an out-
come measure [39, 40]. Hence, despite the usefulness
of composite ROI scores for assessment of A� bur-
den progression and the development of anti-amyloid
therapies, its validity for revealing interactions with
other brain biomarkers (e.g., glucose metabolism,
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brain atrophy, brain functional connectivity) remains
questionable.

In concordance with other studies [24, 38, 41], our
results from the seed-based correlation analysis sug-
gest that distributed patterns of neurodegeneration
may also be related to focal AD-related pathologies in
remote, “connected” brain regions with relatively low
A� burden. Nevertheless, the actual meaning of the
term “connected” in this context still needs to be fully
understood. It is still not clear whether distributed
patterns of reduced metabolism were mediated by
either functional connectivity or by the spread of A�
pathology following the underlying structural con-
nectivity. Even though, and in correspondence with
other studies [42], our findings point to the necessity
of incorporating a more complex network perspec-
tive into the accepted temporal models [7, 43] of the
amyloid cascade hypothesis [5, 6].

The relationship between A� accumulation,
hypometabolism, and functional connectivity has
been explored in several studies [9, 36, 44]. In
one study [9], the authors identified a significant
disruption of MRI-derived functional whole-brain
connectivity in densely connected cortical regions
(i.e., hubs) for amyloid-positive MCI subjects. Fur-
ther, they found that increased A� burden was
correlated with reduced whole-brain connectivity
and glucose metabolism, particularly in the pos-
terior cingulate cortex/precuneus hub region. As
explained by Buckner and colleagues [36], since
cortical hubs are regions of high intrinsic activity
and metabolism associated with information pro-
cessing, they could explain the pattern of regional
vulnerability in AD. Correspondingly, our joint SVD
analysis revealed a specific pattern of distributed
regions (first amyloid eigenimage in Fig. 1) where
A� burden was maximally related to a decrease
in glucose metabolism. Remarkably, the areas most
strongly contributing (e.g., fusiform gyri, pars opec-
ularis, medial frontal regions, inferior temporal gyri)
to that specific A� pattern have been all high-
lighted as metabolic connectivity hubs in our previous
study [17]. The concept of metabolic connectivity
[45] evaluates across-subjects correlations of glu-
cose metabolism between different brain regions,
which have been proven [45] to be consistent with
anatomical network architecture. Therefore, the iden-
tification of metabolic connectivity hubs as the
main components of the first amyloid eigenimage
lends further support to the vulnerability of hub
regions to A� accumulation and functional/metabolic
disconnection.

The different spatial patterns observed in the
first eigenimage corresponding to the SVD anal-
ysis across the different cognitive subpopulations
(Supplementary Figure 1) are in agreement with
previous studies suggesting that global fibrillar A�
load and cerebral glucose metabolism follow spatio-
temporally-divergent [10, 13, 15, 21] evolution paths
across AD progression. Indeed, our analysis showed
that the bilateral angular gyri are common (across
the three subpopulations) regions of strong reduced
metabolism as revealed by the first FDG eigenim-
age, while they only have strong contribution to the
A� eigenimage in the CN group. This finding sug-
gests that the angular gyrus is a region demonstrating
a local-to-local relationship between A� accumula-
tion and metabolism at preclinical and early stages of
AD, while at more advanced clinical stages that rela-
tionship seems to follow a more local-to-distributed
pattern with minor involvement of the inferior pari-
etal areas. In contrast, the fusiform gyrus maintained
a strong contribution to the first amyloid eigenim-
age across the three cognitive populations, although
they appeared to be significantly related to decreasing
metabolism only for the LMCI cohort.

In agreement with our previous findings [21],
our present results also suggest that the statistically
significant association between A� deposition and
glucose metabolism can only be detected across a het-
erogeneous population of subjects representing the
continuous spectrum of the AD pathology, rather than
in discrete segments of the AD progression trajec-
tories represented by homogeneous subpopulations
(e.g., CN, EMCI). As shown in Figure 2, statisti-
cally significant relationship between SVD-based A�
and metabolism could be detected only in the LMCI
subpopulation, perhaps due to the heterogeneity of
the A� scores distribution across subjects (as shown
in Fig. 1D). In any case, those changes in glucose
metabolism related to distributed A� suggest that
putative anti-amyloid therapies should target indi-
viduals who are on the path to high amyloid burden
like the LMCI subpopulation shown here, rather than
using more homogeneous cohorts with more stable
accumulation.

We also found a weak relationship between
metabolism and APOE �4 genotype after account-
ing for distributed SVD-based scores of A�. Our
results are in agreement with those of other studies
[19, 20], who reported that, in a cognitively nor-
mal, aging population, most of the APOE-related
differences in hypometabolism are mediated by A�
burden. That is, APOE �4 genotype alone can be
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related to the reduction of glucose metabolism, par-
ticularly in AD-signature regions. However, when
interacting with A� deposition, most of the reduc-
tion in metabolism is attributable to effect of A�. As
pointed out by other studies [46, 47], such results
should not be interpreted as APOE �4 genotype and
A� burden providing redundant information, but as
having an additive impact on the reduction of glucose
metabolism.

The main limitation of the current study relates
to the computation of SVD-based amyloid scores.
By definition, the SVD computation is a group-level
technique that requires a relatively large (N > 30)
sample size for producing reliable and stable eigen-
images. Since we have validated our results by using a
leave-one-out cross-validation technique to produce
the individual SVD-based scores, one would need to
produce the A� eigenimages from an a priori training
dataset of PET images for general clinical appli-
cations. The individual SVD-based amyloid scores
can be easily computed from that given “library” of
eigenimages. The sample size does not seem to be
a limitation here provided the availability of large
datasets, such as the ADNI study. Relative to the
composition of the training dataset, our results sug-
gest that in order to detect significant relationship
with metabolism, it should be composed of subjects
with an expected heterogeneous amount of A� bur-
den (e.g., LMCI population) ranging from low A�
load typical of CN individuals to more clear high lev-
els of A� burden that are typically observed at later
stages of the AD. Since we have also showed that
the effect of APOE �4 seems to be mostly driven
by the A� burden, we consider that no particular
distribution of APOE �4 genotype should be taken
into account during the composition of the training
dataset.

Conclusions

We have uncovered associations between glucose
metabolism, A� burden, and APOE �4 status in
a sample of CN and MCI subjects. Our analysis
revealed that the classical approach of choosing a sin-
gle index of global A� burden is sub-optimal from
the perspective of discovering more complex, mul-
tivariate relationships with glucose metabolism. By
exploring the large-scale, cross-correlation between
A� and FDG PET images with the SVD approach, our
analysis revealed key findings, including: 1) glucose
metabolism is not only reduced in concurrent regions
showing high A� load, and 2) not only spatially dis-

tributed, but also focal accumulation of A�, can be
related to metabolic dysfunction in remote regions. To
our knowledge, this study is the first to relate glucose
metabolism and A� burden from a network per-
spective that accounts for distributed-to-distributed
and local-to-distributed patterns of cross-correlation.
Future work will expand the current multivariate anal-
ysis to identify either distributed or local patterns of
A� maximally-related (e.g., modulated) to metabolic
connectivity.
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