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Abstract. Some individuals, here referred to as Non-Demented with Alzheimer’s Neuropathology (NDAN), retain their
cognitive function despite the presence of amyloid plaques and tau tangles typical of symptomatic Alzheimer’s disease (AD).
In NDAN, unlike AD, toxic amyloid-3 oligomers do not localize to the postsynaptic densities (PSDs). Synaptic resistance
to amyloid-f3 in NDAN may thus enable these individuals to remain cognitively intact despite the AD-like pathology. The
mechanism(s) responsible for this resistance remains unresolved and understanding such protective biological processes
could reveal novel targets for the development of effective treatments for AD. The present study uses a proteomic approach
to compare the hippocampal postsynaptic densities of NDAN, AD, and healthy age-matched persons to identify protein
signatures characteristic for these groups. Subcellular fractionation followed by 2D gel electrophoresis and mass spectrometry
were used to analyze the PSDs. We describe fifteen proteins which comprise the unique proteomic signature of NDAN PSDs,
thus setting them apart from control subjects and AD patients.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
form of dementia, affecting more than 5 million
Americans [1]. Old age is the greatest risk factor for
AD, which thus affects over one third of people older
than 85 years of age. Other risk factors include family
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history/genetics (apolipoprotein €, APOE; amyloid-
B precursor protein, ABPP; presenilin, PSEN1 and
PSEN?2), brain injury, cardiovascular health, physical
activity, and social interactions among others [2—4].
While available therapies have limited efficacy and
only temporarily mitigate cognitive decline, currently
there are no disease-modifying treatments for AD.
Typical AD pathology is characterized by two
main neurodegenerative processes: amyloidogenesis
and neurofibrillary degeneration [5]. Amyloidogen-
esis leads to deposition of extracellular amyloid-f3
(AB) peptide, while neurofibrillary tangles (NFTs)
contain hyperphosphorylated tau protein. However,
there is no correlation between presence of mature
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AP deposits and NFTs with the cell loss or cog-
nitive decline [6—-10]. On the other hand, presence
of soluble oligomeric species of AP and tau in
the brain correlates with cognitive dysfunction [7,
11-13]. Early oligomers, the most toxic forms of
misfolded AB and tau forming during the aggre-
gation process, can accumulate at the synapse and
synergistically impair dendritic spines in the hip-
pocampus [7, 14-19]. Microscopic changes in the
brain begin long before memory loss [20]. Synapse
loss is believed to occur at early stages of the dis-
ease [20, 21], while cell death occurs at later stages
and contributes to ultimate cognitive decline [20].
AD has a long asymptomatic stage and with the
development of improved neuroimaging techniques
it has become evident that some individuals with
AD-like neuropathology do not exhibit any cognitive
decline during their lifetime ([8, 20, 22]; reviewed by
[23]). Such individuals can be described as “asymp-
tomatic at risk for AD dementia”, or “not normal,
not MCI (mild cognitive impairment)” [22]. We refer
to this cohort of individuals as Non-Demented with
Alzheimer’s Neuropathology (NDAN) [24]. Several
research groups, including ours, are trying to under-
stand the mechanisms involved in preservation of
cognitionin NDAN, with the goal of identifying treat-
ment targets to develop novel therapeutic concepts
based on intrinsic resistance to AD [6, 8, 22, 24-30].

Synaptic dysfunction in AD is observed as a result
of AP oligomers association with the postsynap-
tic density (PSD) [16]. At the PSD, AR oligomers
oppose expression of long-term potentiation (LTP),
modify protein content, and induce dendritic spine
shrinkage and eventually loss [16, 31, 32]. Since the
size of the PSD is proportional to the strength of
the synapse, AB-driven synapse damage can result
in the loss of cognitive function. In AD, plasticity
and cognition are affected through the perturbation
of Ca?* /calmodulin-dependent protein kinase IT-a
(CaMKII) autophosphorylation [32]. Association of
A oligomers with the PSD implicates dephospho-
rylation (deactivation) of CREB (cAMP response
element-binding protein factor), which in turn affects
transcription of genes regulating long-term changes
in synaptic strength [33].

We have previously reported that NDAN synapses
reject AP oligomers, which could explain why
NDAN subjects remain cognitively intact. Our lab-
oratory has demonstrated for the first time that the
PSD of NDAN subjects is free of AP oligomers [24].
Based on this observation, we hypothesized that there
might be unique changes in protein expression levels

at the PSDs of NDAN subjects that specifically mark
the ability of their PSDs in the hippocampus to reject
binding of toxic AR oligomers. To test our hypothesis,
in the present work we performed proteomic analy-
sis of the PSDs isolated from healthy control, AD,
and NDAN individuals. The protein levels in AD and
NDAN were compared to control, in addition to direct
NDAN versus AD comparison. As a result, we identi-
fied a unique PSD protein signature of NDAN which
consists of fifteen proteins, setting them apart from
control and AD.

METHODS

Case subjects

Frozen mid-hippocampus tissue was obtained from
the Oregon Brain Bank at Oregon Health and Sci-
ence University (OHSU) in Portland, OR. Donor
subjects were enrolled and clinically evaluated in
studies at the NIH-sponsored Layton Aging and
AD Center (ADC) at OHSU. Subjects were par-
ticipants in brain aging studies at the ADC and
received annual neurological and neuropsycholog-
ical evaluations, with a Clinical Dementia Rating
(CDR) assigned by an experienced clinician. Con-
trols and NDAN had normal cognitive and functional
examinations with CDR <1. The AD subjects were
diagnosed by a clinical team consensus confer-
ence, met the National Institute for Neurological and
Communicative Disorders and Stroke-Alzheimer’s
Disease and Related Disorder Association diagnos-
tic criteria for clinical AD, had a CDR of greater
than 1.0 and neuropathologic confirmation at autopsy
(after informed consent). Tissue use conformed
to institutional review board-approved protocols.
Neuropathologic assessment conformed to National
Institute on Aging-Reagan consensus criteria. All
brain tissue was examined by a neuropathologist
for neurodegenerative pathology including NFTs and
neuritic plaques. Using standardized CERAD criteria
[34], cases were assigned an amyloid score based on
the deposition of amyloid plaques in the brain (0 =no
plaques, 1 = sparse plaques, 2 = moderate plaques and
3 =dense plaques) and a Braak stage (0-6; with 6
being the most severe) indicative of the level and
location of hyperphosphorylated tau tangles [35].
In addition to the pathological information detailed
above, demographical data were received along with
the frozen tissue. These included age, sex,and MMSE
score [34] for each case. Several AD patients pre-
sented with relatively high MMSE scores, which is
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attributable to multiple factors: 1) the last MMSE was
collected several months prior to death, 2) the diag-
nosis is mainly based on consensus CDR assessments
and several tests beyond MMSE, 3) even milder
impairments sometimes led to the diagnosis of AD
with the understanding that this was earlier-stage dis-
ease. When these scores are looked at as a whole, it
can be appreciated that these patients do tend to be
in earlier stages of dementia, both in terms of their
clinical ratings and in terms of their pathologies, with
intermediate (3—4) versus high (5-6) Braak scores.

Hippocampal regions from twenty-four cases were
used for proteomic analysis using 2D gel elec-
trophoresis (eight samples per group were pooled).
An independent set of fifteen samples (five cases per
group) different from those assayed by 2D gel elec-
trophoresis was used for validation of protein levels
using immunoblotting.

Synaptic fractionation

For proteomic studies, synaptic fractionation was
performed as described previously [36—38]. Briefly,
hippocampal tissue was homogenized in 0.32 M
sucrose solution containing 1x Protease Inhibitor
Cocktail (Sigma-Aldrich) and Halt Phosphatase
Inhibitor Cocktail (Life Technologies, Inc) using a
Dounce glass homogenizer. Synaptosomes were iso-
lated using a sucrose gradient and ultracentrifugation
(100,000 x g for 3 h at 4°C). Synaptic junctions were
obtained by incubating the synaptosomes in pH=6
buffer (1 M Tris in 0.1 mM CaCl,) and then centrifug-
ing at 40,000 x g for 30 min at 4°C. The supernatant
(containing synaptic vesicles) and the pellet were
collected separately. The pellet was solubilized and
incubated in pH =8 buffer (20mM Tris, 1% Triton
X-100 in 0.1 mM CaCl,) and then centrifuged at
40,000 x g for 30 min at 4°C to generate the PSD
pellet. This pellet was solubilized in 1% SDS.

To confirm protein changes using immunoblot-
ting, the isolation of synaptosomes was performed
using Syn-PER Synaptic Protein Extraction Reagent
(ThermoFisher Scientific) as described previously
[39], followed by ultracentrifugation to obtain
PSD fractions. Similarly to sucrose gradient pro-
tocol described above, the hippocampal tissue was
homogenized using a Dounce glass homogenizer in
Syn-PER Reagent and centrifuged at 1,200 x g for
10min at 4°C. The supernatant containing synapto-
somes was collected and centrifuged at 15,000 x g for
20 min at 4°C. The supernatant (cytosolic fraction)
and pellet (synaptosomes) were collected separately.

Synaptic junctions were obtained by incubating the
synaptosomes in pH =6 buffer (as described above)
and then centrifuging at 40,000 x g for 30 min at
4°C. The supernatant (containing synaptic vesicles)
and the pellet were collected separately. The pellet
was solubilized and incubated in pH =28 buffer (as
described above) and then centrifuged at 40,000 x g
for 30 min at 4°C to generate the PSD pellet. This
pellet was solubilized in 1% SDS.

Proteomics

Control, NDAN, and AD samples were processed
for proteomic analysis as described previously (for
examples, see [40, 41]). Triplicate samples from con-
trol, AD, and NDAN PSD (200 pg) were extracted
with 7 M urea, 2 M thiourea, 2% CHAPS, and
50mM Tris pH 7.5, treated with sodium ascor-
bate (Asc) to reverse S-nitrosylation and then
dialyzed against the urea buffer to remove Asc,
which interferes with labeling. Protein concentra-
tions were determined with the Lowry method and
cysteines (cysteic acid) determined by amino acid
analysis (Model L8800, Hitachi High Technolo-
gies America, Pleasanton, CA). Proteins from the
tissues were then labeled with BODIPY® FL N-
(2-aminoethyl) maleimide (Life Technologies, Inc.,
Carlsbad, CA) at 60 fold excess cysteine to BOD-
IPY FL-maleimide (BD) as published previously
[42]. After quenching the labeling reactions with
10x molar excess -mercaptoethanol (BD: BME),
200 wg labeled proteins in 0.5% IPG buffer pH
3-10 (GE Healthcare) were loaded onto a 11cm
pH 3-10 IPG strip (GE Healthcare) and proteins
were focused according to the previously published
protocol [43]. After focusing, the IPG strips were
equilibrated in 6 M Urea, 2% SDS, 50 mM Tris,
pH 8.8, 20% glycerol for 30 min at room temper-
ature, applied to an 8-16% Tris-glycine-SDS gel
and run at 150V x 2.25h at 4°C. The gels were
fixed for 1h in 10% methanol and 7% acetic acid
and washed overnight in 10% ethanol. Finally, gels
were imaged on a Typhoon Trio Imaging System
(GE Healthcare; excitation A =480/40 nm & emission
A=535/50nm). We have previously demonstrated
that this covalent sulfhydryl alkylation method using
an uncharged thiol-reactive dye exhibits excellent
specificity for cysteine thiols—Ilittle to no modifica-
tion of other amino acid residues, does not impact
protein electrophoretic mobility—for spot matching
with unlabeled proteins, and accomplishes highly
accurate and reproducible quantification—by virtue
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of its specificity and saturating concentration over
protein thiols [40, 42].

Protein quantification and image analysis

The 2D gel electrophoresis (2DE) images were
analyzed using SameSpots software (TotalLab, Ltd.
Newcastle Upon Tyne, UK). The software performs
pixel-to-pixel matching before spot detection, ensur-
ing that spot boundaries are the same for all gels, and
eliminating errors that accumulate in the reference
gel(s) as the number of gels within one experiment
increases. Once the pixel matching and spot detec-
tion is complete, a reference gel is selected according
to several criteria, including quality and number of
spots. Subsequent to automatic spot detection, spot
filtering is manually performed and spots with an
area of less than 250 pixels are filtered out, and
spots with a volume (intensity) / area ratio of less
than 375 pixels (whose abundance is insufficient for
mass spectrometry (MS) identification) are also fil-
tered. Typically, some manual spot editing is required
to correct for spots that are not split correctly, not
detected, or split unnecessarily during the automated
detection process. The matching of spots between the
gels is manually reviewed and adjusted as necessary.
The software normalizes spot volumes using a calcu-
lated bias value based on the assumption that the great
majority of spot volumes represent no change in abun-
dance (ratio control to experimental = 1.0) (TotalLab
documentation).

Ratiometric ~ calculation  from  BODIPY-
fluorescence units was conducted for quantifying
differential protein abundance for the samples, and
parametric t-test performed on log 2 normalized
abundance ratios.

Mass spectrometry and protein identification

Selected 2DE spots that exhibited significant
differential prevalence (p < 0.05) were picked robot-
ically (ProPick II, Digilab, Ann Arbor, MI), and
trypsin digested. In brief, gel spots were incubated
at 37°C for 30min in 50mM NH4HCO3, dehy-
drated twice for 5Smin each in 100 wl acetonitrile,
dried, and proteins were digested in-gel at 37°C
overnight with 10 pl of trypsin solution (1% trypsin
in 25mM ammonium bicarbonate). Peptide mix-
tures (1 ul), obtained after tryptic digestion, were
directly spotted onto a target plate with 1wl of
alpha-cyano-4-hydroxycinnamic acid matrix solu-
tion (5 mg/ml in 50% acetonitrile) and analyzed by

matrix assisted laser desorption ionization-time of
flight (MALDI-TOF/TOF) MS using the ABI 4800
Proteomics Analyzer (AB Sciex, Foster City, CA).
The Applied Biosystems software package included
the 4000 Series Explorer (v.3.6 RC1) with Ora-
cle Database Schema (v.3.19.0) and Data Version
(3.80.0) to acquire and analyze MS and MS/MS
spectral data. The instrument was operated in a pos-
itive ion reflectron mode with the focus mass set
at 1700Da (mass range: 850-3000Da). For MS
data, 1000-2000 laser shots were acquired and aver-
aged from each protein spot. Automatic external
calibration was performed by using a peptide mix-
ture with the reference masses 904.468, 1296.685,
1570.677, and 2465.199. Following MALDI MS
analysis, MALDI MS/MS was performed on sev-
eral (5—10) abundant ions from each protein spot.
A 1kV positive ion MS/MS method was used to
acquire data under post-source decay conditions. The
instrument precursor selection window was =+ 3 Da.
Automatic external calibration was performed by
using reference fragment masses 175.120, 480.257,
684.347, 1056.475, and 1441.635 (from precursor
mass 1570.700).

AB Sciex GPS Explorer™ (v.3.6) software was
employed in conjunction with MASCOT (v.2.2.07)
to search the UniProt human protein database (last
accessed: June 7,2015; 87,656 sequences 35,208,664
residues) by using both MS and MS/MS spectral
data for protein identification. Protein match proba-
bilities were determined by using expectation values
and/or MASCQOT protein scores. The MS peak fil-
tering included the following parameters: a mass
range of 800Da to 3000Da, minimum S/N fil-
ter=10, mass exclusion list tolerance =0.5 Da, and
mass exclusion list for some trypsin and keratin-
containing compounds included masses (Da) 842.51,
870.45, 1045.56, 1179.60, 1277.71, 1475.79, and
2211.1. The MS/MS peak filtering included the
following parameters: minimum S/N filter = 10, max-
imum missed cleavages=1, fixed modification of
carbamidomethyl (C), variable modifications due to
oxidation (M), precursor tolerance =0.2 Da, MS/MS
fragment tolerance=0.3 Da, mass=monoisotopic,
and peptide charges=+1. The significance of a
protein match, based on the peptide mass finger-
print in the MS and the MS/MS data from several
precursor ions, is presented as expectation values
(p<0.001).

In addition, where MALDI protein confi-
dence scores left ambiguous identification, the
trypsin digested protein spots were analyzed by
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nano-LC-MS/MS using a Thermo Scientific Orbi-
trap Fusion MS (San Jose, CA), coupled with a
Dionex Ultimat 3000 nanoHPLC with a 40 well stan-
dard auto sampler. The samples were injected onto
a nanotrap (100 wm i.d. x 1 cm, C18 PepMap 100),
followed by a C18 reversed-phase (RP) home-packed
column (SB-C18, ZORBAX, 5 micron from Agilent;
Santa Clara, CA) at a flow rate of 400 nL/min with
60 min LC gradient (5% AcN, 0.1% trifluoroacetic
acid (TFA) to 100% AcN, 0.1% TFA). The RP col-
umn was further eluted for several min with 90% AcN
and TFA to minimize intersample contamination.
Mass spectrometer parameters include the following:
spray tip voltage at +2.2 kV, Fourier-transform MS
mode for MS acquisition of precursor ions (resolution
120,000); ITMS mode for subsequent MS/MS of top
10 precursors selected; same ions were excluded for
15 s; MS/MS was accomplished via collision induced
dissociation.

Data analysis was performed using the MASCOT
server by interrogating the total organism database.
The selected analytical parameters included: the
enzyme as trypsin; maximum missed cleavages =2;
variable modifications included oxidation (methion-
ine); precursor ion mass tolerance was set at 5 ppm;
fragment ion mass tolerance was 0.6 Da. The sig-
nificance of a protein match is based on peptide
expectation values and the numbers of peptides found
(>2). The default significance threshold is p <0.05
to achieve a false discovery rate (FDR) of less than
1.0%. Protein identifications were accepted if they
could be established at 95.0% probability to achieve
an FDR [44] of less than 1.0%.

Western blot

Western blot analysis was performed on the PSD
fractions isolated using Syn-PER Reagent, followed
by ultracentrifugation to enrich for PSD as described
above. Separation of the proteins in the samples
obtained was done by 12% SDS- polyacrylamide
gel electrophoresis. The separated proteins were
transferred to a nitrocellulose membrane (Bio-Rad)
and incubated with PSD95, CAMK2A, GAPDH,
UCHLI, and PFN (all 1:1,000; Cell Signaling) anti-
bodies overnight. Actin (1:1,000; Cell Signaling)
was used as a loading control. The membrane was
incubated with proper fluorescent secondary antibod-
ies (1:10,000) (LI-COR Biosciences) and scanned
using Odyssey infrared fluorescent imaging system
(LI-COR Biosciences). The band densities were ana-
lyzed using ImagelJ software, normalizing using the

densities of the loading control obtained by reprobing
the membranes for actin. All fifteen samples were run
on the same blot. Differences between groups were
assessed using Student’s 7-test.

RESULTS

Proteins identified

The goal of this study was to determine if the
unique ability of NDAN PSDs to reject AP oligomer
binding can be explained by a unique protein sig-
nature that sets NDAN aside from AD and healthy
age-matched control individuals. PSD fractions from
three experimental groups (control, AD, and NDAN)
were used in a discovery-mode proteomics, the cases
were pooled in order to increase the likelihood that the
proteins identified would be universal to the experi-
mental group, while decreasing the inter-individual
variability. Case subject data is provided in Table 1.
In order to analyze the PSD proteome, we determined
the ratios of expression levels in three different ways:
AD versus control, NDAN versus control, and NDAN
versus AD.

Seven hundred and twenty-seven individual spots
were detected on Coomassie-stained 2DE of iso-
lated PSDs (Fig. 1). Three hundred and forty most
abundant spots were collected for protein digestion.
Following digestion, the resulting peptides were sep-
arated by liquid chromatography and the amino acid
sequences were determined. Using MS/MS we iden-
tified 122 proteins that have the p-value <0.05 in
at least one comparison (i.e., AD versus control,
NDAN versus control, or NDAN versus AD) and
MALDI protein score cut-off >62. In Supplementary
Table 1, we have additionally included 10 proteins
that presented with the p-values greater than 0.05,
yet are relevant and contribute to the discussion.
Since the goal of this work was to determine dif-
ferences between AD and NDAN that would reflect
their diverse cognitive status and synaptic vulnerabil-
ity to AP oligomers, we selected proteins that were
statistically changed (cut-off > & 1.5 fold) in NDAN
versus AD, regardless of whether they were changed
in either group as compared to controls. Following
this criterion, thirty-one proteins with the fold change
of atleast £ 1.5 in NDAN versus AD were chosen for
further analysis (Table 2). Using this set of 31 proteins
we then looked at AD versus control and NDAN ver-
sus control (Fig. 2) to determine if the changed protein
would fall into any of the following categories: 1) pro-
gression of neuropathology—proteins that have more
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Table 1
Demographic data of the cases used in the proteomics study

0. Zolochevska et al. / Proteome of AD Resistant Synapses

Case number Diagnosis Age,y Sex PML h Braak stage MMSE
1525 Control 88 F 3 1 28
1716 Control >89 M 5 1 29
1944 Control >89 F 8 3 29
1957 Control >89 F 8 3 30
1965 Control >89 F 5.5 2 26
1977 Control >89 F 4 3 28
2337 Control 86 M 28.5 3 26
2376 Control >89 M 4 3 26
Average 92 3/5 8.3 24 27.8
1791 AD >89 M 10 4 19
2010 AD 87 F 4 23
2126 AD >89 F 9 4 26
2146 AD >89 F 9.5 4 30
2157 AD >89 M 11.5 4 12
2221 AD >89 F 15.5 4 29
2315 AD >89 M 4 4 28
2330 AD >89 F 4.5 4 28
Average 95 3/5 8.8 4.0 244
697 NDAN >89 M 5 4 29
1095 NDAN 88 M 3 5 29
1179 NDAN 89 F 2.5 4 27
1362 NDAN >89 F 48 4 27
1644 NDAN 76 F 30 5 30
1677 NDAN >89 F 18 6 30
1686 NDAN 87 F 3 4 29
1845 NDAN 86 M 5 4 29
Average 90 3/5 14.3 4.5 28.8

PMI, postmortem interval; MMSE, Mini-Mental State Exam.

Fig. 1. Representative 2DE of proteins identified. The highlighted spots were excised and analyzed in the present study. The x-axis is

calibrated in pH units, while y-axis is calibrated in mass units (kDa).

pronounced change in either AD, or NDAN when
compared to control; 2) unique to AD—proteins that
change in AD versus control, but not in NDAN

versus control; 3) unique to NDAN-proteins that
change in NDAN versus control, but notin AD versus
control.
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AD vs. control NDAN vs. control

Fig. 2. Venn diagram of the total number of proteins with signif-
icant differential expression in NDAN versus AD, including the
number of proteins that change in AD versus control and NDAN
versus control.

We also found several sets of protein spots on the
2DE with different isoelectric points and/or sizes that
were identified as the same protein (“protein trains”)

667

(Table 3). The differences in theoretical and detected
isoelectric points, with little to no change in sizes,
could suggest post-translational modifications of the
protein, while differences in protein size could indi-
cate post-translational modifications and/or protein
cleavage.

Validation of selected protein targets

To validate the protein changes observed using the
2DE we selected four target proteins based on the
fold change and availability of commercial antibod-
ies. Additionally, we included one protein (PSD95)
that was not changed in our proteomic dataset. Valida-
tion was performed on a different set of hippocampal
samples (five cases per group) different from those
used for proteomics (Table 4) that were analyzed
individually.

Table 3
Proteins detected in trains of spots on the 2DE
Protein Theoretical =~ Theoretical Measured Measured  Fold change in
pl Mw, kDa pl Mw NDAN versus AD
Isoform 3 of dynamin-1, DNM1 6.57 96.04 4.88 19 -1.6
493 20 1.96
Glial fibrillary acidic protein, GFAP 5.42 49.88 5 20 -4.32
5.06 34 -2.07
4.98 18 -1.98
5.07 37 1.53
5.18 46 2.06
5.43 46 2.12
5.28 46 2.15
5.34 46 2.18
5.39 46 2.58
Isoform 2 of glial fibrillary acidic protein, GFAP 5.53 50.28 5.74 48 -1.6
5.16 49 1.53
5.07 37 1.56
5.5 46 1.6
5.23 46 1.63
5.17 38 1.63
5.16 35 1.7
5.09 36 242
Hemoglobin subunit beta, HBB 6.74 16 7.34 14 1.67
7 14 1.84
7.35 14 29
Keratin type I cytoskeletal 9, KRT9 5.14 62.06 4.82 13 -1.56
6.14 17 1.55
Keratin type II cytoskeletal 1, KRT1 8.15 66.04 5.54 17 -3.1
4.66 35 -1.81
7.55 12 -1.54
Profilin-2, PFN2 9.26 9.84 5.06 13 -2.08
5.76 14 -1.54
Isoform cytoplasmic + peroxiredoxin-5, mitochondrial 6.73 17 7.75 16 -2.27
Isoform 3 of peroxiredoxin-5, mitochondrial 9.12 17 7.7 15 -1.77
Isoform IB of synapsin-1, SYN1 9.88 70.03 8.87 74 -2
9.17 75 -1.72
Tubulin alpha-1B chain, TUBA1B 5.03 27.55 523 33 -2.97
5.29 33 -1.66
5.54 46 2.04
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Table 4
Demographic data of the cases used for validation of protein levels using immunoblotting

Case Diagnosis Age,y Sex PMI, h Braak MMSE
number stage
2467 Control >89 F 4.5 3 28
2553 Control >89 M 4 2 28
2682 Control >89 F 9 2 29
2755 Control >89 F 18 2 29
2953 Control >89 M 2.5 3 27

Average 97 2/3 8 2 28
2272 AD >89 F 5 6 20
2312 AD 87 F 2.5 6 19
2316 AD 83 M 13 5 N/A
2317 AD 88 M 4.5 6 N/A
2374 AD >89 M 24 6 N/A

Average 88 3/2 10 6 20
2322 NDAN >89 F 14 4 29
2474 NDAN >89 F 8 4 28
2491 NDAN 82 M 17 4 27
2556 NDAN >89 M 12 4 28
2753 NDAN >89 M 12 4 28

Average 89 3/2 13 4 28

PMI, postmortem interval; MMSE, Mni-Mental State Exam.

Control AD NDAN
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Fig. 3. Confirmation of proteomic changes for selected proteins.
Five cases per group were assayed individually. Case information
is provided in Table 4.

For validation using immunoblotting we selected
CAMK2A, GAPDH, UCHLI, and PFN proteins
(Fig. 3). Blotting for CAMK2A was not consis-
tent with the proteomics results (Table 5), possibly
due to inter-individual variability which was more

pronounced in AD. Nonetheless, in direct compari-
son of NDAN versus AD, we noted a same trend for
increased levels of this protein (1.23), which, how-
ever, did not reach the same fold change (1.98 in
proteomics).

Assessment of GAPDH levels revealed no change
across experimental groups (Fig. 3 and Table 5),
which could be explained by the presence of four
isoforms in the proteomic dataset, three of which
had no change in NDAN versus AD, that could mask
the detection of changes in only one out of the four
isoforms detected by the immunoblotting antibody.

UCHL1 (Fig. 3 and Table 5) presented with
some inter-individual variability, overall confirming
the proteomics data (NDAN versus AD: —-2.47 in
proteomics and —2.86 in densitometry analysis of
immunoblotting).

Similarly, immunoblotting and proteomics quan-
tification of PFN demonstrated a similar decrease
of protein levels in NDAN versus AD (Fig. 3 and
Table 5).

Table 5

Densitometry analysis of Western blots for PSD95, CAMK2A, GAPDH, UCHL1 and PFN
Protein AD versus P NDAN p NDAN versus P
name Control versus AD Control
PSD95 -1.35£0.07 0.025 1.14 +0.04 0.237 -1.18 £0.04 0.069
CAMK2A -1.4440.13 0.081 1.23+£0.08 0.350 -1.174+0.09 0.271
GAPDH -1.03£0.03 0.627 -1.18 £0.06 0.248 -1.21£0.12 0.191
UCHLI 2.67+0.76 0.091 -2.86+£0.47 0.062 -1.07+0.23 0.892
PFN 3.4940.84 0.024 -2.65+£0.56 0.043 1.324+0.32 0.492

Data are presented as mean =+ standard error of 5 cases per group; statistical significance was

determined by Student’s #-test.
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Levels of PSD95 were not changed significantly
across three groups (Fig. 3 and Table 5) as determined
by immunoblotting, confirming the proteomic data.

In the following discussion, some of the proteins
we have identified are usually found in the presy-
naptic terminals. Our samples were prepared using
a PSD-enrichment protocol, therefore, some of the
presynaptic proteins were identified during the pro-
teomic analysis. We elected to present these results
as the presynaptic proteins contribute to the observed
changes at the synaptic level.

Main upstream regulators

The thirty-one proteins were analyzed using Inge-
nuity Pathway Analysis (IPA) to determine main
upstream regulators and pathways. Five upstream ele-
ments were identified as regulators of the changes
that were observed: MAPT (microtubule-associated
protein tau), PSEN1 (presenilin 1), ABPP (amyloid-3
precursor protein), HTT (huntingtin), and D-glucose.
MAPT, PSENI1, ABPP, and HTT are known to
play a role in AD pathogenesis ([11, 45, 46];
reviewed by [47-49]). Multiple studies with '3F-
fluorodeoxyglucose demonstrate that in AD there is
aprogressive reduction of glucose metabolism which
correlates with severity of the disease (reviewed by
[50]). Impaired glucose metabolism in the brain is
one of the pathophysiological features that frequently
precedes clinical manifestation in AD (reviewed by
[50D.

Canonical pathways and molecular and cellular
Sfunctions

IPA was used to identify pathways that the
31 changed proteins collectively represent or
are a part of. The top canonical pathways
returned by the IPA were: remodeling of epithe-
lial adherens junctions (p=5.14*10"12), epithelial
adherens junction signaling (p = 1.07%10~?), phago-
some maturation (p = 1.18*10’9), 14-3-3 mediated
signaling (p=2.49*10"%), axonal guidance signal-
ing (p=2.42%10"%), and gap junction signaling
(p=3.75%1079).

The molecular and cellular functions identified by
IPA included cellular assembly and organization, cel-
lular function and maintenance, and cell morphology.
Interestingly, eleven proteins from our dataset clus-
ter into the nervous system development and function
pathway. This is consistent with our previous find-
ings showing that when compared to AD and MCI,
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Fig. 4. Pie chart representing the PANTHER classification of pro-
teins based on protein class. The number of proteins in each
category is shown in parenthesis.

NDAN individuals have higher rate of neurogenesis
in the dentate gyrus, which is positively correlated to
their ability to escape (or significantly delay) demen-
tia [51].

PANTHER [52-54] was used to analyze relevant
proteins by function (Fig. 4). Table 6 describes iden-
tified proteins in NDAN versus AD by functional
category.

DISCUSSION

Protein function and pathway analysis

The samples employed in this study consisted of
PSD-enriched hippocampal fractions; the purity of
PSD fractions prepared according to our protocol was
previously described [24]. The proteomic method-
ology for this study was chosen for the superior
quantitative aspects, but due to technical limitations
of extraction and the 2DE methodology, hydrophobic
or transmembrane proteins are not reliably rep-
resented in our dataset. Future studies focusing
on transmembrane proteins will complement this
initial work that therefore centers on soluble, non-
transmembrane proteins. Among the 31 proteins that
have significantly different levels in NDAN ver-
sus AD, fifteen form a unique expression pattern
in NDAN, setting these individuals aside from both
age-matched healthy controls and AD patients. Exis-
tence of the unique protein “signature” at the PSD of
NDAN cases suggests that these non-demented sub-
jects should not be considered pre-symptomatic AD,
but rather individuals who are clearly distinct from
both control and those who have clinical manifesta-
tion of the disease.
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Table 6
PANTHER protein class analysis

Functional category Name of protein

Calcium binding proteins Annexin 2

Calreticulin

Hemoglobin

Ras-related protein Rap-1b

Rho GDP-dissociation inhibitor 1

2’,3’-cyclin-nucleotide

3’-phosphodiesterase

Ubiquitin carboxyl-terminal

hydrolase isozyme L1

Kinases Calcium/calmodulin-dependent
protein kinase I subunit alpha
Creatine kinase B

Carrier proteins
Enzyme modulators

Hydrolases

Ligases Pyruvate carboxylase
Membrane traffic Clathrin light chain A
Synapsin 1

Syntaxin binding protein 1
Glyceraldehyde-3-phosphate
dehydrogenase

Malate dehydrogenase
Peroxiredoxin 5

Dynamin-1

Glial fibrillary acidic protein
Keratin type I cytoskeletal 10
Keratin type I cytoskeletal 9
Keratin type II cytoskeletal 1
Neurofilament medium polypeptide
Profilin-2

Septin-7

Spectrin alpha chain

Tubulin alpha-1A

Tubulin alpha-1B

Tubulin beta-2A

Tubulin beta-4A

Tubulin beta-6 chain
Vinculin

Oxidoreductases

Redox signaling
Cytoskeletal

The unique protein expression signature in our
dataset represents several pathways that converge
onto junction signaling, phagosome maturation and
14-3-3 pathway. Additionally, twenty proteins from
our dataset were clustered by IPA into the neurologi-
cal disease pathway, which reveals that these proteins
are closely related to each other and have been previ-
ously shown by other investigators to be implicated
in brain diseases (Fig. 5). This latter observation
corroborates the notion that relevant mechanisms
may be acting at the NDAN synapses to mediate
their resilience to neurodegeneration and associated
dementia.

Progression of neuropathology: Proteins with a
more pronounced change in either AD or NDAN

We found higher levels (1.83 fold) of annexin
2 (ANXA2) at the PSDs of NDAN subjects (1.55

AD versus control, 2.85 NDAN versus control).
ANXAZ2 belongs to a group of soluble, hydrophilic
proteins which can bind to negatively charged phos-
pholipids in a Ca>*-dependent manner [55]. ANXA2
has Ca’*-dependent filament bundling activity and
can participate in membrane vesicle aggregation,
where it forms membrane-membrane or membrane-
cytoskeleton connections by interacting with F-actin
[55]. Notably, decreased levels of F-actin have been
associated with synapse structural instability in AD
(reviewed by [56]). ANXA?2 has been demonstrated
to modulate the activity of membrane channels,
including C1~ and Ca?"; in addition, ANXA?2 func-
tions as a GLUT-4 transporter upon insulin stimula-
tion [57]. Furthermore, ANXA?2 interaction with tau
modulates the tau mobility in the tips of neurites [58].
Therefore, higher levels of ANXA2 presentin NDAN
synapses could be indicative of preserved synaptic
structure, function and insulin responsiveness.
Calcium/calmodulin-dependent protein kinase
type Il subunit alpha (CAMK2A) is a serine/threonine
protein kinase and is required for hippocampal long-
term potentiation (LTP) and spatial learning (as
reviewed by [59]). Exposure to AP oligomers
decreases the CAMK2 pool at the synapse [60].
CAMK?2A-containing neurons are selectively lost
in the CA1 of hippocampus in AD patients [61].
CAMK?2 serves as a molecular switch for LTP
and is capable of long-term memory storage [62].
CAMK2A levels are increased by 1.98 fold in
NDAN when compared to AD (1.43 AD versus
control, 2.83 NDAN versus control), which could
indicate that robust CAMK2 upregulation is a
necessary event to provide resistance of synapses
to AD-related disruption as seen in NDAN, an
event that may occur to an insufficient extent in
symptomatic AD. The functionality of CAMK2A
is measured by the subcellular localization and
phosphorylation at Thr286 [63], which were not
assessed in this study. However, our previous study
demonstrated that in AD the PSD immunoreactivity
of the p(Thr286)CAMK?2 is shifted away from the
dendritic spines as it accumulates at the neuron’s cell
body in an AP oligomer-dependent phenomenon
([32], reviewed by [59]), and therefore, present
results of CAMK?2A levels at the PSD could reflect
the compartmentalization of this protein.
Hemoglobin (HBB) was increased in NDAN
versus AD, a phenomenon consistently observed for
each of the detected isoforms: 1.67 (1.75 AD versus
control, 2.92 NDAN versus control), 1.84 (1.68 AD
versus control, 3.09 NDAN versus control) and 2.9
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Fig. 5. IPA identifies twenty proteins from our dataset that are associated with the neurological disease network. A) Upregulated (red) or
downregulated (green) proteins from our dataset are highlighted in the network. Solid and dashed lines indicate direct and indirect correlation
between proteins, respectively. CAMK2A, calcium/calmodulin-dependent protein kinase type II subunit alpha; PEN2, profilin-2; SYNI,
synapsin-1; CNP, 2°,3’-cyclic-nucleotide 3’-phosphodiesterase; PP2A, protein phosphatase 2; ERK1/2, mitogen-activated protein kinase
1/2; DNM1, dynamin-1; Hsp90, heat shock protein 90; TUBBG6, tubulin beta-6 chain; VCL, vinculin; ANXA?2, annexin 2; TUBA1A, tubulin
alpha-1A chain; TUBB2A, tubulin beta-2A chain; TUBA1B, tubulin alpha-1B chain; TUBB4A, tubulin beta-4A chain; SPTANI, spectrin
alpha chain, non-erythrocytic 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; CLTA, clathrin light chain A; STXBPI, syntaxin-
binding protein 1; KRT10, keratin, type I cytoskeletal 10; CDK4/6, cyclin-dependent kinases 4/6; KRT9, keratin, type I cytoskeletal 9. B)
Figure legend for the IPA network. Nodes in the network are depicted by different shapes that represent various functional classes of the
proteins. Arrows/lines represent different molecular relationships in the IPA network.

fold (1.26 AD versus control, 3.66 NDAN versus
control), which could suggest multiple scenarios.
First, increased levels of HBB can indicate a
response to hypoxia in the brain. Indeed, decreased
expression of hemoglobin in AD was observed in
neurons containing NFTs [64]. Furthermore, nitric
oxide and its metabolites have high affinity for
HBB, and HBB can be considered a protectant from
oxidative and nitrosative stress [65]. Besides nitric
oxide scavenging, HBB is capable of binding A3 and
enhancing its aggregation ability due to the presence
of the iron core; HBB was previously shown to
localize to amyloid plaques in AD brains [66]. It

is thus possible that in NDAN HBB is promoting
AP removal from the synapses which is supportive
of our previous findings [24]. On the other hand,
HBB presence at the synapse could be due to leaky
blood-brain barrier, which has been shown to occur
in the aged and diseased CNS ([67, 68], reviewed
by [69]). However, mRNAs for hemoglobin o- and
[B-chains were previously detected in rat and human
neuronal cultures [70, 71], whereas human brain
sections stained for HBB showed a granular pattern
in the cytoplasm without localization to specific
compartments [70, 72], collectively suggesting a
possible role of local HBB within neurons.
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Malate dehydrogenase (MDH) is the terminal
enzyme of the TCA cycle; its function is to catalyze
the conversion of L-malate to oxaloacetate, which
requires NAD as a cofactor [73]. In our dataset we
found an increase in MDH2 at the PSD of 1.77 fold
in NDAN as compared to AD patients (1.67 AD ver-
sus control, 2.97 NDAN versus control). While it has
been reported that MDH levels can be elevated during
caloric restriction in mice [74], a diet regimen known
to reduce age-associated CNS deficits (reviewed by
[75, 76]), the physiological significance of increased
MDH at the synapses remains to be established [74].

Tubulin alpha-1A (-2.13 AD versus control, —1.37
NDAN versus control, 1.56 fold in NDAN versus AD)
and beta-6 (—1.59 AD versus control, —4.01 NDAN
versus control, —2.51 fold in NDAN versus AD) have
significantly different abundance in NDAN versus
AD (Table 3). Tubulin alpha and beta are the main
components of microtubules which are very dynamic
structures. Microtubules undergo rapid growth and
disassembly which could potentially explain the pro-
tein level variability in our dataset, as well as the
possibility of multiple post-translational modifica-
tions (reviewed by [77]).

Interestingly, the majority of proteins in this cat-
egory presented with higher fold change in NDAN
versus control, than in AD versus control. It is
therefore tempting to speculate that these proteins
participate in the protective phenotype in NDAN,
which is also observed in AD to a limited extent and
is therefore possibly ineffective (and/or abortive).

Protein changes unique to AD

2’,3’-cyclin-nucleotide 3’-phosphodiesterase
(CNP) levels in AD were found to be —1.66 fold
decreased versus control. Our data is in agreement
with previously published findings by Reinikainen
et al. where they describe decreased CNP activity in
hippocampus of AD patients [78]. Activity of CNP
can be used as a measure of myelination of axons
and lower levels of CNP in AD could be indicative
of the loss of myelination of hippocampal neurons
[79]. CNP hydrolyses 2’,3’-cyclic nucleotides to
create 2’-derivatives [80]. CNP can regulate tubulin
polymerization and microtubule distribution [81], as
microtubules use CNP as a linker, which allows them
to connect to the plasma membrane. Additionally,
CNP stimulates F-actin reorganization, which is
essential for filopodia and lamellipodia formation
[81]. CNP levels were unchanged in NDAN versus
control and were decreased in AD, which once

again supports the idea that NDAN synapses remain
healthy.

Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was found to be dramatically downregu-
lated in AD versus control (—6.19 fold). As reviewed
by Butterfield et al., in addition to glycolytic activity,
GAPDH performs many other functions: DNA and
RNA binding, transcription regulation, kinase, catal-
ysis of microtubule formation and polymerization,
vesicular transport and interaction with multiple
molecules and proteins, including nitric oxide,
huntingtin, and ABPP [82]. In addition, GAPDH can
undergo multiple post-translational modifications:
oxidation, phosphorylation, S-nitrosylation, as
well as direct or indirect interaction with oxidative
species. GAPDH can interact with AP [83], and has
been found to be a major component of amyloid
plaques and NFTs in AD brains [82]. A3, on the other
hand, was shown to stimulate inactivation of GAPDH
in addition to promoting its nuclear translocation
and pro-apoptotic function [82]. GAPDH levels are
decreased in AD which can indicate reduced glucose
metabolism [84]. GAPDH has been suggested to be
a potent target to prevent neurodegeneration in AD
brains, due to ability of GAPDH to serve as scaffold
for ABPP, AB4o and AB42, and tau protein [82, 83].
Levels of GAPDH in NDAN are unaltered when
compared to control, which distinguishes NDAN
from AD and can indicate better overall brain health
of NDAN individuals.

Neurofilament medium polypeptide (NEFM) was
measured at —1.28 in AD versus control, which
indicates a trend toward decrease in AD. Overall
in NDAN versus AD NEFM was changed by 1.5
fold (1.17 in NDAN versus control). Neurofilaments
play a role in establishing and maintenance of the
3D structure of axons [85]. NEFM is essential for
the formation of the cross-bridge, stabilization, and
extension of filament network [85, 86]. NEFM tail
and its phosphorylation are required for radial growth
of large myelinated motor axons [85]. Neurofilaments
allow neurons to maintain their shape and are required
for axon growth [87]. Neurofilaments can interact
with microtubules, certain receptors that are located
at the PSD and many other proteins that are trans-
ported along neurofilaments.

We found that the level of Septin-7 (SEPT7) was
increased by 1.48 fold in the PSD of AD patients
as compared to control subjects while remaining
unchanged in NDAN versus control. Septins are evo-
lutionary conserved cytoskeletal GTPases. Septins
can be found in NFTs, dystrophic neurites in senile
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plaques, and neuropil threads in AD brains [88].
Some septin species are also found in granular or
fine fibrillary deposits in neuronal soma [88]. Forma-
tion of septin fibrils suggests that aggregation of this
protein may accompany NFT formation. In order to
function properly, septins form filaments following a
process regulated by GTP hydrolysis [88]. Dysreg-
ulation of normal septin assembly in neurons may
result in affected vesicular transport and structural
integrity, leading to accelerated neurodegeneration.
Interactions with phospholipids, microtubules and
actin can influence septin assembly [89]. Septin
assemblies can modulate the distribution of surface
proteins and receptors and can also play a role in
clathrin-mediated endocytosis [89]. It is thought that
septins can serve as scaffolds for submembranous
structures, assisting in neuronal polarity and vesi-
cle trafficking [89]. SEPT7, in particular, can be
located on the cytoplasmic side of presynaptic mem-
branes and in endfeet of astroglia [90]. As reviewed
by Mostowy and Cossart, SEPT7 plays a role in
actin dynamics, axon growth, cell shape, chromo-
some segregation, cytokinesis, dendrite formation,
DNA repair, membrane trafficking and microtubule
regulation in addition to serving as a scaffolding
protein [89].

Protein changes unique to NDAN

Calreticulin, a key upstream regulator of cal-
cineurin [91], is a chaperone protein that can be
found in several organelles in neurons and glial cells
[92]. It is known to interact with ABPP, AB, and
Ca2t [91, 93-97]. Calreticulin was found at lower
levels (-=3.27 fold) at the PSDs in NDAN when com-
pared to control. While lower levels of calreticulin
have been shown to be associated with decreased cal-
cineurin activity [98, 99], increased calcineurin has
been reported in the AD brain and correlates with
disease severity [100, 101]. Furthermore, we have
previously shown that calcineurin mediates the toxic
action of AP oligomers at synapses and that phar-
macological inhibition of calcineurin protects from
AD-related memory deficits in both experimental ani-
mals and humans ([31, 102-104]; reviewed by [33]).
Furthermore, we found that calcineurin levels are
unaltered in the brain of NDAN subjects as com-
pared to demented AD patients (Taglialatela et al.,
unpublished observation). Therefore, reduced calreti-
culin levels at the synapses in NDAN individuals
may be one of the mechanisms maintaining low cal-
cineurin, thus contributing to preservation of synaptic

integrity in the face of the presence of toxic amyloid
oligomers.

Clathrin was downregulated in NDAN versus con-
trol (-3.34 fold). Clathrin plays an important role in
sorting and recycling of the proteins at the synaptic
membrane [105]. While the protein levels of clathrin
in AD are preserved when compared to control,
the regulation of clathrin transport is known to be
impaired in AD brains [105]. Under normal condi-
tions clathrin is transported from neuronal perikarya
to axonal terminals, with the highest concentration of
clathrin found at the synaptic terminals [105]. How-
ever, Nakamura et al. report that in AD the amount
of clathrin at synaptic terminals is decreased, while
NFTs and neuronal perikarya have detectable levels
of clathrin [103]. In the growth cones, repulsive Ca>*
signals cause asymmetric clathrin-mediated endo-
cytosis via calcineurin [106]. Calcineurin activation
results in clathrin- and dynamin-dependent endocy-
tosis. Additionally, AB4, reduces axonal density by
promotion of clathrin-mediated endocytosis in the
growth cones, which results in a growth cone collapse
due to Ca>* signaling, and calcineurin and calpain
activation [107]. Moreover, inhibition of clathrin-
mediated endocytosis was demonstrated to rescue the
AB42-induced toxicity [107]. Reduction of clathrin
levels at PSD in NDAN in comparison to AD could
thus be another contributing factor to the ability of
NDAN synapses to withstand the toxic hit by Ap
which in AD results in increased endocytosis and
growth cone retraction.

Creatine kinase B (CKB) levels were decreased at
the PSDs of NDAN versus control (-2.57 and —1.88
fold). The CKB family of enzymes is involved in the
regulation of the ATP and ADP levels by reversible
transfer of phosphate onto creatine to form phos-
phocreatine, which can provide energy when ATP
concentrations drop [108, 109]. Additionally, CKB
is identified as a part of slow axonal transport [110].
CKB-deficient cells show significantly increased
fraction of motile mitochondria [108]. While ini-
tial evidence suggests that synaptic mitochondria in
NDAN have less DNA damage through a preserved
mitochondrial DNA repair system (Taglialatela et al.,
unpublished observation), we have not yet analyzed
mitochondria function in NDAN versus AD, never-
theless, it has been reported that mitochondria are
severely impaired in AD [111, 112]. Interestingly,
two subunits of the mitochondrial membrane respi-
ratory chain complex I were detected in our dataset.
NADH dehydrogenase [ubiquinone] 1 alpha subcom-
plex subunit 5 (NDUFAS) and NADH dehydrogenase
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[ubiquinone] flavoprotein 1 (NDUFV1) did not meet
the & 1.5 fold cut-off criteria in NDAN versus AD,
however, they were measured at —1.44 and -1.47
fold changes, respectively. Collectively these findings
indicate the dysregulation of mitochondrial function
in the presence of AD-like pathology. Mitochondria
function and ATP generation in the brain can be
affected by the improper glucose metabolism since
Krebs cycle and oxidative phosphorylation of glucose
occur in mitochondria (reviewed by [50]).

Activity of pyruvate carboxylase (PC) is tightly
regulated. PC activity can be downregulated by
insulin, which reduces the carbon flux when the glu-
cose levels are high [113]. Lower levels of PC in
NDAN (-1.59 fold versus AD) could be explained
by the fact that NDAN subjects, unlike AD, have
preserved insulin responsiveness (Taglialatela et al.,
unpublished observation). One of the important roles
of PC pathway is detoxification of ammonia from
the brain, during which glutamine synthetase cat-
alyzes formation of glutamine from ammonia and
glutamate. Conversion of pyruvate to oxaloacetate
replenishes the TCA cycle, which is utilized during
detoxification of ammonia or oxidation of glutamate
[114].

Synapsin 1 (SYN1) is downregulated in NDAN
versus control (-1.71 and —1.48 fold). SYNI is a
member of a family of neuron-specific phosphopro-
teins that can be localized pre- and postsynaptically
[115,116]. SYNI plays arole in regulation of axono-
genesis, synaptogenesis and regulation of nerve
terminal function in mature synapses [116]. SYN1
is differentially distributed in different regions of the
hippocampus. It is suggested that presynaptic SYN1
(approximately 60% of total SYN1) becomes asso-
ciated with synaptic vesicles, while the postsynaptic
40% of this protein possibly represent the newly syn-
thesized protein that will be transported to the nerve
terminals [115].

Syntaxin binding protein 1 (STXBP1) is upregu-
lated in NDAN versus control (2.24 fold). Syntaxin
1 and STXBPI1 form a complex in 1:1 ratio [117].
STXBP1 can act as a chaperone for syntaxin [118].
Proteins of the STXBP1 family can interact with
Rabs, small GTPases, and together they may play a
role in vesicle trafficking and membrane fusion [118].
STXBP1 proteins can also contribute to the speci-
ficity of membrane trafficking. It has been suggested
that protein kinase C regulates the STXBP1-syntaxin
interaction [118]. Syntaxin bound to STXBPI can-
not interact with other proteins, which indicates that
STXBPI1 can play a role in determining the binding

partners for syntaxin and further complex formation
[118]. We have not detected syntaxin in the current
proteomics set, therefore, we cannot unequivocally
conclude if the higher levels of STXBP1 correlate
with those of syntaxin as part of the complex that
these proteins are known to form.

Donovan et al. reported increased levels of
ubiquitin carboxyl-terminal hydrolase isozyme L1
(UCHL1) in AD when compared to healthy individ-
uals [119]; we found a decrease in UCHLI1 levels
at the PSD in NDAN (-2.37 NDAN versus control).
UCHL1 can associate with free ubiquitin in neurons,
which suggests that this interaction is important for
maintenance of the free ubiquitin pool in neuronal
cells [120, 121]. UCHLI1 is expressed mostly by neu-
rons and neuroendocrine cells, and it was found in
Lewy bodies [122] and NFTs [123]. Interestingly,
Lombardino et al. showed that replaceable neurons
have lower levels of UCHL1 when compared to
non-replaceable neurons [124], which can be in con-
cordance with the increased neurogenesis in NDAN
[51] one of the hypothesis behind NDAN preserved
cognitive function.

Several proteins involved in actin dynamics
were uniquely affected in NDAN. Actin and other
cytoskeletal proteins are responsible for changes
in spine morphology. Dendritic spine dynamics are
determined by actin cytoskeleton organization [125].
Ability of spines to change their structure allows for
synaptic plasticity and plays an important role in
memory formation [125]. Therefore, it is not unrea-
sonable to argue that the changes in this class of
proteins described below and uniquely observed in
NDAN subjects are intimately associated with their
preservation of synaptic integrity and cognitive abil-
ity ([24-26, 30], reviewed by [23, 33]). Cytoplasmic
actin 2 showed a trend for downregulation in NDAN
when compared to AD (-1.49 fold). Actin is respon-
sible for stabilization of synaptic boutons in addition
to modulation of bouton’s structure to adjust to post-
synaptic signaling [125]. The interaction between
actin and profilins is essential for proper actin poly-
merization [126]. Profilins provide actin monomers
to the barbed-end polymerization of actin filaments
[125]. We found profilin 2 to be downregulated in
NDAN when compared to control by —2.06 fold. We
further found vinculin (VCL) to be upregulated in
NDAN versus control by 1.97 fold. VCL plays an
important role in focal adhesion strengthening and
stabilization due to its interaction with actin and talin
[127]. At the leading edge of focal adhesion, VCL
coordinates actin organization and dynamics. VCL
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determines the architecture of the leading edge by
engaging actin flow to the extracellular matrix at
maturing focal adhesion [127]. Vinculin binds to actin
directly; however, vinculin also has an effect on actin
dynamics independent of direct binding [127, 128].
Interestingly, stabilization and maturation of focal
adhesion are two distinct processes, as VCL inhibits
the maturation of focal adhesion, but stimulates the
stabilization [127].

Keratin type I cytoskeletal 10 (KRT10) is down-
regulated in NDAN versus control by —1.87 fold.
Changes in KRT10 in tear proteome were reported
by Kall6 et al. in AD patients [129]. Keratins are nor-
mally abundant in epidermal tissue; however, several
other research groups have identified keratin 1 and 9
in samples of blood and cerebrospinal fluid (keratin
1 and 9 are discussed in section Protein isoforms).

Significant decreases in tubulin beta-2A and 4A
were observed in NDAN versus control (-1.55 and
—2.2, respectively). As discussed above in “Progres-
sion of neuropathology” section, tubulin is a major
component of microtubules and is a very dynamic
protein.

NDAN PSDs have higher levels of Ras-related pro-
tein Rap-1b (1.62 in NDAN versus control). Rap1B, a
small GTP-binding protein [130], in growth cones of
hippocampal neurons is required for axonal devel-
opment and growth [131]. RaplB works together
with Cdc42, whereas Rho and Rac function as antag-
onists to regulate extension of axons and neurites
[125]. Cdc42 is a member of Rho GTPase family that
plays a role in differentiation of oligodendrocytes,
axon outgrowth, and neuronal polarity and migration
(reviewed by [132]). Rap1B is reported to regulate
plasma membrane Ca>*t transport, enhancing pro-
tein kinase C activity which is needed at the tip of
axon [131]. Consequently, Rap1B possibly functions
as a positioning factor for protein kinase C [131]
and increased Rap-1b at NDAN synapses could sup-
port the notion that NDAN synapses retain proper
function.

Another molecule, Rho GDP-dissociation
inhibitor 1 (RhoGDI), from the same pathway was
downregulated in our dataset (—1.5 fold in NDAN
versus control). Levels of RhoGDI are typically
in balance and roughly equivalent to combined
levels of RhoA, Racl, and Cdc42 [133]. RhoGDI
functions as stabilizer for Rho proteins, protecting
them from degradation [133]. Due to the complex
regulation of RhoA/Racl cell signaling and the fact
that we have not detected RhoA, Racl, or Cdc42
in the PSD fractions, the exact meaning of altered

RhoGDI levels in the NDAN PSD remains unclear.
On the other hand, Cdc42/RhoA/Racl network is
involved in actin assembly/disassembly in response
to extracellular stimuli [134, 135], and our data
indicate that this signaling pathway regulation differs
in NDAN versus AD as can be inferred by the levels
of some key players of this network, including
RhoGDI and Racl.

As reviewed by Yan and Jeromin, remodeling
and degradation and overall metabolism of spec-
trin (SPTANI) play a role in the maintenance
of membranes and cytoskeleton, protein cleavage,
recycling and degradation [136]. SPTAN1 was down-
regulated in NDAN versus control (-1.56 fold).
Interactions between spectrin and other membrane-
anchored proteins allow for proper trafficking and
dynamics of proteins within the lipid bilayer. In the
brain, SPTANI is estimated to comprise approx-
imately 3% of total membrane protein content,
being present in neuronal cell bodies, dendrites and
postsynaptic terminals [136]. Additionally, SPTAN1
can localize to plasma membrane, microtubules,
mitochondria, endoplasmic reticulum and nuclear
envelope. In AD, SPTANI1 and its breakdown prod-
ucts are increased and have been proposed to be
used as biomarkers in AD patients [136—138]. At
the PSD, spectrin functions as a connector between
integral membrane proteins and actin (reviewed by
[139]). SPTAN1/synaptosomal membrane interac-
tion is inhibited by Ca®>* /calmodulin [140]. Spectrin
interaction with NMDAR mediates the regulation
of NMDAR activity, which can be the basis for
plasticity-induced changes in spines (reviewed by
[139]).

We detected multiple cytoskeletal proteins as well
as their regulators to be altered in NDAN versus
AD, which could indicate active remodeling of the
synapses. Our findings concur with the observa-
tions reported by others regarding preserved synaptic
integrity in NDAN [6, 141-143]. Collectively these
results suggest that the complex regulation of
structural proteins in NDAN contributes to AP
resistance.

Protein isoforms

Dynamin-1 (DNM1) is a large neuron-specific
GTPase that is present at presynaptic terminals,
where it is involved in synaptic vesicle budding
off the membrane and recycling for future release
[144]. DNMI1 expression is dependent on CREBI1
level [145]. DNMI1 plays a role in formation of
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associative memory in hippocampus [146]. Dynamin
in complex with other presynaptic proteins (e.g.,
synapthophysin) participates in plasticity by modu-
lating the efficiency of vesicle release. When DNM 1
was knocked down in AD animal models, A3 levels
were lowered possibly due to regulation of BACE1
internalization [147]. Conversely, in tissue culture
(hippocampal neurons) application of A3 causes the
decrease of DNM1 levels via calpain-mediated pro-
teolysis [144]. Interestingly, this reduction of DNM1
occurs prior to synapse loss in cultured hippocam-
pal neurons, which suggests the intriguing hypothesis
that synapses become dysfunctional first and later
the synapse retraction/loss occurs. In our dataset we
have identified 2 protein spots for DNM1 on 2DE
with fold change of 1.69 and —1.6 in NDAN ver-
sus AD. It remains to be established if the DNM1
undergoes a post-translational modification which
could explain different levels of this protein in our
dataset.

We have detected several isoforms of glial fibril-
lary acidic protein (GFAP), which can be expressed
by several cell types in the brain, including neu-
rons [148]. In concordance with other published
studies [149], we have identified several horizon-
tal “trains” of GFAP on the 2DE in our study (18
spots on the gel) (Table 3), which could indicate
protein cleavage and/or degradation, co-translational
or post-translational modifications that can affect
the structure and function of GFAP. GFAP can
undergo many post-translational modifications, such
as phosphorylation, sulfation, glycosylation, oxida-
tion, acetylation and other [150]. Each modification
can result in different alteration of GFAP function
and/or localization, although the exact mechanisms
are still under investigation.

Keratin type I cytoskeletal 9 (1.55 and —1.56 fold in
NDAN versus AD) and keratin type II cytoskeletal 1
(-3.1,-1.54, and —1.81 fold in NDAN versus AD) are
expressed at significantly different levels in NDAN
versus AD (Table 3). Notably, keratin 9 was identi-
fied by multiple research groups in the cerebrospinal
fluid and has been even proposed as a biomarker for
AD [151-153]. Furthermore, keratin 1 was identi-
fied in 5XFAD mouse hippocampi using proteomics
[154], and keratin 1 and 9 show different expres-
sion patterns in other neurodegenerative disorders
[155].

Several isoforms of tubulin alpha-1B with fold
change of 2.04, —1.66, and —2.97 were significantly
different between NDAN and AD. The possible sig-
nificance of tubulins in the maintenance of synaptic

function/stability in NDAN versus AD has been dis-
cussed earlier.

Peroxiredoxins (PRDX) play a role in protection
from oxidative stress, cell differentiation, prolifera-
tion, immune response and apoptosis [156]. In our
data set we find lower levels of PRDX5 (-1.77 and
—2.27 fold) at the PSD of NDAN versus AD which
can potentially indicate decreased oxidative stress in
the brains of these individuals [157]. PRDX5 can
neutralize hydrogen peroxide, alkyl hydroperoxides
and peroxynitrite [158, 159] and its expression is
increased during oxidative stress [160]. Peroxynitrite
can alter the mitochondrial electron transport chain,
therefore, efficient neutralization of peroxynitrite can
be neuroprotective [160].

Conclusion

In summary, we used subcellular fractionation
combined with 2DE and mass spectrometry protein
identification to study the postsynaptic density pro-
teome of the hippocampus from cognitively intact
NDAN subjects in comparison to demented AD
patients. We identified 15 unique proteins that set
NDAN apart from AD, thus supporting the notion
that NDAN individuals are distinct from both con-
trol subjects and AD patients, and should likely not
be considered pre-AD. The subset of proteins identi-
fied in our study can be further investigated in order
to establish the mechanisms responsible for preser-
vation of cognitive function in NDAN despite the
presence of AD pathology. Additional analysis of
post-translational modifications would be of interest
as it can yield more insights into the protective mech-
anisms at play in NDAN, which in turn can result in
development of novel therapeutic targets.
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