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Abstract. Subcortical small-vessel disease (SSVD) is a disorder well characterized from the clinical, imaging, and neu-
ropathological viewpoints. SSVD is considered the most prevalent ischemic brain disorder, increasing in frequency with age.
Vascular risk factors include hypertension, diabetes, hyperlipidemia, elevated homocysteine, and obstructive sleep apnea.
Ischemic white matter lesions are the hallmark of SSVD; other pathological lesions include arteriolosclerosis, dilatation of
perivascular spaces, venous collagenosis, cerebral amyloid angiopathy, microbleeds, microinfarcts, lacunes, and large infarcts.
The pathogenesis of SSVD is incompletely understood but includes endothelial changes and blood-brain barrier alterations
involving metalloproteinases, vascular endothelial growth factors, angiotensin II, mindin/spondin, and the mammalian target
of rapamycin pathway. Metabolic and genetic conditions may also play a role but hitherto there are few conclusive studies.
Clinical diagnosis of SSVD includes early executive dysfunction manifested by impaired capacity to use complex infor-
mation, to formulate strategies, and to exercise self-control. In comparison with Alzheimer’s disease (AD), patients with
SSVD show less pronounced episodic memory deficits. Brain imaging has advanced substantially the diagnostic tools for
SSVD. With the exception of cortical microinfarcts, all other lesions are well visualized with MRI. Diagnostic biomarkers
that separate AD from SSVD include reduction of cerebrospinal fluid amyloid- (AB)4, and of the ratio AB42/AB4o often
with increased total tau levels. However, better markers of small-vessel function of intracerebral blood vessels are needed.
The treatment of SSVD remains unsatisfactory other than control of vascular risk factors. There is an urgent need of finding
targets to slow down and potentially halt the progression of this prevalent, but often unrecognized, disorder.
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INTRODUCTION AND CLASSIFICATION

Since the 17th century, stroke has been recognized
as a cause of age-associated cognitive impairment.
However, until early in the 20th century, the prevail-
ing concept of age-associated cognitive impairment
causation was the impairment of cerebral blood
flow (CBF) resulting from partial blockage of the
vessels that supply the brain; thus, arteriosclerotic
dementia resulting in global brain hypoperfusion
was considered the most common form of major
cognitive disorder in the elderly [1]. Early neu-
ropathologists recognized subcortical ischemic white
matter injury and lacunes as typical lesions result-
ing from small-vessel disease [2]. During the 1970s,
amyloid-B (AB) plaques and neurofibrillary tangles
were identified as critical components of the neu-
rodegenerative process occurring in demented elderly
patients [3]. Alzheimer’s disease (AD) became rec-
ognized as the most common form of major cognitive
disorder and the notion of chronic brain ischemia
as an explanation of progressive cognitive impair-
ment was abandoned. The claim that vascular disease
could lead to cognitive disorders not by means
of CBF-related energy deficiency but by repeated
stroke episodes resulting in cerebral tissue lesions
led to the concept of multi-infarct dementia (MID).
Although limited by scarce neuropathological sup-
port, the diagnosis of MID grew popular and was
applied to a larger group of patients than originally
proposed. The demonstration that vascular-related
white matter damage (Binswanger disease) [4] con-
tributes to cognitive impairment in the elderly began
questioning multiple infarcts as the most impor-
tant cause of vascular cognitive impairment (VCI)
[5]. Aging of the population, along with changes
in the panorama of cerebrovascular disease (CVD)
in terms of reduced stroke mortality [6], have
led to reevaluation and renewal of concepts in
this area. Moreover, the role of CVD—particularly
small-vessel disease—in the clinical expression and
pathogenesis of AD has been increasingly recognized
[7-9].

AD and VCI are the most common causes of cog-
nitive impairment in the elderly, accounting together
for more than 70-75% of cases [7]. They also
share common risk factors and mechanisms includ-

ing atherosclerosis, diabetes, and amyloid angiopathy
[10-13]. Vascular comorbidity may be present in
30-60% of AD patients [11, 12], while AD pathology
may be present in 40-80% of VCI patients [11, 12].
Indeed, the coexistence of the two disorders, termed
mixed dementia (MXD), may be more common than
“pure” AD or “pure” VCI [14, 15]; moreover, micro-
scopic cortical infarcts, which are not visualized in
neuroimaging, may contribute up to 1/5 to 1/3 in
the variability of severity of cognitive impairment
[16].

Neuropathology usually provides the final and def-
inite diagnosis in clinical neurology. Therefore, there
is unanimous accord that the clinical classification
of cerebral small-vessel diseases should be based on
the distinct neuropathological lesions [13, 17, 18].
Given the fact that VCI may be the result of a num-
ber of cerebrovascular pathologies (Fig. 1) resulting
from numerous etiopathogenic causes (Table 1), the
occurrence of several clinical forms of VCI (Table 2)
is therefore understandable. Among the sporadic
forms of VCI, particular attention over the last
decades has been paid to post-stroke-associated cog-
nitive impairment or post-stroke dementia (PSD);
and, more recently to VCI associated with subcor-
tical small-vessel disease (SSVD), a condition that
we last reviewed over a decade ago [19]. Although
small-vessel disease may cause cortical atrophy (cor-
tical granular degeneration), and secondary localized
atrophy from subcortical lacunar strokes, from the
clinical viewpoint, however, most cases of cortical
atrophy in elderly patients with cognitive impair-
ment are the result of neurodegenerative conditions,
not vascular disease. Thus, when approaching such
patients with cognitive loss clinicians rely on the pres-
ence of “cortical” versus “subcortical” manifestations
that allow a first diagnostic impression. These clinical
features are confirmed subsequently by neuropsy-
chological tests, brain imaging, and eventually by
neuropathology. Therefore, we decided to maintain
the time-honored name “subcortical” in the overall
approach to this topic.

The numerous diagnostic criteria proposed for the
diagnosis of cognitive disorders resulting from vas-
cular disease reflect the difficulties in the field [20].
The most recently updated definitions and criteria
have been proposed by the International Society
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Fig. 1. Newcastle categorization in six subtypes of different cerebrovascular pathologies associated with VCI. Post-stroke survivors are
included in subtypes I-III. Cases with extensive WM disease in the absence of significant other features are included under SVD. Subtype
I may result from large vessel occlusion (athero-thromboembolism), artery-to-artery embolism or cardioembolism. Subtype II usually
involves arteriosclerosis, lipohyalinosis and hypertensive, arteriosclerotic, amyloid or collagen angiopathy. Subtypes /, Il and V may result
from aneurysms, arterial dissections, arteriovenous malformations and various forms of arteritis (vasculitis). AD, Alzheimer’s disease; CH,
cerebral haemorrhage; CVD, cerebrovascular disease; MI, myocardial infarction; MID, multi-infarct dementia; LVD, large vessel disease;
SIVD, subcortical ischemic vascular dementia; SVD, small vessel disease; VCI, vascular cognitive impairment; VaD, vascular dementia.

From: Kalaria RN, 2016 [13].

of Vascular Behavioural and Cognitive Disorders
(VASCOG) [21] and by the Vascular Impairment of
Cognition Classification Consensus Study (VICCCS)
group [22, 23].

Based on ample evidence, there is current consen-
sus on the notion that SSVD in the brain is probably
the commonest and most prevalent vascular neuro-
logical lesion [24], occurring as part of a systemic
dysfunction of arteriolar perfusion affecting mainly
heavily perfused tissues such as brain, retina and kid-
neys [25, 26]. SSVD is ubiquitous in elderly patients
with cognitive decline. SSVD presents with a more
insidious course than PSD and has been associated
with prefrontal symptoms affecting cognition, mood,
behavior, gait, and bladder control. Moreover, SSVD
has been associated with traditional vascular risk
factors (VRFs) such as aging, hypertension, hyper-
lipidemia, diabetes, smoking, peripheral vascular and
heart disease, and with common but frequently over-
looked VRFs such as obstructive sleep apnea [27]
and hyperhomocysteinemia resulting from dietary
deficiencies of vitamin B, and folate [28], as well
as from mutations of the methylenetetrahydrofolate
reductase (MTHFR) gene [29]. Also, SSVD provided

unexpected links as the terrain that precedes and
favors the development of neurodegeneration in AD
and other cognitive disorders [7—15].

Finally, the pendulum is swinging back and new
developments in brain imaging, in particular arterial
spin-labeling (ASL) imaging on magnetic resonance
imaging (MRI) — a method that allows noninva-
sive quantification of CBF [30-32]; as well as novel
cerebrospinal fluid (CSF) biomarkers [33, 34], have
revitalized the studies on hypoperfusion leading to
cortical hypometabolism in some forms of cognitive
impairment, by mechanisms different from carotid
and intracranial large-vessel stenoses.

PATHOLOGY AND MECHANISM

The pathology of SSVD encompasses tissue injury
to the cerebral white matter and to the vessels that
supply blood to this tissue [15, 17-19]. One of
the most important achievements in the past decade
was the implementation of the Vascular Cognitive
Impairment Neuropathology Guidelines (VCING), a
collaborative study performed in the United King-
dom [35]. The study by Barker et al. [36] and some
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Table 1
Pathologic basis of vascular cognitive disorders*

Parenchymal lesions of vascular etiology
(1) Large vessel or atherothromboembolic disease
(a) Multiple infarcts
(b) Single strategically placed infarct
(2) Small vessel disease:
(a) Multiple lacunar infarcts in white matter and deep gray
matter nuclei
(b) Ischemic white matter change
(c) Dilatation of perivascular spaces
(d) Microinfarcts (cortical and subcortical) and
microhemorrhages
(3) Hemorrhage
(a) Intracerebral hemorrhage
(b) Multiple cortical and subcortical microbleeds
(c) Subarachnoid hemorrhage
(4) Hypoperfusion
(a) Hippocampal sclerosis
(b) Laminar cortical sclerosis
Types of vascular lesions
(1) Atherosclerosis
(2) Cardiac, atherosclerotic, and systemic emboli
(3) Arteriolosclerosis
(4) Lipohyalinosis
(5) Amyloid angiopathy
(6) Vasculitis—infectious and noninfectious
(7) Venous collagenosis
(8) Arteriovenous fistulae—dural or parenchymal
(9) Hereditary angiopathies
cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy
(CADASIL); cerebral autosomal recessive arteriopathy
with subcortical autosomal recessive
leukoencephalopathy (CARASIL); etc.
(10) Giant cell arteritis
(11) Berry aneurysms
(12) Miscellaneous vasculopathies—fibromuscular dysplasia,
Moya-Moya
(13) Systemic microangiopathies without vascular
inflammatory cell infiltrates
(14) Cerebral venous thrombosis

*From Vascog [21].

of the other studies referred to here were carried out
on brain samples donated after death from elderly
donors who were systematically followed during life
with regard to their clinical and psychological state
at each yearly visit at the Oxford Study to Investigate
Memory and Ageing (OPTIMA). From a total brain
archive of over 500 donations, this cohort included
subjects who were found after death to have only
SSVD and no more than Braak and Braak stage 3-tau
pathology. We found that cognitive impairment only
affected about a third of subjects, the rest had cogni-
tion within normal limits [37], using as instruments
to assess cognition the Mini-Mental State Exami-
nation and the Cambridge Cognition Examination.
The findings may have been different using the Mon-
treal Cognitive Assessment test [38, 39] that has been

found to be more sensitive to cognitive changes char-
acteristic of SSVD and VCI; or the Brief Memory and
Executive Test [40] for detecting cognitive impair-
ment in small vessel disease.

Pathology

Diffuse damage to the white matter (ischemic
leukoencephalopathy) is the most common pathol-
ogy in SSVD [35]. It is usually most severe in frontal
and occipital regions [35, 41-44] and the affected
white matter exhibits loss of myelin and axons and
a chronic inflammatory infiltrate (Fig. 2A, B). There
is also evidence of ongoing axon damage in surviv-
ing axons, detected with immunocytochemistry for
phosphorylated neurofilament precursor protein [36].
Evidence for axonal depletion in white matter lesions
also comes from silver-stained preparations [41, 42],
correlated with reduced fractional anisotropy in dif-
fusion tensor imaging [43].

Associated with this diffuse white matter dam-
age, Skrobot et al. [35] found six other pathological
features predictive of cognitive impairment: 1) arte-
riolosclerosis, 2) perivascular space dilatation, 3)
leptomeningeal cerebral amyloid angiopathy (CAA),
4) microinfarcts, 5) lacunar infarcts; and 6) large
infarcts.

Small arteries and arterioles supplying blood to
cerebral white matter in SSVD have thickened walls
and basement membranes and diminished luminal
spaces (Fig. 2D, F) [44-46]. A thrombus within these
vessels is rare but arterioles are sometimes tortuous
[47—-49]. Smooth muscle in the walls of the vessels is
characteristically replaced by collagen, and perivas-
cular spaces are commonly enlarged [50] (Fig. 2C).
Perivascular macrophages are frequently present and
may contain hemosiderin, indicative of likely ear-
lier small bleeds. A marker of endothelial activation,
thrombomodulin, was found to be elevated in vessels
affected by SSVD, a change that was interpreted as
likely to be a protective response to SSVD rather than
causative [47]. Similar changes to those in cerebral
white matter are often seen in deep grey matter. Veins
adjacent to the lateral ventricles often have thickened
walls [48], but the significance of venous pathology
in SSVD is only beginning to be systematically stud-
ied and related to cognitive state. The same is true
of capillaries, although imaging techniques such as
Dynamic Susceptibility Contrast (DSC)-MRI perfu-
sion has shown alterations of cortical capillary transit
time in AD, consistent with low tissue oxygen tension
in white matter hyperintensities (WMH) areas [51].
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Table 2
VICCCS proposed definitions of major VCI subtypes®

Post-stroke dementia (PSD): A patient described as having PSD may or may not have presented evidence of mild cognitive impairment
before stroke. The patient may exhibit immediate and/or delayed cognitive decline that begins after, but within 6 months, of stroke, that
does not recover. PSD results from different vascular causes and changes in brain. It includes cases with multiple cortico-subcortical
infarcts, strategic infarcts, subcortical ischemic vascular dementia, and various forms of neurodegenerative pathology, including AD,
which develop within 6 months of stroke. This temporal basis for cognitive decline after stroke differentiates PSD from other forms of
major VCIL.

Mixed dementias (MXD): A stand-alone umbrella subgroup termed mixed dementias includes all the phenotypes specified for each
combination, that is VCI-AD, VCI-DLB, so forth. It is recommended that a patient is referred to as having “VCI-AD”, according to the
phenotypes present, rather than less specific mixed dementia, for example. Where discrimination is possible, the order of terms should
reflect the relative contribution of the underlying pathology, that is AD-VCI or VCI-AD.

Subcortical ischemic small-vessel disease (SSVD): Small-vessel disease is the main vascular cause of VCI. Lacunar infarct and ischemic
white matter lesions are the main type of brain lesions, which are primarily located subcortically. It incorporates the overlapping clinical
entities of Binswanger’s disease and the lacunar state.

Multi-infarct dementia (MID): MID-relates to the involvement, and likely contribution, of multiple large cortical infarcts in the
development of dementia.

*From VICCCS [22].
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Fig. 2. Components of the pathology due to SSVD. A, B) Low power (A) and higher power (B) views of a histological section from a case
of SSVD. The section has been stained for myelin (blue) (Luxol fast blue/cresyl violet stain). There is diffuse pallor of staining and, at the
top left corner of the section in (A), the tissue is necrotic. B) Damaged white matter at higher power. The nuclei (purple) are chiefly those of
infiltrating macrophages. C) Greatly dilated perivascular space (hematoxylin and eosin stain). D) Small artery with a grossly thickened wall
in which collagen has replaced smooth muscle (hematoxylin and eosin stain). E) Normal white matter arterioles in which the deeper pink
cells are smooth muscle cells. F) Severely fibrotic and stenosed arteriole from a case of SSVD (E and F, hematoxylin and eosin).
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It is evident that the blood supply to cerebral
white matter in SSVD is compromised and there is
ischemia and oxidative stress in affected regions [44,
52]. From imaging studies the process appears to
progress slowly; the rate of WMH in T2 weighted
MRI, indicative of damage due to SSVD, is asso-
ciated with decline in verbal IQ [53] and executive
function [54].

Mechanisms

Epidemiological studies indicate that SSVD is
more common with longstanding hypertension in
middle age [55-57] and in subjects with diabetes
mellitus [58]. Hypertension may damage these small
vessels by provoking sheer stresses since these
vessels branch out from larger arteries without pro-
gressive decrease in size and are therefore liable
to experience relatively high pressures. Alterna-
tively, there may be damage inflicted by episodes
of hypotension interspersed between episodes of
hypertension in people with poorly controlled blood
pressure [55]. In the material, we have studied from
the OPTIMA cohort we found no relation of SSVD
to severity of hypertension or diabetes, but instead
we found it to be related to age [59]. Age also had
an influence of some SSVD features in the study by
Skrobot et al. [35]. Less attention has been paid in
the literature of SSVD to the effect of age than of
hypertension. This finding emphasizes an interesting
similarity between SSVD and sporadic AD for which
old age is overwhelmingly the most important risk
factor [60, 61]. It is unclear how age may damage
small cerebral arteries and arterioles but one change
that may be important is stiffening of upstream, larger
arteries, reflected in carotid-femoral pulse wave and
increased pulse wave velocity which have been linked
to WMH [62, 63]. One aspect of vascular smooth
muscle that has been shown to increase in expression
with age is vascular endothelial growth factor 2 [64].
However, this expression was not related to severity
of SSVD in the brains of elderly subjects lacking AD
pathology in the OPTIMA cohort [59].

Angiotensin Il is a protein capable to damage aging
cerebrovascular cells, particularly vascular smooth
muscle cells; it shows increased activation with age
and is linked to pro-inflammatory effects through
activation of leucocytes, cell adhesion molecules, and
inflammatory cytokines [65, 66]. It also leads to stim-
ulation of NADPH oxidase, an important source of
oxygen species production and downregulation of
antioxidant defenses [67, 68].

Though speculative at this stage, it is interesting
to note the results of informative parabiosis exper-
iments in animals performed by Wyss-Coray and
colleagues. They have found that by engineering a
common blood supply between old and young mice
they can detect a circulating factor in the blood of
young mice that can reduce age-associated cardiac
muscle changes in old mice [69]. Clearly, it would be
of interest to know if cerebral arterial smooth mus-
cle in elderly mice (and humans) is similarly affected.
Another mechanism, which is also worth considering
in the pathophysiology of SSVD, is the breakdown
of the blood-brain barrier (BBB) [70]. This is com-
mon in old age and may at times be severe enough
to enable a large molecular weight protein, fibrino-
gen, to enter the neighboring brain parenchyma from
the blood. Bridges et al. [71] examined this feature
in material from the OPTIMA cohort. The presence
of fibrinogen in cerebral white matter of elderly sub-
jects was readily demonstrable, but its amount was
not related to the severity of damage to white matter.
This does not exclude a potential role for fibrinogen
and its breakdown product fibrin, in the development
of white matter damage in SSVD because the damage
is likely to have arisen earlier than in the pre-mortem
period during which fibrinogen seen in tissue sec-
tions is likely to have leaked from blood vessels. It
is worth referring to the apparent ability of fibrino-
gen to damage cerebral cortex in multiple sclerosis
[72] and to white matter in EAE, the experimental
model of multiple sclerosis [73]. Fibrinogen has also
been linked to cortical damage in AD [74]. BBB dam-
age in SSVD may be effected by activation of matrix
metalloproteinases [18].

CAA is a factor associated with severity of SSVD
and cognitive impairment attributable to SSVD. In
a study specifically designed to study the effect
of CAA on SSVD [75] we found a complex rela-
tionship of CAA to the severity of SSVD-related
damage that varied depending on apolipoprotein
E (APOE) genotype. There was a modest positive
correlation between severity of CAA and severity of
SSVD in those who were APOE e4-positive, no effect
in those who were APOE &3-positive and a nega-
tive effect in those who were APOE &2-positive [75].
CAA has been shown to be associated with microin-
farctions in the cerebral cortex. Since the arterioles in
the cortex that are affected by CAA also supply sub-
cortical white matter with blood it is plausible that
it may promote ischemia in subcortical white mat-
ter; Skrobot et al. [35] found that it promoted SSVD
in their study. The manner in which APOE genotype
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may exert this effect is not clear. Nonetheless, Skrobot
etal. [35] did not find an effect of the APOE genotype
in SSVD.

One further metabolic pathway that would be
worth investigating with respect to the effect of age on
cerebral arteries and arterioles is the mammalian tar-
getof rapamycin (mTOR) pathway [74, 76] which has
been shown to have important control over lifespan in
animals [77] and to be dysfunctional in AD [78, 79].
The extracellular matrix protein mindin/spondin2 is
a protein involved in vascular smooth muscle regu-
lation influenced by the mTOR pathway [80], as is
the platelet-derived growth factor-induced control of
vascular smooth muscle phenotype [81].

This neuropathology review summarized some of
the factors that may contribute to SSVD in the elderly.
To be in a position to help those with cognitive impair-
ment due to SSVD, and to help others at risk to avoid
it, we need to further clarify mechanisms of damage
and find ways to intervene and to combat them.

GENETICS

In 1955, Ludo van Bogaert [82] reported two sis-
ters with a familial form of Binswanger disease and
provided the first neuropathological description of
the clinical condition that eventually became known
as Cerebral Autosomal Dominant Arteriopathy
with Subcortical Infarcts and Leukoencephalopathy
(CADASIL), the first monogenic form of pure SSVD
[83]. Other variants of SSVD with a genetic basis
were later reported [84, 85]. However, the mecha-
nisms of contribution of risk genes to the development
of sporadic SSVD are not fully known, due to the
complexity of the pathogenesis caused by the interac-
tion of genetic and environmental factors. The genetic
contributions to the monogenic forms of small-vessel
diseases are better known [86, 87] and will not be
discussed here; these include CADASIL, Cerebral
Autosomal Recessive Arteriopathy with Subcorti-
cal Infarcts and Leukoencephalopathy, Fabry disease,
autosomal dominant Retinal Vasculopathy with Cere-
bral Leukodystrophy, CAA, and collagen type IV
alpha 1 chain-related cerebral small-vessel disease.
Although some pathogenic mechanisms may be
shared between the monogenic and sporadic forms,
they are not identical. Therefore, there is still a need
to better understand the genetics of SSVD.

Established diagnostic criteria for SSVD have been
insufficiently used in genetic studies and the major-
ity of gene-association studies have focused not on

clinical diagnoses but on surrogate markers or disease
traits, such as WMH, deep intracerebral hemorrhage
and cerebral microbleeds, although these markers are
not unique for SSVD. Throughout the years, the asso-
ciation of such surrogate markers and diagnoses with
gene variants known as single nucleotide polymor-
phisms or gene loci has been performed in so-called
candidate gene studies. A few of these have also aimed
atconfirming genetic findings with neuropathological
studies, where an accurate diagnosis of SSVD is possi-
ble [87]. Many of the candidate gene studies have been
performed in small patient groups or have given con-
flicting results when compared. Therefore, important
meta-analyses of these previously reported candidate
gene studies have been performed. Moreover, a few
genome-wide association studies of VCI have been
performed [88, 89] but failed to reproduce the findings
from the candidate gene studies and meta-analyses. In
these studies, rs290227 of the spleen tyrosine kinase
(SYK) gene [89] and rs12007229, located on the X
chromosome near the androgen receptor gene were
associated withrisk of VCI [88], butto our knowledge,
no follow-up studies of these gene variants have been
published to date.

The gene for apolipoprotein E (APOE), a multi-
functional protein involved in lipid and cholesterol
transport and AP clearance, is the best-known risk
gene for AD [90] and CAA [91] where the €4 allele
increases the disease risk. Meta-analyses of previ-
ously published candidate gene studies of APOE &4
have shown significant association between &4 allele
carriers and increased risk of VCI [92-94]. Meta-
analyses [94] have also indicated that the APOE &4
allele is associated with an increased risk of cerebral
microbleeds [95] but not with WMH [96].

The MTHFR gene codes for an enzyme in the
folate cycle, involved in homocysteine metabolism
[29]. Although the gene variant C677T (rs1801133)
of MTHFR has been shown to be arisk gene for stroke
in meta-analyses, it has failed to show associated with
WMH and intracerebral hemorrhage in similar stud-
ies [96]. In two meta-analyses the T allele of MTHFR
was associated with VCI in Asian populations; but
this association was not present in Caucasian and
Indian populations [93, 94]. A validation study later
showed an increased risk of VCI associated with the
T allele of rs1801133 in Caucasians [92].

A few genes that have shown associations to VCI
have later been confirmed in meta-analyses while
some have failed to show associations with disease.
The gene variant rs662 for paraoxonase 1 (PONI),
a gene involved in homocysteine and lipoprotein



1424 A. Wallin et al. / Subcortical Small-Vessel Disease

metabolism, has failed to be associated with VCI
in a published meta-analysis [93] or in a validation
study [92]. However, the PONI L55M (1s854560)
variant was found to be associated with VCI, while
no association was found with the variant —108C/T
(rs705379) of the gene [94]. Variants of two genes
related to inflammation, tumor necrosis factor (TNF)-
o —850C/T (rs1799724) and transforming growth
factor (TGF)-B1 +29C/T (rs1800470) were found to
be associated with risk of VCI in Caucasian and
Asians, respectively [94], while the interleukin (IL)
gene variants IL-/o —889C/T (rs1800587) and IL-6
—174G/C (rs1800795) showed no significant associa-
tion in this study. Finally, no significant associations
of VCI were found in a meta-analysis [93] and in
a validation study [92] of variants of the genes for
angiotensin converting enzyme (ACE; rs1799752),
alpha-1-antichymotrypsin (ACT/SERPINA3; rs4934)
and presenilin (PSEN-1; rs165932). Moreover, ACT
A/T (rs4934), APOE promoter—427T/C (1s769446)
and PSEN-1 (rs165932) were not associated with VCI
in a meta-analysis [94]. The reasons for this could be
the reduced number of studies and the limited number
of patients included in the meta-analyses, preventing
stratification by ethnicity.

The importance of determining exact genetic
mechanisms involved in the pathogenesis of SSVD
resides in the possibility of prevention and treatment,
as recently illustrated with the use of an agonist
Notch3 antibody that prevents mural cell loss and
modifies plasma proteins associated with Notch3
signaling in an animal model of CADASIL [97].
Therefore, future genetic analyses of definite SSVD
cases in large cohorts and subsequent meta-analyses
are warranted.

SYMPTOMS PATTERN AND CLINICAL
PRESENTATION

Although cognitive impairment in the elderly may
affect the entire range of cognitive functions, there is
usually an uneven distribution of deficits, i.e., some
cognitive functions are more affected than others. The
pattern of cognitive impairment reflects the nature
of the disease and the distribution of pathological
changes in the brain. From the clinical viewpoint,
it is useful to simply consider two major types of
cognitive syndromes. The first one is characterized
by impaired memory, language problems, difficulty
with practical tasks, and loss of the capacity to
interpret sensory (mainly visual) impressions includ-

ing recognition ability. The syndrome originates from
dysfunction of posterior cortical association regions
(posterior brain syndrome) and is typical of AD.
The second syndrome results from executive dys-
function and is characterized by mental slowness
and personality changes [98]. The executive control
function ensures that mental and physical activities
achieve the intended goals. It coordinates cognitive
functions such as planning, attention, working mem-
ory, abstraction capacity, flexibility, and the ability to
take action goals. Consequently, when executive dys-
function is present, various types of activity-related
cognitive functions are impaired. Memory disorders
also occur as a result of loss-of-set but are less
pronounced than in the posterior brain syndrome.
Recognition and interpretation capabilities remain
relatively intact. Gait pattern is often slower, similar
to that of Parkinson’s disease. The syndrome origi-
nates from dysfunction of frontal subcortical regions
of the brain (anterior brain syndrome) and is typical
of SSVD [18, 19, 98-101]. Executive dysfunction
may appear also in patients with AD but later in the
course of the disease, and it is usually associated
with impairment of attentional shifting and working
memory [102]. In patients with SSVD, the execu-
tive dysfunction manifests itself early in the course
of the disease causing impairment in the capacity
to use complex information, to formulate strategies,
and to exercise emotional and behavioral self-control.
In comparison with AD, patients with SSVD show
less pronounced episodic memory impairment but
more depressive symptomatology and greater vari-
ability in the speed of progression of the disease [103,
104]. SSVD specifically contributes to deterioration
of psychomotor speed, global cognitive function, and
impaired executive control. Executive dysfunction
causes the loss of functional capacity required to per-
form activities of daily living, a requisite criterion
for the diagnosis of major cognitive disorder. Patients
with AD and prominent impairment of memory may
remain relatively independent as long as the executive
function remains intact; in contrast, SSVD may lead
to early and progressive executive dysfunction with
considerable risk of developing major cognitive dis-
order [104]. Executive function is also a determinant
in defining the level of institutional care required.
Recent studies have investigated the cognitive pro-
file of SSVD in more detail. In a comprehensive
meta-analysis, Vasquez and Zakzanis [105] com-
pared healthy controls with patients with SSVD and
mild cognitive impairment (MCI). Patients showed
impairments across all cognitive domains but the
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greatest decline was in mental speed. SSVD patients
exhibited more pronounced impairments in executive
function and mental speed compared to the non-
vascular MCI group. In contrast, the non-vascular
MCI group exhibited more pronounced impairment
of delayed memory [105]. Although the differences
between vascular and non-vascular MCI are in agree-
ment with the results of previous studies, it is
essential to notice that there is overlap in cogni-
tive impairment observed in neuropsychological tests
between the groups. Based on the recommenda-
tions of the 2006 NINDS-CSN consensus conference
[106], a neuropsychological battery for MCI-SSVD
was developed using a factor analysis approach [107,
108]. The battery was found to be robust and appli-
cable. Attention-executive dysfunction, memory loss
and visuospatial difficulties were the most obvious
features. However, the Trail Making Test was poorly
applicable to older and cognitively impaired patients.

Age at onset appears to be a crucial factor in
determining the cognitive impairment profile [109].
Frontal-executive dysfunction was more pronounced
in patients with disease onset before age of 65 in com-
parison with the late-onset group. The early-onset
SSVD group had a more severe small-vessel dis-
ease burden, whereas the late-onset group exhibited
greater amyloid burden. In comparison with AD, the
loss of visual memory is less pronounced in SSVD
after one year, whereas the opposite is true for loss of
physical independence [110].

A number of simplified approaches to the diag-
nosis of cognitive impairment in SSVD have been
proposed. In a study operationalizing MCI criteria,
non-amnestic single-domain MCI was unexpectedly
common and the authors concluded that it may
represent a previously unrecognized MCI subtype
associated with SSVD [108]. The Frontal Assess-
ment Battery is a useful tool to differentiate MCI due
to SSVD from AD [111]. The Montreal Cognitive
Assessment performed better than the Mini-Mental
State Examination to detect MCI-SSVD [112]. The
Cognitive Assessment Battery appears to be use-
ful for MCI detection of MCI-SSVD [113]. In an
autopsy-defined cohort [114], a combined memory
and verbal fluency score was able to differentiate
between AD and SSVD with a sensitivity of 85%,
specificity of 67% and positive likelihood ratio of
2.5. Amnestic memory impairment and lower cate-
gorical fluency characterized AD, while the pattern
in SSVD exhibited a tendency toward greater impair-
ment on phonemic fluency and better performance
on recognition memory [114]. The CLOX test [116]

remains a simple and effective tool to detect executive
dysfunction (Fig. 3).

Neurological signs have been thoroughly studied
in patients with SSVD. A score for focal neurological
signs did not correlate with global cognitive perfor-
mance, but instead with executive dysfunction, as
measured by the letter fluency and the Rey-Osterrieth
Complex Figure tests [115]. The neurological signs
observed more often were the Chaddock sign,
stooped posture, decreased arm swing, bradykine-
sia, and rigidity. Sixty-nine percent exhibited at least
one extrapyramidal sign and 58% at least one uni-
lateral lateralizing sign [115]. Motor impersistence
and perseveration occurred when cortical areas and
underlying white matter tracts associated with the
frontoparietal attentional system were affected in
patients with SSVD [117]. The LeukoAraiosis and
DISability (LADIS) study [118] showed that SSVD
was associated with deterioration of gait and bal-
ance over time. Also, gait disturbance complaints
in non-disabled SSVD patients were, along with
age, atrial fibrillation, and the degree of WMH,
an independent predictor of disability after 3 years
[119]. Interestingly, new studies have found that
SSVD plays a role in the development of cogni-
tive impairment in patients with Parkinson’s disease
[120, 121].

Neuropsychiatric manifestations such as depres-
sive symptoms, loss of motivation, lack of interest
and emotional bluntness are common in patients
with SSVD [122]. Small-vessel lesions and amyloid
burden independently affect specific neuropsychi-
atric symptoms [123]. Apathy, depressive symptoms,
irritability [123, 124], and sleep disturbances [125]
are the most frequent neuropsychiatric symptoms
in SSVD. In MCl-associated SSVD both negative
and also positive neuropsychiatric symptoms appear;
more negative than positive symptoms become more
obvious as the disease progresses from MCI to major
cognitive disorder [126]. In a pivotal study, both
apathy and depressive symptoms were increased
in patients with SSVD but typically they did not
occur together in the same patient [127]. Diffusion-
tensor imaging (DTI) revealed that white matter
microstructural changes in SSVD were associated
with increased apathy, but not depressive symptoms
[127]. These findings have consequences for the
formation of treatment strategies for patients with
SSVD.

In summary, new studies have confirmed the
anterior symptom profile in patients with SSVD
[128]. Motor-neurological and neuropsychiatric
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Fig. 3. Executive Clock-Drawing Task (CLOX): The patient is
instructed to draw a clock on a white sheet of paper. The instruc-
tions are as follows: “Draw a clock that says 1:45. Set the hands
and numbers on the face of the clock so that even a child could
read them.” The instructions can be repeated until they are clearly
understood, but once the subject begins to draw no further assis-
tance is allowed. This patient scored 7/15 points. The subject’s
performance is scored as follows: Does figure resemble a clock?
1 point; Circular face present? 1 point; Dimensions>1 inch? 1
point; All numbers inside the perimeter? 1 point; No sectoring or
tic marks? 1 point; Numbers 12, 6, 3, & 9 placed first? 1 point;
Spacing Intact? (Symmetry on either side of 12 and 6 o’clock?) 1
point; Only Arabic numerals? 1 point; Only numbers 1 - 12 among
the numerals present? 1 point; Sequence 1-12 intact? No omissions
or intrusions. 1 point; Only two hands are present? 1 point; All
hands represented as arrows? 1 point; Hour hand between 1 and 2
o’clock? 1 point; Minute hand obviously longer than hour? 1 point;
1 point if none of the following are present: 1) Hand pointing to
4 or 5 o’clock? 2) “1:45” present? 3) Any other notation (e.g.,
9:00”)? 4) Any arrows point inward? 5) Intrusions from “hand”
or “face” present? 6) Any letters, words or pictures? From: Royall
etal., 1998 [116].

features have been added to the characteristic
frontal-executive pattern of the disorder, which is
phenotypically different from that of pure AD [123,
124]. However, the cognitive profile of SSVD is much

more complex than typically reported. The results of
new studies suggest that overlapping neural networks
take part in accomplishing neuropsychological tasks.
The field will benefit from further studies on out-
come of network pathway disruption [105, 129]. The
symptom profiles described here are not sufficiently
specific and do not qualify as unique diagnostic
markers of SSVD. For diagnostic purposes, other
tools such as brain imaging and biochemical markers
should be used in combination with the characteristic
symptom profile.

NEUROIMAGING

The standard-of-care evaluation in elderly patients
with cognitive decline requires at least one brain
imaging study [130] to eliminate pathologies dif-
ferent from neurodegeneration and to determine the
extent of the vascular lesions [131, 132]. Devel-
opment of neuroimaging techniques, in particular
computerized tomography (CT) and MRI, provided
some of the most important tools in the diagnosis
of cognitive disorders, allowing accurate demonstra-
tion of the location and rate of progression of atrophic
changes affecting the brain in AD and other cognitive
disorders, as well as the different types of vascular
lesions observed in pure forms of vascular cognitive
disorders and MXD [133, 134]. Two basic imaging
methods are currently used in the clinical evalua-
tion of cognitive disorders: structural brain imaging
(CT/MRI) and metabolic imaging (PET/SPECT). CT
uses X-rays and the resulting images depend on the
electron density and rates of absorption of X-rays by
different tissues. MRI uses the changes induced by the
magnetic field to alter the rate of spin of the hydrogen
atom about its own axis; this change of the electro-
magnetic properties of protons in water molecules
in the tissue added to the small difference in energy
produced by the change of spin of the protons is
detected and used for the anatomic three-dimensional
(3D) reconstruction of the tissue. Positron emis-
sion tomography (PET) scans allow measurement
of regional cerebral glucose metabolism using !8F-
2-fluoro-deoxy-D-glucose (FDG). Cerebral blood
flow can be measured with Ho!'3O-PET or using
single photon emission computerized tomography
(SPECT) with technetium hexamethyl-propylene-
amine-oxime (**™Tc-HMPAO).

Quantification of cortical thickness allows early
diagnosis and rate of progression from MCI to major
cognitive disorder. White matter involvement can
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also be quantified with DTI and functional meth-
ods including fMRI, functional connectivity, and
MR spectroscopy (MRS). Isotope-based techniques
include isotope markers for AP (”O—PIB, Bp.
florbetapir), tau ('8 FDDNP) and activated microglia
('C-PK11195). Neuroimaging markers are particu-
larly useful at the early symptomatic and preclinical
asymptomatic phases of SSVD [131], as well as serv-
ing as endpoints in clinical trials. The latter technique
allows a significant reduction of the number-needed-
to-treat subjects in controlled trials.

According to Thompson and Hakim [24], SSVD
is widely recognized as the commonest of all brain
lesions. The unusually elevated prevalence of WMH
in the elderly was received initially with skepti-
cism, reflected in the name UBOs (unidentified bright
objects) used to first describe them [2]. For instance,
in 1996, the large population-based brain MRI study
on 3301 elderly subjects in the Cardiovascular Health
Study [134] found that more than half (64.2%) of
all participants had some degree of WMH; only
4.4% had no lesions and 31.4% had minimal lesions.
WMH were associated with older age, clinically
silent stroke on MRI, hypertension, smoking and
lower income indicating limited access to medi-
cal services, inadequate diet and living conditions,
and poor long-term compliance with antihypertensive
treatment [135]; higher grade WMH were accom-
panied by cognitive impairment and abnormal gait.
Correlation studies revealed that the majority of these
WMH in the elderly were ischemic in nature [136].
Arne Brun and Elisabet Englund [137] at the Univer-
sity of Lund, Sweden, first called these WMH lesions
“incomplete” white matter infarctions. The name
“incomplete” indicates that complete ischemic necro-
sis and cavitation were not present. CT and, more
clearly, MRI also revealed the presence of étar criblé
or dilatation of Virchow-Robin perivascular spaces
[138, 139]; lacunes, état lacunaire and Binswanger
disease. Joanna Wardlaw and colleagues [140] have
extensively reviewed the topic of WMH, including
pathogenesis, clinical relevance and imaging fea-
tures. WMH are not benign lesions since they increase
2-fold the risk of major cognitive disorder and 3-fold
the risk of stroke [54, 141]. Recent MRI technical
advances [142-144] including manual and auto-
matic volume measurements, DTI, and fMRI should
provide further understanding of SSVD lesions. In
2013, Wardlaw and the STandards for Reportlng
Vascular changes on nEuroimaging (STRIVE) study
group [145] completed a major international effort
to standardize neuroimaging acquisition, interpreta-

tion and reporting of cerebral small-vessel disease.
The criteria include the following SSVD detected
on conventional MRI: 1) recent small subcorti-
cal infarcts, 2) white matter hyperintensities, 3)
lacunes, 4) prominent perivascular spaces, 5) cere-
bral microbleeds, and 6) atrophy (Fig. 4). Criteria for
imaging detection and quantification of cortical cere-
bral microinfarcts on 3 Tesla MRI have been proposed
recently [146].

Quantification of the total burden of SSVD and the
resulting alterations of the BBB leading to decreased
CBF has been successfully studied [147, 148]. It has
been shown that the severity of the baseline WMH
load predates the decrease of CBF after a follow-up of
almost 4 years. Cerebrovascular reactivity in SSVD
can be measured using blood oxygen level dependent
(BOLD) MRI and vasoactive stimulation; prelimi-
nary results indicate that cerebrovascular reactivity
appears to be decreased in subjects with more severe
WMH [147, 148].

Cerebral FDG-PET is widely used in the eval-
uation of cognitive disorders in the elderly given
that cerebral glucose metabolism is an index of
neuronal and synaptic function; thus cerebral glu-
cose hypometabolism represents regions of brain
destruction such as in stroke, or cortical zones of
neurodegeneration in VCI and in most types of degen-
erative cognitive disorders such as AD [149, 150].
Bloudek et al. [151] performed a meta-analysis to
evaluate FDG-PET in AD and found 90% sensitiv-
ity (95%CI 84-94%) and 89% specificity (95%CI
81-94%). Kerrouche et al. [152] using voxel-based
multivariate analysis of 8FDG-PET separated VCI
from AD with 100% accuracy. Hypometabolism in
deep gray nuclei, cerebellum, primary cortex, middle
temporal gyrus, and anterior cingulate cortex differ-
entiated VCI from AD [152]. In addition to providing
aclear diagnostic image of AD and other neurodegen-
erative cognitive disorders, such as frontotemporal
degeneration, FDG-PET is quite useful in the diag-
nosis of patients with PSD due to multiple strokes and
also in determining the contribution of AD to VCI.

The brain is a complex vascular organ; there-
fore, measurement and understanding of CBF is
central to progress in the field of cognition [153].
Neurovascular coupling increases CBF according to
local neuronal activity and metabolism [8] serving
as the basis for BOLD-MRI and fMRI [150, 151]. A
decrease in CBF occurs with normal aging as well
as in AD [30-32, 153, 154]. A novel method to
measure CBF uses ASL [30, 155], a non-invasive
MRI technique that requires neither contrast media
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Fig. 4. Examples of different features of small vessel disease, including white matter hyperintensities, as published by the STandards for
Reportlng Vascular changes on nEuroimaging (STRIVE) study group. From: Wardlaw et al., 2013 [145].

nor isotopes [30]. ASL-MRI generates an endoge-
nous contrast by using radiofrequency pulses that
“label” water proton spins in blood circulating in
carotid and vertebral arteries at the base of the skull.
CBF-ASL-MRI images are obtained by subtracting
labeled and unlabeled spin exchanges in the brain
tissue yielding a quantifiable map of regional CBF
(rCBF) [30, 155]. Using 3D ASL-MRI in subjects
with SSVD, Sun et al. [156] demonstrated marked
decrease in CBF in the cortex of the temporal and
frontal lobes, hippocampus, thalamus, and insula that
correlated with the degree of cognitive impairment.
Also, thinner cortex in frontal, parietal and lateral
temporal regions was noted in more severe cases of
SSVD.

Excellent correlation of CBF with FDG-PET
metabolic rate has been obtained in patients with
several forms of cognitive disorders [155, 156], as
well as in obstructive sleep apnea [157, 158]. BBB
alterations can be detected using a two-stage non-

invasive diffusion weighted MRI technique [ 159] that
uses fast and slow diffusion coefficients to differenti-
ate labeled blood in the microvascular compartment
(small vessels and capillaries) and in the brain tissue;
the ratio of these two signals indicates water exchange
rate across the BBB [159]. Large artery integrity can
also be determined using flow encoding arterial spin
tagging [160].

CBF-ASL in NPH

A promising area of research in SSVD is the
use of CBF-ASL is the study of Binswanger dis-
ease and normal pressure hydrocephalus (NPH). In
1894, Otto Binswanger described the clinical form
of major vascular cognitive disorder that bears his
name characterized by extensive subcortical ischemic
white matter lesions. Binswanger’s neuropathologi-
cal report noted the presence of “enormously enlarged
ventricles” [4]. Roman [2, 4, 161] pointed out the
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Fig. 5. Increase in global cerebral blood flow determined by arterial spin label MR imaging post-lumbar puncture in a patient with normal-

pressure hydrocephalus. (Romédn GC and Fung S, unpublished data).

difficulties in clinically separating Binswanger dis-
ease from NPH. In fact, both entities are characterized
by prominent changes in ambulation, such as small-
step gait (marche a petits pas), gait apraxia, frequent
falls, and urinary incontinence. A subcortical type
of cognitive impairment with changes in mood,
behavior, and personality is common in both, as
well as pseudobulbar palsy, emotional incontinence,
and frontal lobe signs with loss of incentive, drive,
and insight. Profound apathy and abulia may be
observed in advanced cases of both conditions.
Mutism, bradykinesia, rigidity, and dysarthria may
lead to confusion with Parkinson disease. Finally,
there is frequent occurrence of hypertension and cere-
brovascular disease in cases of idiopathic NPH [161],
as well as typically noted in Binswanger disease.

Bradley et al. [162] compared the presence and
degree of periventricular WMH in patients with
treated and untreated NPH and in age-matched
control subjects. A highly significant statistical asso-
ciation was found for WMH in NPH when compared
with controls. Patients with MRI evidence of WMH
but without clinical symptoms of NPH had increased
frequency of communicating hydrocephalus. Diffu-
sion of CSF into the periventricular areas and SSVD
contribute to periventricular WMH in NPH.

Due to Pascal’s hydrostatic pressure law, the net
effect of CSF pressure on the dilated ventricles
is an increase of interstitial pressure in the brain
parenchyma or transmantle pressure [163]. Perfusion
of the periventricular regions proceeds in a centripetal
pattern from the surface of the brain toward the ven-

tricles by means of long medullary arteries; therefore,
an increase in the intraventricular pressure results in
an opposite gradient of centrifugal pressure capa-
ble of producing cerebral hypoperfusion [164] and
ischemia of the watershed periventricular white mat-
ter, particularly in elderly subjects with loss of CBF
autoregulation [164], but also in children with hydro-
cephalus from posterior fossa lesions [165, 166].
As illustrated in Fig. 5, global CBF-ASL perfusion
increases post-lumbar puncture (post-LP) in patients
with diagnosis of NPH; in contrast, Binswanger
disease cases show no change in CBF post-LP.

In summary, most of the advances in the diagnosis,
pathogenesis, epidemiology, and overall understand-
ing of SSVD in the last decade have resulted from
the clinical and research application of brain imag-
ing, in particular MRI. Further studies on the vascular
mechanisms underlying SSVD could be expected
from research using MRI-based CBF-ASL studies
and newer imaging modalities. Several groups in
Europe recently recommended the implementation of
ASL-MRI studies for numerous clinical applications
including patients with dementia [30]. Brain imaging
should continue to open novel therapeutic paths for
these patients.

CEREBROSPINAL FLUID BIOMARKERS

As stated above there are biochemical changes
in the brain of patients with SSVD, which may be
reflected in the CSF since it is in direct contact with
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the extracellular space. This assumption and strat-
egy has proved fruitful in the field for AD research.
Recently, the index between tau () protein in its total
(rT) or phosphorylated form (phospho-tau, tp) and
A peptide 1-42 (AB42), has been incorporated in the
research criteria for AD [33, 167, 168]. The differen-
tiation between AD and VCI, and especially between
MXD and “pure” VCI, is not always easy in everyday
practice. VCI is a heterogeneous entity with SSVD
increasingly recognized as the most common patho-
logical substrate. Here we summarize the diagnostic
value of these biomarkers in the differential diagnosis
of SSVD [33, 169].

Tau (7) protein is the major component of intra-
cellular neurofibrillary tangles and is present in a
hyperphosphorylated form in AD pathology. Both 7
and 7p tau are increased in the CSF of patients with
AD, as compared to controls. T is better viewed
as a marker of neuronal and/or axonal degenera-
tion, while 7p is a more specific marker of tau
hyperphosphorylation process and tangle formation
in AD pathology [170]. Although the diagnostic
accuracy may be reduced to some degree when
attempting to differentiate AD from some other
types of cognitive disorders, when combined with
AP42 the above biomarkers achieve sensitivities and
specificities approaching or exceeding 90% for the
discrimination of AD from normal aging.

CSF 17 levels in VCI provide conflicting
results ranging from normal [171-173] to increased
[174-178], or to intermediate between controls and
AD cases but much lower when compared with AD
[179, 180]. Some patients with VCI may present with
high or even very high t7 levels [173, 180-183].
When patients with “pure” VCI and MXD or AD
pathology with subcortical white matter lesions are
clinically separated, the results were again conflicting
with 7T in VCI reported as comparable to the controls
[173], increased [178] or intermediate but much lower
as compared to those of AD [180], while patients
with MXD presented with increased tr in all stud-
ies. However, normal tt levels are found in patients
with lacunar infarcts [171], progressive leukoaraiosis
[175], or pure SSVD [184-187]. Phospho-tau (7p)
levels have been reported as normal in VCI or SSVD
[177, 178, 180, 185-187], while in MXD the levels
are increased to those of AD cases [180] or interme-
diate between controls and AD [186]. AP with either
1-40 (AB4o) or especially 1-42 amino acids (AP42)
is the major component of amyloid plaques; A is
present extracellularly in AD and seems to inversely
reflect amyloid pathology, i.e., CSF A4, is 50%

reduced in AD as compared to normal aged subjects.
CSF-Af4, has shown high sensitivity and specificity
(over 85%) and is recognized as one of the three “core
feasible” CSF markers for AD [170].

Reduction of CSF AB4; has been reported in VCI
[183] or in pure SSVD [185, 187-189], at levels
similar to those of AD or intermediate between con-
trols and AD cases. In other studies, AB4; levels in
VCI have been comparable to those of controls but
higher thanin AD [172, 176—179]. Some VCl patients
present low APa4> levels, but some overlap may be
present [180].

In summary, most of the above studies agree that
AB42 levels in VCI are reduced to a degree com-
parable to AD. The ratio of AB42/AB40, which is
decreased in AD, may be comparable to the controls
in pure VCI [190]. Thus the above index, if normal,
may strengthen the diagnosis of SSVD, when used
along with clinical imaging and other biomarker data.

Taken together, most of the above studies agree
that tp is usually normal in pure SSVD, while
some patients may present with low AB4 and/or
high =T levels. A recent study [191], using NINDS-
AIREN criteria [192], showed that only 29% of VCI
patients presented with increased tp levels; however,
reduced AP4> was found in 53% and increased 7T
levels in 41% of cases [191]. Such deviations from
the usual pattern may indicate clinical overlap with
AD or MXD, thus reducing sensitivity and speci-
ficity of individual biomarkers when used as tools in
every day practice; therefore, combination of several
biomarkers is required [190].

Overall, for the diagnosis of SSVD and separation
from AD—the most common clinical scenario—the
use of the above biomarkers as diagnostic tools
is of value, but further studies are needed to
evaluate sensitivities and specificities in various clin-
ical situations. Combinations of these biomarkers
with neurofilament light, metalloproteinase-9, TIMP
metallopeptidase inhibitor 1, albumin index and
metalloproteinase-2 index may further increase the
diagnostic accuracy [178-180].

METABOLIC FACTORS

Risk factors for SSVD include systemic hyper-
tension [193] and conditions causing hypoxia such
as smoking [194], chronic obstructive pulmonary
disease [195], and sleep apnea syndrome [196].
Hypercoagulation [193], chronic kidney disease
[197], and homocysteinemia [198] could worsen the
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consequences of hypertension and hypoxia. More-
over, the metabolic syndrome due to an adverse
lifestyle and aging could also influence the risk of
SSVD [199].

Overnutrition and sedentary lifestyle result in
excessive adiposity and metabolic disturbances. The
risk profile is dependent on the distribution of body fat
and the presence of metabolic aberrations [199]. The
metabolic syndrome (METS) includes the clustering
of abdominal obesity, insulin resistance, dyslipi-
demia, and elevated blood pressure [199]. In the
French Three-City (3C) cohort [200], the presence
of METS increased the risk of incident major VCI
over 4 years. In 308 healthy older French persons
from the longitudinal ESPRIT study [201], those with
METS increased two-fold (Odds Ratio [OR]=2.74)
the chance of presenting with high levels of WMH
volume, compared with subjects without METS. Fur-
thermore, in 1151 healthy old Japanese people [202],
METS was associated with silent brain infarction and
WMH, whereas less strong associations were found
with increased body mass index alone [202].

In the Japanese study by Bokura et al. [202], dys-
lipidemia was associated with WMH. Although there
have been variable results in terms of the role of
hyperlipidemia in WMH/SSVD progression [203],
several studies have shown a positive association with
hypertriglyceridemia [204]. ApoE is the major trans-
port protein for cholesterol in the central nervous
system [205]; ApoE levels in the CSF are signifi-
cantly lower among patients with AD compared with
controls [206], as well as in other forms of cogni-
tive disorders including VCI [207]. ApoE transports
cholesterol to neurons via ApoE receptors [208],
thereby being involved in the mobilization of lipids
for repair, growth and maintenance of myelin and
axonal membranes [208, 209]. Thus, the deficiency
of ApoE could possibly worsen the consequences of
WMH by reducing repair mechanisms. ApoA-I lev-
els in the CSF were reduced in AD but levels were
not associated with ApoE &4 allele distribution [207].

Insulin resistance is part of the clustering of risk
factors seen in METS [210]. Using transcranial
Doppler and MRI in subjects with diabetes mellitus
type 2, the estimated WMH volume correlated nega-
tively with CBF velocity [211], which could indicate
a possible mechanism underlying WMH develop-
ment. The results of several studies have suggested
the association of impaired glucose homeostasis or
diabetes mellitus with VCI or with increased WMH
volume [212, 213]; but not all reports are concordant
[214]. Moreover, postmortem studies have revealed

that in the AD brain, there is resistance to sig-
naling through the insulin receptor and the closely
related insulin-like growth factor-I (IGF-I) receptor
[215-217]. Neurons resistant to insulin and IGF-I
action could lack trophic signals and therefore degen-
erate [218]; also, insulin and IGF-I are associated
with the quantity of oligodendrocytes and myelin pro-
duction [219-221]. However, it is unclear whether
brain insulin resistance is a primary or secondary
event in AD and it is unknown if there is resistance to
insulin or IGF-I activity in the brains of patients with
SSVD.

Subclinical inflammation is associated with both
METS and SSVD. Several studies have shown that
the inflammatory markers C-reactive protein, 1L-6,
TNF-o, TGF-f3, and vascular endothelial growth fac-
tor levels are elevated in SSVD patients [222-225].
Furthermore, some studies have reported stronger
associations between inflammatory markers and risk
of SSVD/VCI compared to the corresponding asso-
ciations seen in AD [226, 227]. However, data are
not fully conclusive given that unchanged or even
decreased levels of inflammatory markers have also
been observed [227-229]. An additional hypothesis
posits that immunosenescence could be of impor-
tance [229]. This means that an aged and defective
immune system could be a risk factor for cognitive
decline VCI. In conclusion, although inflammation
is likely to occur in SSVD development, the exact
nature of this involvement is still unclear.

Exposure to chronic stress may result
in cognitive decline by activation of the
hypothalamic—pituitary—adrenal (HPA) axis [230].
Although glucocorticoids display both neuroprotec-
tive and neurodegenerative effects [231], the results
of most experimental studies suggest that prolonged
or excessive increases in cortisol levels result in
neuronal injury and reduced cognitive function
[232, 233]. Increased circulating and CSF levels of
cortisol have been observed in AD [234, 235], and
there are reports of disturbed cortisol secretion also
in VCI [236]. In the Lothian Birth Cohort 1936,
higher cortisol at the start and the end of a mild
cognitive stressor was associated with higher WMH
[237]. Chronic stress with activated HPA axis could
therefore be a risk factor for the development of
SSVD. These concepts will need to be explored in
the future.

In summary, sedentary lifestyle combined with
overeating, chronic stress, and aging increases the
risk of SSVD. However, the underlying mechanisms
have not been elucidated in detail, and little is known
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concerning metabolic changes in the brain. There-
fore, further research is needed to explore the role
of metabolic factors in WMH development. Lifestyle
intervention and medical treatment of metabolic alter-
ations must be studied in clinical trials to determine
the potential effect in reducing the risk of SSVD.

CONCLUSIONS

The most important research advance in the field of
VCl in the last decade has been the scientific demon-
stration that age-related white matter involvement is
a sign of subcortical small-vessel disease that leads
to cognitive failure and impaired functional capacity,
i.e., SSVD. Although this is the most homogeneous
and common type of VCI and clinical criteria for
the disease exist, it is often underdiagnosed both in
incipient and manifest stages. Likewise, given the
magnitude of the problem, a surprisingly limited
number of pharmacological studies on SSVD have
been conducted to-date. Interestingly, in a subgroup
analysis of the Scandinavian Multi-Infarct Demen-
tia Trial, nimodipine was found to be effective in
patients with SSVD [238]; a more recent controlled
clinical trial of DL-3-n-butylphthalide (a nutriceuti-
cal extracted from celery, Apium graveolens) showed
positive results in patients with mild VCI caused by
disease of the subcortical small vessels [239]. As
mentioned earlier, a therapeutic experiment in an ani-
mal model of CADASIL demonstrated that the use
of an antibody targeting Notch3 signaling effectively
prevents mural cell loss [97]. A similar method could
eventually be developed in animal models of SSVD.

One of the most important steps toward providing
a greater knowledge about SSVD, and subsequently
better care options for the disease, is to accept it
as a distinct entity, as has been the case with AD.
Indirectly, the lack of success in more than 100
AD trials has facilitated this approach [240, 241].
Recent advances towards that goal have emerged
including: 1) increased knowledge of the symptom
profile of SSVD, in addition to the characteris-
tic frontal-dysexecutive cognitive profile; 2) new
MRI studies have found that white matter involve-
ment is associated with reduced cerebral blood flow;
3) a characteristic non-AD profile of CSF mark-
ers reflecting subcortical degeneration, inflammation
and extracellular matrix breakdown has been iden-
tified; 4) the clinical and pathological criteria for
SSVD have been updated; 5) the potential impor-
tance of deep vein collagenosis has been studied

[242]; and 6) interesting associations between SSVD
and NPH have been found. Although several of the
new findings need to be replicated, they already now
imply that focusing on SSVD using various methods
is a promising way of addressing the great chal-
lenge of preventing and treating age-related cognitive
impairment. Future studies investigating the relation-
ships between sporadic SSVD and genetic factors are
needed as well as research on the various mechanisms
of causation presented above. These goals aim pri-
marily at finding targets for intervention in patients
with SSVD early in the course of the disease but may
also have positive consequences for knowledge and
treatment of AD [243].
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