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Abstract. Alzheimer’s disease (AD) and frontotemporal dementia (FTD) represent the first cause of dementia in senile
and pre-senile population, respectively. A percentage of cases have a genetic cause, inherited with an autosomal dominant
pattern of transmission. The majority of cases, however, derive from complex interactions between a number of genetic and
environmental factors. Gene variants may act as risk or protective factors. Their combination with a variety of environmental
exposures may result in increased susceptibility to these diseases or may influence their course. The scenario is even more
complicated considering the effect of epigenetics, which encompasses mechanisms able to alter the expression of genes
without altering the DNA sequence. In this review, an overview of the current genetic and epigenetic progresses in AD
and FTD will be provided, with particular focus on 1) causative genes, 2) genetic risk factors and disease modifiers, and
3) epigenetics, including methylation, non-coding RNAs and chromatin remodeling.
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INTRODUCTION

Most neurological disorders, including
Alzheimer’s disease (AD) and frontotemporal
dementia (FTD), are multifactorial diseases. Despite
a small percentage of these diseases occurring in
families with an autosomal dominant pattern of
transmission, the majority of cases are sporadic, and
derive from complex interactions between a number
of genetic and environmental factors. Therefore,
these diseases are defined as “multifactorial” or
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“complex” [1]. The familial clustering can be
explained by recognizing that family members share
a greater proportion of their genetic information and
environmental exposures than do individuals chosen
randomly in the population. Thus, the relatives of
an affected individual are more likely to experience
the same gene-gene and gene-environment inter-
actions that led to disease in the first place than
are individuals who are unrelated to the patient.
The multifactorial inheritance pattern represents
an interaction between the collective effect of the
genotype at one or, more commonly, multiple loci
(polygenic or multigenic effects) either to increase
or to decrease the susceptibility to the disease,
combined with a variety of environmental exposures
that may trigger, accelerate, or protect against the
disease altered mechanisms.
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The gene-gene interactions in polygenic inheri-
tance may be simply additive or more complicated.
Gene-environment interactions, including systematic
exposures or chance encounters with environmental
factors in one’s surroundings, add even more com-
plexity to individual disease risk and the pattern of
disease inheritance.

Herein, main genetic variations, either causative
or conferring risk for AD and FTD will be described,
together with epigenetic factors.

GENETICS: BASIC CONCEPTS AND
METHODOLOGIES

Genetic background differs from thousands to mil-
lions of genetic variants that are the differences in
DNA sequences within the genome of individuals
in the population. These variations can take many
forms, including single nucleotide polymorphisms
(SNPs), tandem repeats (short and variable), small
insertions and deletions, duplications or deletions that
change the copy number of a large segment of a
DNA sequence (≥1 kb), i.e., copy number variations
(CNVs), and other chromosomal rearrangements
such as inversions and translocations (also known as
copy-neutral variations) [1–3].

Common variants are synonymous with polymor-
phisms, defined as genetic variants with a minor allele
frequency (MAF) of at least one percent in the pop-
ulation, whereas rare variants have a MAF of less
than 1% [1]. The large majority of genetic variants
are hypothesized to be neutral [4], as they do not
contribute to phenotypic variation.

Four strategies have been applied so far in genetic
studies: genetic linkage analysis, candidate gene
studies, genome wide association studies (GWAS),
and next generation sequencing (NGS) technology
based studies: whole genome sequencing (WGS) and
whole exome sequencing (WES).

Linkage analyses were the first kind of strategy
used to unravel the genetic basis of Mendelian traits,
involving families presenting autosomal dominant
inheritance. Genetic linkage studies led to the identi-
fication of chromosomal regions associated with the
disease segregation, but does not identify the causal
gene associated, which requires fine mapping [5].

The candidate gene approach aims to determinate
whether frequencies of genetic variants of people
with a specific disease differ significantly from a con-
trol population. Susceptibility genes are defined when
cases and controls showed significant differences

in occurring genetic variants frequencies. Candi-
date gene approach led to the identification of the
Apolipoprotein E gene (APOE) risk alleles impli-
cated in late onset AD (LOAD). Thousands of genes
were tested in this way on the basis of existing
knowledge on disease pathogenesis, quite often giv-
ing inconsistent results, particularly because most of
the candidate gene association studies could not be
replicated, due to the small sample size, which did
not allow adequate statistical power [6].

The advent of microarray technology era revolu-
tionized genetics research, allowing the contempora-
neous determination of millions of SNPs in thousands
of samples. GWAS are based on the testing common
genetic variants in a hypothesis-free manner. Thus,
it provides information on how common genetic
variability confers risk for common diseases [7].
Several susceptibility genes for common neurode-
generative disorders have been revealed by GWAS
studies, although the odds ratios associated with these
risk alleles are relatively low [8].

Recent advances, collectively referred to as NGS,
allowed for high-throughput sequencing, giving mas-
sive data results, that need to be analyzed by specific
bioinformatics software. Moreover, in opposition to
the first generation sequencing, NGS can produce the
same genome sequence within a few weeks and with
reduced costs. This allows for simultaneous investi-
gation of multiple genes and has been demonstrated to
be an effective alternative for establishing the genetic
base for Mendelian diseases in the research setting
[9, 10] and recently also in clinical settings [11,
12]. NGS relies upon multiple, short, overlapping
reads of fragmented DNA that can be aligned against
a reference genome or assembled “de novo” if no
information on the reference genome is available. If
just the protein-coding regions are amplified when
sequencing all the genes, the method is referred to as
WES, whereas when the target is the whole genome,
it is known as WGS.

GENETICS OF ALZHEIMER’S DISEASE

AD is a multifactorial and complex neurodegen-
erative disorder and the leading cause of dementia
among elderly people. Genetically, AD can be subdi-
vided into a rare familial form, accounting for 2-3%
of all patients presenting with autosomal dominant
inheritance, and a multifactorial sporadic form in
which specific environmental exposures in combi-
nation with genetic susceptibility contribute to the
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exacerbation of the disease [1]. Genetically inherited
AD usually develops before 65 years of age early
onset AD (EOAD), whereas the sporadic type of dis-
ease often occurs later in life in individuals older than
65 years and is referred as LOAD [13].

Three genes, discovered thanks to linkage anal-
ysis, are responsible for familial AD: Presenilin 1
(PSEN1), Presenilin 2 (PSEN2), and Amyloid pre-
cursor protein (APP). They map on three different
chromosomes, but share a common biological path-
way related to amyloid processing [14]. A number
of variants in these genes have been described,
the majority of which play a causal role in the
pathogenesis of the disease (see [15] for details).

The proportion of cases of autosomal dominant
AD explained by mutations in these genes is high
but vary widely from 12% to 77% [16, 17], suggest-
ing that there are additional genetic factors involved
in the pathogenesis of EOAD. Recently, thanks to
the NGS approach, some new genetic variants were
found in small families with unexplained EOAD.
Guerreiro et al. [18] identified a missense mutation in
NOTCH3 (R1231C), that is a gene previously linked
to cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy. Never-
theless, complete screening of NOTCH3 in a cohort
of 95 EOAD cases and 95 controls did not reveal any
additional pathogenic mutations [18].

Another study [19] identified mutations in the Sor-
tilin related receptor 1 (SORL1) gene in EOAD.
This gene encodes a neuronal sorting protein able
to bind APP, driving it toward the endosome-
recycling pathways [19]. Other studies involving
EOAD found association between the Triggering
Receptor Expressed on Myeloid cells 2 (TREM2)
gene and the risk of develop the disease. TREM2
is an immune phagocytic receptor expressed in brain
microglia, able to modulate microglial phagocytosis
and inflammatory pathway [20].

By using a NGS WES based approach, an associ-
ation between TREM2 variants in exon 2 and EOAD
in Caucasian subjects of French origin was identified.
In particular, an association between rs75932628T
allele (R47H) and the risk of developing the disease
was described [21]. The same variant was further con-
firmed to be a risk factor for EOAD in a recent study
[22], which showed that individuals with the R47H
variant had significantly earlier symptom onset than
individuals without TREM2 variants [22]. TREM2
genetic variability has been investigated also with
regard of LOAD susceptibility by different groups.
Jonsson et al. [23] found that the rs7593628T in

TREM2 confers a significant threefold increased risk
for AD in a cohort of Icelanders. The same variant was
further tested by Guerreiro et al. [24] by WES and was
found to cause a five-fold increased risk to develop
AD. Furthermore, six additional TREM2 variants
were found in AD but not in controls, highlighting
their possible consistent contribution to increase AD
risk [25]. In this study, the protective rs728224905 in
PLCG2 and the risk variant rs616338 in ABI3 gene
were also associated with AD, suggesting an impli-
cation of microglial-mediated innate immunity in the
pathogenesis of the disease [25].

A recent study [26] identified, by GWAS, a novel
missense mutation in phospholipase D family mem-
ber 3 gene (PLD3) in an EOAD autopsy-confirmed
patient. However, further confirmatory analysis in
larger populations of European EOAD did not lead to
significant evidence for an enrichment of rare PLD3
variants [26]; therefore the genetic role of PLD3 in
AD remains to be demonstrated. The use of NGS
with a target panel able to analyze 10 genes involved
in dementia led instead to the identification of novel
coding variants in PSEN1, predicted to be pathogenic
[27].

Recent GWAS studies [28, 29] confirmed that
APOE �4 remains the single most important genetic
risk factor for AD (see [30] for review), although
about additional ten risk factors emerged recently as
strongly associated with LOAD [29, 30]. Notably, the
majority of such AD susceptibility loci (CLU, BIN1,
CR1, ABCA7, CD33, EPHA1) have putative func-
tions in lipid metabolism and immune system [30]
(Table 1).

Table 1
Causal genes and genetic risk factors for AD

Causal genes Chromosome Function

APP 21 Amyloid precursor protein
PSEN1 14 APP cleavage
PSEN2 1 APP cleavage

Risk factors Chromosome Function

APOE 19 Lipid metabolism
TREM2 6 Innate immunity; expressed

by microglia
BIN1 2 Nucleocytoplasmic adaptor

protein
CLU 8 Lipid metabolism
ABCA7 19 Lipid homeostasis in cells of

the immune system
CR1 1 Immune response
PICALM 11 Membrane metabolism
MS4A6A 11 Transmembrane protein
CD33 19 Membrane antigen
MS4A4E 11 Transmembrane protein
CD2AP 6 Cytoskeleton dynamics
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A rare variant is the Nicastrin gene, recently iden-
tified by NGS as risk factor for LOAD in a Greek
population [31].

Lastly, Kohli and colleagues, using WES on 11
affected individuals in a large kindred with appar-
ent autosomal dominant LOAD, found damaging
missense mutations in the Tetratricopeptide repeat
domain 3 gene (TTC) in all affected individuals [32].

GENETICS OF FRONTOTEMPORAL
DEMENTIA: MAJOR CAUSAL GENES

The majority of FTD cases are sporadic and likely
caused by the interaction between genetic and envi-
ronmental factors. A number of cases, however,
present familial aggregation and are inherited in an
autosomal dominant fashion, suggesting a genetic
cause [32–34]. Up to 40% of patients have a posi-
tive family history, with a diagnosis of dementia in at
least one extra family member [33, 35]. At present,
three major causal genes have been identified: Micro-
tubule Associated Protein Tau (MAPT), Progranulin
(GRN), and Chromosome 9 Open Reading Frame 72
(C9ORF72). In addition, some rare causal genes have
been identified (Table 2).

MAPT

The first evidence of a genetic cause for famil-
ial FTD came from the demonstration of a linkage
with chromosome 17q21.2 in autosomal dominantly
inherited form of FTD with parkinsonism [36],
named FTDP-17. The gene responsible for such asso-
ciation, MAPT, was discovered few years later [37].

MAPT encodes the protein tau, which is involved in
microtubule stabilization, assembly, and cytoskele-
tal dynamics [38]. It is composed of 15 exons and
transcribed, by alternative splicing, in 6 different iso-
forms, all of which play a role in the maintenance
of microtubular structure. Any excess of tau protein
can be bundled into protein aggregates that fill the
cells and induce neurotoxicity. Tau has four repeat
domains in the C-terminus, which mediate the inter-
action with microtubules. These domains are encoded
by exons 9–12, in which the majority of pathogenic
mutations have been found. In addition, alternative
splicing of exon 10 leads to two different isoforms
that contain either three (3R) or four (4R) 31-amino
acids repeats [39].

The pathology of all MAPT mutations is charac-
terized by the deposition of insoluble aggregated tau
proteins within neurons and glial cells in the cerebral
cortex and in other brain regions.

To date, more than 40 pathogenic MAPT mutations
have been described and classified according to their
position in the gene [40], their effects on MAPT tran-
scription, and the type of tauopathy. The frequency
of MAPT mutations is highly variable, but in general
MAPT mutations are very rare in sporadic patients,
whereas in most familial cases the frequency ranges
between 5% and 20% depending on the geographic
distribution [41].

The pathogenic mechanism of each different muta-
tion depends on the type and location of the genetic
defect, and affects the normal function of tau, i.e., the
stabilization of microtubules promoting their assem-
bly by binding tubulin. Some mutations increase the
free cytoplasmic portion of the protein promoting

Table 2
Causal genes and genetic risk factors for FTD

Causal genes Chromosome Function

MAPT 17 Microtubule stabilization, assembly and cytoskeletal dynamics
GRN 17 Inflammation
C9ORF72 9 Nucleocytoplasmic transport, autophagy, intercellular trafficking
CHMP2B 3 Autophagy, protein trafficking and degradation
VCP-1 9 Autophagy, protein trafficking and degradation
SQSTM1 5 Encodes for p62, autophagy, protein degradation
CHCHD10 22 Mitochondrial protein
TBK1 12 Autophagy, protein trafficking and degradation
TARDBP 1 Encodes for TDP-43, transcription factor
FUS 16 Encodes for FUS, transcription factor
UBQLN2 X Autophagy, protein trafficking and degradation
TUBA4A 2 Cytoskeletal dynamics
Risk Factors
TMEM106B 11 Transmembrane protein
GRN 17 Inflammation
RAB8/CTSC 11 Lysosomal biology and protein trafficking
HLA 6 Immune system
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tau aggregation, while others lead to an aber-
rant phosphorylation of tau protein, which damages
microtubule stabilization [41]. Regarding mutations
localized in the donor splicing site following exon 10,
it was shown that these intronic mutations increase
the inclusion of MAPT exon 10 by destabilizing the
stem-loop structure that spans the splice site of exon
10, resulting in an increased production of 4R tau.
Mutations in the acceptor splicing site following exon
10 lead to an enhanced inclusion of this exon [42].

Alternatively, other mutations affect the alternative
splicing, thus producing altered ratios of the different
isoforms (3R/4R tau). Most of missense mutations,
such as the p.P301L mutation, reduce the ability
of tau to bind microtubules leading to a decreased
tau capacity to promote microtubules assembly [43].
Moreover, it was observed in in vitro studies that
several coding mutations accelerate the aggregation
of tau [44]. In 2009, Rovelet-Lecrux and coworkers
identified a heterozygous 17.3 Kb deletion responsi-
ble for the removal of exons 6–9 of MAPT in one FTD
patient [45]. This deletion caused the loss of the first
microtubule binding domain and a decrease in the
binding abilities of tau to the microtubules. The same
group reported a 439 Kb duplication in the region
encompassing CRHR1, MAPT, and saithoin (STH)
in one patient affected by behavioral and amnestic
disorders [46].

The clinical presentation in MAPT mutation car-
riers is heterogeneous, but behavioral changes,
semantic impairment, episodic memory decline, and
parkinsonism have been proposed as key clinical fea-
tures. From the pathological point of view, patients
present atrophy of the frontotemporal lobes and
basal ganglia and variable presences of tau-positive
inclusions, typical of FTLD-tau [47].

GRN

After the discovery of MAPT as causal gene for
FTDP-17, there were still numerous autosomal dom-
inant FTD cases genetically linked to the same
chromosomal region of MAPT (chr17q21), without
any mutation in MAPT, in spite of an extensive fine
mapping of the gene. A small region rich in genes,
localized approximately 6.2 Mb in physical distance
to MAPT locus, had been recognized as that one con-
taining the gene responsible for the disease in these
families. The first identified mutation in GRN, iden-
tified in 2006, consisted of a 4-bp insertion of CTGC
between coding nucleotides 90 and 91, causing a
frameshift and premature termination in progranulin

(C31LfsX34) [48]. In a parallel study, Cruts and co-
workers found at the same time another mutation
of five base pairs into the intron following the first
non-coding exon of GRN (IVS1+5G>C) [49]. This
mutation causes the splicing out of the intron 0, lead-
ing the retention of mRNA within the nucleus and its
degradation.

GRN mutations were subsequently found to
account for 5–20% of FTD patients with positive fam-
ily history and 1–5% of apparently sporadic patients
[50].

GRN encodes for the growth regulation factor
named progranulin. Progranulin is an 88 kDa secreted
glycoprotein, which in brain is expressed by neu-
rons and microglia [51]. Its expression is low in
early development and increases with age. The pro-
tein is composed by seven and one half cysteine-rich
granulin domains and can be cleaved by several pro-
teases into 6 KDa units called granulins. It belongs to
a family of proteins involved in multiple biological
functions, including development, wound repair, and
inflammation, by activating signaling cascades that
control cell cycle progression and cell motility [51].

Since the original identification of null-mutations
in FTLD, more than 70 different mutations have
been described so far. Most of the known pathogenic
GRN mutations, particularly frameshift, splice-site,
and nonsense mutations, are predicted to result in a
premature stop codon. The resulting aberrant mRNA
is degraded through the process of nonsense medi-
ated decay, leading to haploinsufficiency [52]. Also
rare partial deletions and a complete deletion of the
gene have been described [53].

At neuropathological examination, GRN-mutated
FTD cases displayed ubiquitin-positive, tau-negative
inclusions (FTLD-U) similar to the microvacuolar-
type still observed in a large proportion of apparently
sporadic FTD, that were different from the tau-
positive inclusions typical of MAPT mutated cases.
Truncated and hyperphosphorylated isoforms of the
TAR DNA binding Protein (TDP-43) were recog-
nized as main components of the ubiquitin-positive
inclusions typical of the GRN mutated families, as
well as of idiopathic FTD and of a proportion of
cases of amyotrophic lateral sclerosis (ALS) [54].
According to the novel neuropathological classifica-
tion of FTLD-TDP pathology in FTD [55], TDP-43
neuropathological subtype A is consistently found in
association with GRN-mutated cases.

A collaborative study [53] analyzing GRN muta-
tions in 434 patients estimates a frequency of 6.9% of
all included FTD-spectrum cases. About 56% of such
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cases was represented by FTD subjects with ubiquiti-
nated inclusions at the neuropathology (FTD-U) with
a positive family history of FTD.

From the clinical point of view, mutations in GRN
are associated with extremely heterogeneous phe-
notypes, but the main clinical diagnosis is FTD
following by diagnosis of primary progressive apha-
sia [56]. Language impairment seems to be more
relevant as the disease progresses. About 40% of
patients have parkinsonism, and episodic memory
impairment is frequently observed, leading to a clin-
ical diagnosis of AD in some cases [57]. Although
rarely, an overlap between psychiatric disorders and
genetically determined FTD can occur, as shown
by Rainero et al. [58], who described a patient
with heterosexual pedophilia who was a carrier of
a GRN mutation and developed FTD over time, and
by Cerami et al. [59], who reported two clinically
different, apparently sporadic FTD cases sharing
the Thr272fs GRN mutation, who had a premorbid
bipolar disorder history.

The penetrance for GRN mutations is age depen-
dent with only 50% of GRN mutation carriers affected
at the age of 60 and 90% of mutation carriers affected
at 70 years of age. Age at disease onset is extremely
wide, even in the same family, ranging from 47 to
79 years [60]. In a large Calabrian family harbor-
ing a heterozygous c.1145insA mutation, the age at
onset ranged from 35 to 87 years whereas the age
of death was from 56 to 87 years [61]. In that fam-
ily, the clinical presentation was homogenous; all of
affected members had clinical diagnosis of FTD with
subsequent language impairment.

A major contribution to achieve a correct diag-
nosis independent of the phenotypic presentation is
the demonstration that progranulin plasma levels are
extremely low in GRN mutation carriers, even in
asymptomatic subjects [62, 63].

Regarding the function of progranulin, Pickford
et al. [64] demonstrated, in an in vitro model,
that it has chemotactic properties toward cultured
mouse neurons. In addition, progranulin-treated
primary neurons secrete a number of cytokines
and chemokines, particularly those involved in
proliferation (i.e., IL-4), and, importantly, induce
microglia to switch from a pro-inflammatory to an
anti-inflammatory phenotype [64]. Another recent
observation is that progranulin binds the Tumor
Necrosis Factor Receptor (TNFR)2, that is expressed
specifically in neuronal subtypes and glial cells
in the brain, leading to an anti-inflammatory cascade
[65].

Abnormalities of several cytokines and
chemokines has been observed in cerebrospinal fluid
(CSF) of GRN carriers compared with controls [66],
suggesting an imbalance of specific inflammatory
factors possibly related to GRN haploinsufficiency.

C9ORF72

One of the most intriguing discoveries in the genet-
ics of FTD has been the investigation of FTD/motor
neuron disease (MND) families linked to a locus on
chromosome 9q21-22. The first evidence of linkage
with this locus comes from a study carried out in
families with autosomal dominant FTD-MND [67].
Additional data confirmed the linkage to chr9q21-22
in FTD-MND families [68], until, in 2011, two inter-
national groups identified the gene responsible for the
disease in this locus, C9ORF72 [69, 70]. The muta-
tion consists of a large hexanucleotide (GGGGCC)
repeat expansion in the first intron of the gene.

In healthy subjects, most individuals carry between
2 and 20 repeats, but FTD and ALS patients had from
100 to also 1000 s of copies of repeats. The minimum
repeat length to confer risk of disease is unknown,
probably due to the presence of somatic mosaicism.
In fact, the length of repeats is different between tis-
sues even in the same individual and this phenomenon
complicates genotype-phenotype correlation studies
[71].

C9ORF72 repeat expansion is the most common
cause of FTD (with or without ALS) worldwide.
There is a particular high frequency in a Finland pop-
ulation, probably due to a common founder. Studies
in Asian cohorts have reported instead much lower
frequencies [72].

Clinical phenotypes are very variable [73] as well
as the age at onset and disease duration; in fact, age
at onset can range between 27 and 83 years and
disease duration from 1 to 22 years. The most com-
mon clinical presentation is FTD, ALS, or both. As
mentioned above, in families where FTD-ALS is the
clinical phenotype, the C9ORF72 repeat expansion
is very common, explaining the disease in more than
50% of families [74]. FTD patients present behav-
ioral disturbances, whereas language impairment is
less commonly observed [75]. In addition to classical
behavioral presentations, such as apathy, disinhi-
bition, socially inappropriate conduct, and loss of
empathy, C9ORF72 expansion carriers present a high
frequency of hallucinations, psychosis, and delusions
[76], which lead to a primary diagnosis of schizophre-
nia and bipolar disorders [77, 78]. Sometimes patients



C. Fenoglio et al. / Role of genetics and epigenetics in AD and FTD 919

have episodic memory problems at the beginning
of the disease course, receiving a primary diagnosis
of AD [76, 79]. Less than 1% of clinically diag-
nosed AD patients carry a C9ORF72 expansion with
TDP43 pathology [79]. Other studies [80] found no
C9ORF72 expansions in AD patients, suggesting the
total frequency of C9ORF72 positive cases in AD
is very rare (<1%). Most likely, there is no associa-
tion between AD and C9ORF72. Likely, some AD
cases have been misdiagnosed or some expansions
are not big enough to be causal. Early-parkinsonism
has also been reported in C9ORF72 expansion carri-
ers, although very rarely in MAPT and GRN mutation
carriers [76].

From a neuropathological point of view, post-
mortem examination showed that C9ORF72 expan-
sion carriers present TDP-43 positive inclusions in
different brain areas. Most patients present with
FTLD-TDP type A or B [55]. In addition, they
have neuronal inclusions in the cerebellar granule
cell layer, hippocampal pyramidal neurons, and other
anatomic sites that are positive for ubiquitin and
p62 proteins. These inclusions are composed by
dipeptide repeat proteins (DPRs), translated from
the GGGGCC repeat through unconventional repeat-
associated non-ATG translation. Poly-GP, Poly-GA,
and Poly-GR are generated from sense strand and
detected in hippocampus and cerebellum of expan-
sion carriers [81]. Normal C9ORF72 functions were
reported to be involved in the nucleocytoplasmic
transport, autophagy, intercellular trafficking, and
TDP-43 aggregation (see [82] for review).

Reddy et al. [83] demonstrated that the
r(GGGGCC)n RNA forms extremely stable G-
quadruplex structures, which theoretically may
affect promoter activity, genetic instability, RNA
splicing, translation and neurite mRNA localization.

Moreover, several studies, conducted in derived
cells and tissue of patients, demonstrated that these
foci are able to sequester RNA binding protein,
including hnRNP h, hnRNP A1, and SC35, affecting
the mRNA nuclear transport system [84]. How-
ever, the clear mechanism linking RNA foci and
sequestered proteins to neurodegeneration has not
been fully understood. Together with the forma-
tion of RNA foci and DPR, another suggested
pathological mechanism of the C9ORF72 expan-
sion is gene downregulation due to C9ORF72
methylation [85].

In cultured cells and primary neurons, Poly-GA
overexpression led to the generation of p62-positive
inclusions and neurotoxicity attributed to impaired

ubiquitin proteasome function [86]. On the other
hand, arginine-rich dipeptide (poly-GR and poly-
PR) led to the formation of nucleolar inclusions
in fly models [87]. Since the clinical utility as
well as the significance and the temporal course
of DPRs in the pathogenesis of the disease is still
unclear, Lehmer et al. [88] established a poly-GP
immunoassay from CSF in order to identify and
characterize C9ORF72 patients. Intriguingly, they
observed Poly-GP CSF levels were already detectable
in C9ORF72 asymptomatic carriers compared to
healthy subjects and these levels are similar in symp-
tomatic expansion carriers, demonstrating a possible
use as a diagnostic biomarker in addition to genetic
screening [88].

GENETICS OF FRONTOTEMPORAL
DEMENTIA: RARE CAUSAL GENES

CHMP2B

Few FTLD families display mutations in the
charged multivesicular body protein 2B gene
(CHMP2B), which encodes a component of the
heteromeric ESCRT III complex, involved in
the endosomal trafficking and degradation [89].
CHMP2B is involved in sorting and trafficking sur-
face receptors or proteins into intraluminal vesicles
for lysosomal degradation and binding the Vps4
protein responsible for the dissociation of ESCRT
components [90]. The first mutation in CHMP2B
was identified in one large kindred from Denmark
[91]. Behavioral and cognitive impairment associated
with extrapyramidal and pyramidal signs are the main
clinical manifestations in CHMP2B.

All mutations described (missense and truncation
mutations) show a common mechanism of action: the
deletion of the C-terminus of the protein with the loss
of the Vsp-4 binding domain [90]. This causes the
accumulation of mutated CHMP2B on the endosomal
membrane and prevent the recruitment of other pro-
teins necessary for endosomal fusion with lysosomal.
This phenomenon leads to the impairment of the late
endosomal trafficking and contributes to neurodegen-
erative processes in FTD [91]. This can be observed
as enlarged and abnormal endosomal structures in
postmortem brain tissue from patients [92]. From a
histological point of view, patients with CHMP2B
mutations present FTLD-U with ubiquitin- and p62-
positive but TDP-43-negative neuronal cytoplasmic
inclusions [93].
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VCP-1 and SQSTM1

Mutations in the Valosin Containg Protein gene
(VCP) were firstly described as cause of hereditary
inclusion body myopathy with Paget’s disease of the
bone (PDB) and FTD [94]. Myopathy is the most
frequent clinical symptom, present in about 90% of
affected subjects, whereas FTD is seen in about 33%,
usually many years after the onset of muscle symp-
toms. From a histological point of view, brain tissues
of patients carrying VCP mutations are characterized
by FTLD-TDP type D pathology with TDP43 and
p62 positive inclusions within neuronal nuclei [95].

VCP-1 encodes a monomeric protein composed of
806 aminoacids. It is known as a regulator of many
cellular processes, such as ubiquitin-dependent pro-
tein quality control, labeling proteins for degradation,
and coordination of the removal of protein aggregates
via multivesicular body formation [96].

Another gene involved in the mechanism of pro-
tein degradation as well as in FTLD pathogenesis is
Sequestosome 1 gene (SQSTM1). This gene encodes
for p62 protein, a connector between ubiquiti-
nated proteins and autophagy receptor or proteasome
degradation pathways [97]. Mutations in SQSTM1
were first described in PDB and are responsible for
around 30% of familial PDB cases (see [98] for
review). In 2014, Van der Zee et al. published a
large-scale resequencing study in an FTLD cohort of
patients and identified a number of mutations in the
C-terminal of the gene that is involved in the binding
with ubiquitinated proteins [99].

CHCHD10

A coiled-coil-helix-coiled-coil-helix domain con-
taining 10 (CHCHD10) gene encodes a mitochon-
drial protein that is enriched at cristae junctions in
the intermembrane space. By exome sequencing, it
was possible to identify the first pathogenic mutation,
p.S59L, in an atypical family with late onset MND,
FTD, cerebellar ataxia, and mitochondrial myopathy
[100]. Subsequent genetic studies identified addi-
tional potential pathogenic mutation in FTD and ALS
patients with 1–3% frequency [101]. Very recently,
Perrone et al. identified a novel nonsense mutation
(p.Gln108*) in a patient with atypical clinical FTD
and pathology-confirmed Parkinson’s disease (1/459,
0.22%) leading to loss of transcript. They further
observed three previously described missense vari-
ants (p.Pro34Ser, p.Pro80Leu, and p.Pro96Thr) that
were also present in the matched control series [102].

TBK1

In 2015, a large exome sequencing case-control
study identified mutations in the TANK binding
kinase 1 gene (TBK1) in sporadic ALS cohort of
patients [103]. Subsequent studied showed TBK1 loss
of function mutations in families with FTD-ALS but
also in clinical FTD and pathologically confirmed
FTLD-TDP even in the absence of motor neuron
disease [104]. The majority of mutations identified
are loss-of-function mutations leading to a decrease
50% of TBK1 expression. Missense mutations instead
impair the binding of TBK1 to optineurin (OPTN).
As VCP or p62, TBK1 is also involved in protein
degradation and autophagy mechanisms. In fact, it
phosphorylates p62 and OPTN, another member of
the autophagy pathway. In 2015, Potteir et al. discov-
ered, in a pathologically confirmed cohort of patients,
one heterozygous mutation and one deletion in OPTN
as well as a nonsense mutation in TBK1 suggesting
that both genes contribute to FTLD-TDP etiology
[104].

TARDBP

TARDBP encodes for TDP-43 protein, which is
localized in the nucleus of the cell, where it is
able to form heterogeneous nuclear ribonucleopro-
tein (hnRNP) complexes with several functions, such
as RNA regulation, mRNA stability and transport,
and splicing control. A link between FTLD and ALS
and TDP-43 was supported by the evidence that
TDP-43 regulate axon growth in vivo and in vitro
suggesting that the capacity of motor neuron to pro-
duce and maintain axons is compromised by TDP-43
dysregulation [105].

FUS

Similar to TDP-43, Fused in sarcoma (FUS) is
highly conserved and ubiquitously expressed gene.
FUS is a component of the hnRNP complex and
involved in RNA transport in and out of the nucleus,
RNA splicing, and DNA/RNA metabolism [106]. In
2009, FUS mutations were discovered to be the cause
of 3% of familial ALS. They are mostly located in the
C-terminal of the protein, particularly in the nuclear
localization sequence, resulting in an impairment of
transportin (TRN1)-mediated nuclear import of FUS
[106]. Neuropathologically, ALS patients with FUS
mutations display abnormal cytoplasmic neuronal
and glial inclusions positive for FUS. However, in
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some FTLD-FUS patients, no FUS mutations have
been identified.

UBQLN2

UBQLN2 is involved in a rare form of chromo-
some X-linked familial ALS and FTLD-ALS [107].
Mutations are located in proline residues in the
highly conserved PXXP repeat domain involved in
the degradation of misfolded proteins via ubiquitin
proteasome system and autophagy.

TUBA4A

TUBA4A encodes 1 of 8 human a-tubulins, which
polymerize with b-tubulins to form the microtubule
cytoskeleton. TUBA4A mutations have primarily
been associated with ALS, although some patients
also had cognitive involvement ranging from mild
cognitive impairment to FTD. In TUBA4A, 10 mis-
sense, 1 nonsense, and 1 splice donor site mutation
have been identified in both sporadic and familial
ALS patients, with some also presenting with FTD
[102].

GENETICS OF FRONTOTEMPORAL
DEMENTIA: GENETIC MODIFIERS

In addition to genes mentioned above and generally
involved in familial autosomal dominant transmis-
sion, several genetic risk factors have been studied.
The most important and replicated is the trans-
membrane protein 106b gene (TMEM106B). In
2010, Van Deerlin and coworkers published the first
GWAs on 515 FTD patients with TDP-43 pathol-
ogy; they identified a possible susceptibility locus,
which encompasses TMEM106B gene on chromo-
some 7p21 [108]. In particular, the study identified
three associated single nucleotide polymorphisms
(SNPs), rs102004, rs6966915 and rs1990622, which
are correlated with an increase of TMEM106B expres-
sion level [108]. Several subsequent studies showed
that the highest association with TMEM106B locus
was found in patients with GRN mutations with TDP-
43 pathology [109, 110]. In GRN mutation carriers,
the presence of protective C allele of SNP rs1990622,
protects these patients from developing FTD [110].
The protective effects of TMEM106B are not con-
fined to carriers of GRN mutations but also extend
to C9ORF72 carriers [111, 112]. TMEM106b is a
glycosylated type 2-membrane protein that localized
to late endosomes and lysosomes where it seems

to have an important function. Over-expression of
TMEM106b in cell cultures showed an aberrant vac-
uole formation and an impairment of endolysosomal
pathway [113].

Common SNPs in the major causal genes have
been studied to determine their association as FTD
risk factors. For example, rs5848, located in 3’UTR
of the GRN gene in a putative miRNA binding site,
has been investigated. Unfortunately, its role remains
unclear with significant association in initial series
of FTD-TDP43 patients but not in subsequent series
of clinical patients [114]. More recently, a two-stage
GWAS identified the HLA locus at chromosome
6p21.3 and a locus at chromosome 11q14 encom-
passing RAB38 and cathepsin C (CTSC) [115]. These
two gene are especially associated with FTD and an
association was observed between the top SNP at
RAB8/CTSC locus and a 50% reduction of RAB8 lev-
els in the blood of patients suggesting that a loss of
RAB8 function may play a role in the development
of FTD. RAB8 is a protein involved in the regula-
tion of lysosomal biology and protein trafficking. The
HLA locus, instead, suggests a link between FTD and
immune system [115].

EPIGENETICS

Epigenetics is focused on the investigation of
mechanisms able to influence the expression of genes
without altering the DNA sequence. DNA methyla-
tion, chromatin remodeling, and non-coding RNAs
(ncRNAs) are the three most investigated epigenetic
modifications [116]. Epigenetic processes are able to
regulate DNA replication and repair, RNA transcrip-
tion, and chromatin conformation, that influence in
turn transcriptional regulation and protein translation.

Methylation

DNA methylation is the best characterized epi-
genetic modification that involves the addition of a
methyl group to the carbon-5 of a cytosine residue
in DNA and is carried out by one of the several
DNA methyltranferase (DNMT) enzymes. DNMT1
is the enzyme responsible for the maintenance of
DNA methylation patterns during DNA replication.
It localizes to the DNA replication fork, where it
methylates nascent DNA strands at the same loca-
tions as in the template strand [117]. DNMT3a and
DNMT3b are involved in the de novo methylation
of unmethylated and hemimethylated sites in nuclear
and mitochondrial DNA, respectively [117, 118].
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In mammals, DNA methylation occurs predomi-
nantly at CpG sites-locations, where a cytosine
nucleotide is followed by a guanine nucleotide. CpG
sites can occur in concentrations of up to several
hundred dinucleotide repeats, called CpG islands,
which are frequently found in gene promoters. The
methylation or hypermethylation of CpG islands usu-
ally prevents the expression of the downstream gene
[119]. DNA methylation is currently the best under-
stood epigenetic mechanisms, and is known to have
a crucial role in normal development, cell prolif-
eration, and genome stability [120]. In addition,
non-CpG methylation may happen in stem cells and
neurons [121].

Early epigenetic investigations related to AD
focused on DNA methylation, finding non AD spe-
cific hypomethylation of the APP gene promoter
region in one patient [122].

More recent studies support an overall reduction
in DNA methylation in AD patients thus highlight-
ing the importance of DNA methylation in AD [123].
Interestingly A� has also been implicated as a trig-
ger of epigenetic changes as it was found that A�
induces global DNA hypomethylation [124]. More-
over, a DNA methylome paper found genes with
altered methylation in AD brains [125].

Tau gene expression is also subject to complex
epigenetic regulation, involving differentially methy-
lated binding sites for transcription factors [126].

Recently, Bollati and colleagues investigated the
methylation status of repetitive elements in blood,
including Arthrobacter luteus elements (Alu) blood,
long interspersed element 1 (LINE-1), and satellite-�
(SAT-�), that comprise a wide portion of the human
genome and are known to contain large numbers of
CpG sites. They found that LINE-1 methylation was
increased in AD patients and that enhanced LINE-1
methylation was associated with a better cognitive
performance in AD patients [127].

Regarding FTD, two studies analyzed the GRN
promoter methylation in relation to its ability to
regulate progranulin expression. They found that
increased methylation in FTD subjects negatively
correlates with GRN mRNA levels [128, 129].

A recent GWAS on DNA methylation pattern
in peripheral blood of patients with FTD and pro-
gressive supranuclear palsy compared to healthy
subjects found a specific methylation signature asso-
ciated pathologically with tauopathy, suggesting this
signature as a risk factor for neurodegeneration [130].

Regarding the C9ORF72 expansion, it was sug-
gested that the length of the repeat might influence the

level of DNA methylation at the C9ORF72 promoter.
This process was found in a family from Canada
with the father carrying an intermediate length allele,
about 70 repeats, with an unmethylated C9ORF72
promoter, that expanded to about 1750 repeats in
his children. The expanded allele carried by the
four children was characterized by C9ORF72 pro-
moter hypermethylation and associated with reduced
C9ORF72 expression [131]. Recent findings demon-
strated that DNA hypermethylation was found in the
5’ CpG region (∼36% ALS cases), as well as the
C9ORF72 repeat itself in both ALS and FTD patients
(∼100%) [132, 133].

ncRNAs

It was widely believed in the past that most of the
human genome consisted in “non-functional” DNA.
It was later discovered that almost the whole genome
is transcribed, but that just about 2% in translated into
proteins [134].

It is now instead ascertained that most of this
“junk” is functional and composed by ncRNA, whose
signaling and editing is able to play a crucial role
in chromatin and nuclear structure. In particular,
ncRNAs are involved in epigenetic regulation by
recruiting chromatin-modifying complexes. ncRNAs
operate through repressive control but have also the
potential to act as gene activators [134].

ncRNAs comprise small RNAs (sRNAs) of less
than 200 nucleotides and long non coding RNA
(lncRNAs) of more than 200 nucleotides. sRNAs are
further subdivided as micro (mi)RNAs, short inter-
fering (si)RNAs, and PIWI-associated (pi)RNAs,
whereas lncRNA are categorized according to their
direction and position of their transcription in: anti-
sense, intergenic, exonic, intronic, overlapping [135].

miRNAs are single stranded, non-coding small
RNAs that are abundant in plants and animals,
and are conserved across species [136]. The raw
transcripts undergo several nuclear and cytoplas-
mic post-translation processing steps to generate
mature, functional miRNAs. In the cytoplasm, mature
miRNAs associate with other proteins to form the
RNA-Induced Silencing Complex (RISC), enabling
the miRNA to imperfectly pair with cognate miRNA
transcripts. The target mRNA is then degraded by
the RISC, preventing its translation into protein [137,
138]. miRNA-mediated repression of translation is
involved in many cellular processes, such as differ-
entiation, proliferation, and apoptosis, as well as other
key cellular mechanisms [139, 140].
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It is now well established that altered RNA pro-
cessing could act as a contributing factor to several
neurological conditions including aging-related neu-
rodegenerative diseases such as AD, FTD, ALS, and
Parkinson’s disease [141–143].

In AD, the implication of miRNAs in A�
production, via BACE1 modulation, and in tau
phosphorylation, that leads to hyperphosphorylated
neurofibrillary tangle formation, has been demon-
strated [142].

Altered miRNA signatures were also identified in
AD and FTD. In particular, several miRNAs have
identified differentially expressed in postmortem tis-
sue, blood, and CSF that also differ by disease stage
[145, 146].

Regarding lncRNAs, they also have been involved
in neurodegenerative diseases [146].

These ncRNAs are involved in different func-
tions; they act as scaffolds for chromatin modifiers
and nuclear paraspeckles, as transcriptional co-
regulators, and even as decoys for other RNAs [145].
Dysregulations in lncRNAs can influence any one of
these processes, thus contributing to neurodegenera-
tion. lncRNAs associated with disease condition can
post-transcriptionally increase gene expression, as it
happens with the lncRNA BACE1-antisense whose
expression is selectively increased in AD brains
and competes with miR-545-5p binding to stabilize
BACE1 mRNA. This will finally result in increased
expression of BACE1 that contribute to the formation
of the toxic A� peptides that is a major hallmark for
AD [146].

Another lncRNA, BC200, likely plays a role in
AD as increased levels were found in specific brain
regions mostly affected by AD, such as the Brod-
mann’s area 9 [147]. MALAT1 and NEAT1 are other
two lncRNAs very important for splicing and synapse
formation [148, 149].

Chromatin remodeling

In mammalian cells, histone proteins interact with
DNA to form chromatin, the packaged form of DNA.
Histones are octamer consisting of two copies of
each of the four histone proteins: H2A, H2B, H3,
and H4. Each histone octamer constitutes in 146 bp
of the DNA stand wound around it to make up one
nucleosome, which is the basic unit of chromatin.
Histone proteins can be modified by post translational
changes, including: acetylation, methylation, phos-
phorylation, ubiquitination, and citrullination. These
histone modifications induce changes to the structure

of chromatin and thereby affect the accessibility of
the DNA strand to transcriptional enzymes, resulting
in activation or repression of genes associated with
the modified histone [150]. The best-understood his-
tone modification is acetylation, which is mediated
by histone acetyltransferases and deacetylases [151].
Acetylation of histones is usually associated with
upregulated transcriptional activity of the associated
gene, whereas deacetylation of histones to transcrip-
tional silencing [152].

Histone acetylation was found to be largely
decreased in the temporal lobe of AD patients com-
pared to controls and in mouse models of AD [153].
Moreover, increased H3 acetylation at the promoter
region of the BACE1 gene in AD patients was found
[153].

Besides acetylation, different forms of histone
methylation exist [154], and may be linked to neu-
rodegenerative diseases.

CONCLUSIONS

Herein, we provided an overview of the current
genetic and epigenetic progresses in AD and FTD.
We reviewed current knowledge on causative genes
and altered mechanisms leading to the two diseases,
genetic risk factors and disease modifiers shown to
influence the age at onset and clinical course of
the diseases, and the role of epigenetics, includ-
ing methylation, non-coding RNAs, and chromatin
remodeling, in influencing gene expression. Data
obtained so far suggest a crucial role of microglia and
immunity in AD and a role of autophagy and protea-
somal degradation in FTD. Future challenges will be
a better understanding of the interplay among genetic
and epigenetic factors in order to correlate pathogenic
mechanisms with clinical phenotypes and pave the
way for novel therapeutic approaches such as miRNA
mimics or miRNA antagonists (antagomirs), specif-
ically designed to either reverse the downregulation
or upregulation of disease-associated miRNAs.
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