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Abstract. The two pathognomonic lesions in the brain of AD patients are senile plaques and intraneuronal neurofibrillary
tangles (NFT). Previous studies have demonstrated that amyloid-� (A�) is a component of both senile plaques and NFTs,
and have showed that intracellular accumulation of A� is toxic for cells and precedes the appearance of extracellular amyloid
deposits. Here we report that there are numerous intraneuronal NFT and extraneuronal NFT immunoreactive for A�x-40 in
which there is no co-localization with tau staining suggesting the existence of two different neurodegenerating populations
associated with the intracellular accumulation of either tau protein or A�x-40 in AD.
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Alzheimer’s disease (AD) is a neurodegenerative
disease characterized by the progressive and irre-
versible destruction of neurons in the cerebral cortex.
There are two pathognomonic lesions in the brain
of AD patients: senile plaques, composed mainly of
extracellular aggregates of amyloid-� peptides (A�)
[1], and intraneuronal neurofibrillary tangles (NFT),
consisting of paired helical filaments (PHF) [2] com-
posed primarily of hyperphosphorylated tau protein
[3, 4]. The relationship between these processes is
uncertain and still not completely understood. The
existence of intraneuronal A� has been known for
many years. Masters and collaborators published
in 1985 that A�, initially termed amyloid A4, is
deposited first intraneuronally as NFT and subse-
quently in the extracellular space, associated with
senile plaques and blood vessels [5]. Later on, the
immunolabeling of most intraneuronal NFT (iNFT)
and extraneuronal NFT (eNFT) with anti-A� anti-
bodies was replicated in several laboratories [6–8].
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However, other studies failed to find A� immuno-
labeling associated with iNFT [9–11] or with both
iNFT and eNFT [12].

Later on, immunostaining with specific antibod-
ies against the C-terminal fragment of either A�40 or
A�42 (A�x-40 or A�x-42, respectively) enabled the
visualization of A�42 associated with iNFT where it
was seen to collocalize with tau, whereas A�40 did
not associate at all or to a far lesser degree [13–15].
Additionally, it was reported that numerous eNFT
appeared stained for A�x-40, which was interpreted
as a secondary deposition over remnants of iNFT
exposed in brain tissue once the cells died; however,
evidence of colocalization of A�x-40 with tau protein
in these eNFT was lacking [16].

Studies in cell cultures have shown that both A�42
and A�40 can be intracellularly produced in neurons
(but apparently not in other types of cells) [17, 18],
mainly in the trans-Golgi network, although produc-
tion of A�42 is observed as well in the endoplasmic
reticulum [19]. Numerous studies have shown that
the intraneuronal accumulation of A� may be toxic
and precedes its extracellular deposition both in AD
brains and in transgenic mice models of the disease
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[14, 20–25]. Interestingly, intraneuronal accumula-
tion of either A�40 or A�42 has been described in
brains of Down syndrome patients aged less than
three years [20, 26, 27]. Furthermore, it has been
found that intracellular A� deposition precedes the
appearance of immunoreactive tau iNFT [20, 28]
which subsequently were found associated with A�42
in neurites and synapses [15]. These findings led to
a modification of the amyloid cascade hypothesis in
which the first step of the cascade is the intraneuronal
accumulation of A� [29].

In this work, we report the finding of numerous
A�x-40 positive iNFT and eNFT in the entorhinal,
hippocampal and, to a lesser extent, the parietal cortex
of AD brains. The A�x-40 staining did not co-localize
with tau staining in the same NFTs suggesting that
there may be two different neurodegenerating path-
ways in AD brains leading to the intraneuronal
accumulation of either tau or A�x-40.

Paraffin embedded sections from the entorhinal,
hippocampus, and parietal cortex of patients (both
genders, age range 36-97) diagnosed histopatholog-
ically with AD Braak & Braak (B&B; [30]) stages
II-III, IV, and VI (N = 3 from each stage), as well
as from two Down syndrome (DS) patients with
AD (B&B stage VI; N = 2) and from 4 healthy con-
trol brains, were immunohistochemically analyzed
(for demographic characteristic, see Supplementary
Table 1). The tissues were obtained from the Neu-
rological Tissue Bank of the Clinic Hospital at
the University of Barcelona in accordance with the
Helsinki Declaration of 1975.

Brain sections were deparaffinized incubated
for 3 minutes in 90% formic acid for antigen
retrieval (except for the AT8 antibody in which a
microwave was used) and quenched for endoge-
nous peroxidase with 3.3% hydrogen peroxide and
30% methanol. The antibodies used were: SAR-022
(anti-A�x-40 polyclonal antibody; Araclon Biotech,
Zaragoza) at 1 : 500; SAR-031 (anti-A�x-42 poly-
clonal antibody; Araclon Biotech, Zaragoza) at
1 : 2000; 6E10 monoclonal antibody (anti-N-terminal
region of A�; Covance, London) at 1 : 2000; 4G8
monoclonal antibody (anti-central region of A�;
Covance, London) at 1 : 1000; and AT8 (anti-
Phospho-PHF-tau pSer202+Thr205; ThermoFisher
Scientific, Waltham) at 1 : 200. The anti A�x-40 and
anti A�x-42 antibodies were purified by antigen-
affinity chromatography using the same A� fragment
inoculated to the rabbits (A�33-40 and A�35-42,
respectively). As described elsewhere, they have
practically no cross-reactivity (less than 1%) between

their target A� species nor with A�1-38 (<2%),
A�1-43 (<1%) [31].

After overnight incubation with each primary anti-
body and subsequent washing, the sections were
incubated for 45 min in either goat anti-rabbit at
1 : 200 (Sigma, St. Louis) or goat anti-mouse at 1 : 100
(Sigma, St. Louis) for poly- or monoclonal primary
antibodies, respectively; followed by 45 min incuba-
tion in avidin-biotin (Vectastain ABC kit, Vector lab,
Burlingame) and then developed with diaminobenci-
dine as chromogen. Selected sections were double
immunofluorescence stained with anti-A�x-40 and
AT8 antibodies followed by rodamine-goat anti-
rabbit at 1 : 100 (Sigma, St. Louis) or fluorescein-goat
anti-mouse at 1 : 100 (Sigma, St. Louis). Specificity
of the anti-A�x-40 labeling was assessed by overnight
preadsorption of the primary antibody with A�1-40
peptide (10e-5 M).

The section labeled with the anti-A�x-40 antibody
presented (in addition to positively stained diffuse
and senile plaques) numerous A�x-40 positive NFTs.
These A�-NFTs were intensely stained and appeared
very similar to the classic tau-NFTs. The A�-NFTs
were localized in the entorhinal cortex, mainly in
the cell islands of layer II, but also in deeper cor-
tical layers (Fig. 1A); in the hippocampus, including
dentate gyrus, fields CA1-CA3, and in the subicu-
lum (Fig. 1B) of all the patients analyzed (Braak &
Braak stages II-III, IV, and VI) and, to a lesser
extent, dispersed within the parietal cortex of the
more advanced cases of AD. No A�-NFTs were
observed in the preparations from the healthy control
brains.

A�x-40 positive labeling was seen in the cyto-
plasm of apparently functional neurons as iNFTs
(Fig. 1C, D), but labeling of eNFT was more fre-
quently seen, particularly in advanced AD stages
(Fig. 1D). Many of these eNFTs maintained the shape
of neurons, although they were normally larger than
their unlabeled counterparts, which suggested that
these profiles could represent an additional A�x-40
deposition once the parental neurons have lost their
plasmatic membrane, leaving the NFTs exposed in
the neuropil.

In contrast to the intense labelling obtained with the
anti-A�x-40 antibody, we did not see NFT labelling
with any of the anti-A� monoclonal antibodies that
target the N-terminal or central parts of the A� pep-
tides, which indicated that A�-NFTs were composed
of A� C-terminal fragments (Fig. 1E, F). Very occa-
sionally we found similar iNFTs and eNFTs marked
with the anti-A�42 antibody (not shown).
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Fig. 1. A-F) A�x-40 immunostaining of AD brain sections (B&B stage VI). A) Clusters of A�x-40 positive NFT are seen in layer II and
scattered in deeper layers of entorhinal cortex together with slightly stained senile plaques (arrow heads). B) In the hippocampal formation,
A�x-40 positive NFT appeared mainly in the CA1-CA3 fields and in the dentate gyrus. C) A�x-40 positive iNFT in the hippocampus (arrow
heads). D) A�x-40 eNFT and iNFT (arrow heads) in the entorhinal cortex. E, F) The sections reacted with 6E10 (E) or 4G8 (F) showing
numerous senile plaques but no NFT; asterisks are in the same blood vessel for reference.

A�-NFTs were also found in the brain of a DS
patient who had been diagnosed with severe demen-
tia of Alzheimer type. Interestingly, these A�x-40
positive profiles were almost completely lacking in
the other non-demented DS patient, in spite of both
having been classified as B&B stage VI and both
presented extensive A�42 burden (Fig. 2A-D).

The preadsorption of the anti-A�x-40 antibody
with A�1-40 led to the complete disappearance of
staining in both the senile plaques and A�-NFTs,
demonstrating that the labeling is due to the pres-
ence of the A�40 C-terminal fragments specifically

recognized by our A�x-40 antibody (Fig. 2E, F).
Furthermore, double immunofluorescent staining
showed that the epitopes for the anti-A�40 and AT8
antibodies do not colocalize on the same neurons,
whereas they positively colocalize on the diffuse and
senile plaques (Fig. 3A-F). These findings allowed us
to discard the possibility of that the labelling of A�-
NFTs was due to a cross-reactivity of our antibody
with the tau-NFTs. Thus, two populations of degen-
erating neurons could be detected and differentiated,
one filled with tau and the other with C-terminal frag-
ments of A�40.
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Fig. 2. Contiguous entorhinal sections from two Down syndrome patients, one diagnosed with severe dementia of the Alzheimer type (A-B)
and other non-demented (C-D); asterisks are in the same blood vessels for reference. Sections were reacted for A�x-40 (A and C) and A�x-42
(B and D). Note that whereas both brains presented numerous A�x-42 positive profiles, A�x-40 positive profiles were almost completely
lacking in the non-demented patient. Preadsorption of the first antibody with the immunogenic peptide resulted in a complete absence of
the A�x-40 labeling in F with regard to the contiguous positively stained section in E; asterisks are in the same blood vessels for reference.
Sections A, E, and F were slightly stained with cresyl violet.

An exaggeratedly antagonistic vision of the two
hallmark lesions in AD (extracellular senile plaques
mainly containing A� and intraneuronal NFTs
composed of hyperphosphorylated tau protein) has
crystallized into the idea that A� triggers neurode-
generation from the outside of cells and a subsequent
tau accumulation damages them from inside. This
overly simplistic vision disregards pioneers’ results
demonstrating that A� is a component of both senile
plaques and NFTs [5, 8, 9, 32] and also more recent
reports showing that intracellular accumulation of A�

is toxic for cells and precedes the appearance of extra-
cellular amyloid deposits [14, 20, 22–27, 29]. The
presence of A�x-40 immunoreactivity in the eNFTs
as described in the present work, has been known
for a long time [13, 16], yet contradictory results
have also been reported [14, 20]. These discrepan-
cies suggest that not all anti-A�40 specific antibodies
are able to recognize the A�40 C-terminal fragments
present in the NFT, although they could also be due
to differences in the processing of brain sections
[8, 33, 34].
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Fig. 3. Double immunofluorescent staining with AT8 anti-tau (green, A and D) and anti-A�x-40 (red, B and E) antibodies in entorhinal
cortex sections. Note that the two labels do not co-localize in the NFT profiles nor in the short threads in A and D (merged in C), whereas
both co-localize in the senile plaques (merged in F).

Since the majority of the eNFTs found in those
studies were A�40 positive, whereas, in contrast, very
few iNFTs appeared labelled with anti-A�40 anti-
bodies, it was assumed that eNFTs resulted from a
secondary deposition of extracellular A�40 once the
neuron had died and lost its nucleus and its plas-
matic membrane. Visualization of tau positive eNFTs
was not present in these studies because they were
predominantly carried out with the Alz-50 antibody,
which targets a tau-epitope known to be lost in the
eNFTs [10, 32]. However, in the present work we have
used the monoclonal AT8 anti-tau antibody, which
has allowed us to label both tau positive iNFT and
eNFT, in accordance with previous reports [35]. Inter-
estingly, the A�x-40 staining does not co-localize with
the tau staining in the same NFT, while it does co-
localize in the diffuse and senile plaques. Thus, two
populations of degenerating neurons can be differen-
tiated in a brain with AD, suggesting the existence
of at least two different neurodegenerating pathways
leading to the intraneuronal accumulation of either
tau or A�x-40.

Nevertheless, further experiments analyzing more
brains, a larger panel of antibodies targeting not only
A�40 and phosphorylated tau but also native tau, the
ultrastructural characterization of A�x-40 NFTs and
their timeline throughout the disease process, will be
necessary to test this hypothesis.

In spite of its limitations, the present work com-
ments on the role of A�40 in AD which is also
underlined by our finding of numerous A�x-40 pos-
itive profiles in the brain of a Down syndrome
patient with severe dementia while these profiles
were almost completely lacking in the brain of a
non-demented Down syndrome patient. Although
there are controversial reports concerning which A�
species accumulates intracellularly in DS patients,
our result is congruent with previous studies showing
an increase of A�40 immunoreactive profiles in the
brains of Down syndrome patients from 30 years old
onwards, when neuropathology rapidly accumulates
until it reaches levels sufficient for a diagnosis of AD
in most of these patients (for a recent review, see [36]).
Currently, it is generally accepted that A�42 may
be of particular relevance in triggering AD because
it is more hydrophobic and prone to aggregate in
vitro than A�40 [37]. However, it should be con-
sidered that the aggregating behavior of the various
A� species could be different in vivo than in vitro
[38] and, in this line, it is also relevant to underline
some studies pointing to the relevance of A�40 in AD
[39, 40].

In conclusion, the present work underlines the
possible role for A�40 in AD physiopathology as
our results have shown the existence of two dif-
ferent neurodegenerating populations alternatively
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associated with the intracellular accumulation of
either tau protein or A�x-40.
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