Detailed mechanistic information of the newly prioritized candidates in AD is provided below.
STX2 mediates neurotransmission 


Among the identified potential candidates, STX2 belongs to syntaxin protein family and binds to SNARE proteins that mediates effective neurotransmitter release during synaptic vesicle fusion in the presence of increased calcium influx [1,2]. Reduced formation of SNARE complex assembly was observed in the postmortem brains of AD patients [3]. A recent study by Yang et al. [4] showed that Aβ oligomers impair SNARE-mediated exocytosis in mice that hinders synaptic vesicle docking, contributing to cognitive impairment. Thus, inhibiting Aβ oligomers from binding to syntaxin proteins could help restore the SNARE functionality and improve the cognitive ability of the early AD patients. 

HLA-F and HLA-C involved in amyloid-β trafficking 


Microglia are resident immune response cells and when activated upregulates surface receptors such as class I major histocompatibility complex (MHC), which includes HLA-F and HLA-C proteins [5]. It has been reported that the increased frequency of MHC class 1 proteins is observed in AD patients [6]. Additionally, studies suggest that pro-inflammatory responses due to extracellular Aβ deposits are involved in worsening the cognitive decline in AD patients [7]. One can postulate that MHC class I mediated dysregulated trafficking of amyloid plaques in endocytosis could be correlated to the memory deficits in early AD [6–8].  

RAB11FIP4 as modulator of neurotransmission 


The next candidate gene, RAB11FIP4, a part of GTPase family of Rab11 proteins, is associated with endosomal recycling and participates in polarized neurite growth [9–11]. RAB11FIP4 gene consists of a EF-hand calcium binding motif that regulates Ca (2+) in exocytosis. Recently, Chutna et al. elucidated its role in mediating α synuclein aggregation and toxicity in Parkinson’s disease [12]. Much of the recent research have suggested its role as a neurotransmission modulator whose dysregulation could inhibit vesicle tethering with SNARE proteins, implicated in synaptic and cognitive deficits, in several neurodegenerative diseases [13,14]. In AD, several recent evidence point to the fact that faulty amyloid-β processing can be detected in the membrane trafficking events (linked to RAB11 proteins) of early endosomes, promoting an effective early diagnosis [15,16]. Precisely, Zhao et al. demonstrated that reduced expression of PICALM (whose genetic variant is implicated in AD), in humans and mice, guides the dysregulation of PICALM/clathrin–dependent internalization of the Aβ-LRP1 complex by RAB11, affecting the Aβ traffic in endothelial transcytosis and its clearance [17]. 

ARAP3 regulates actin cytoskeleton stability 


The actin cytoskeleton plays a key role in synaptic activity and ARAP3 modulates its remodeling by regulating ARF and RHO family members [18]. A growing body of evidence suggest that axonal transport defects due to abnormalities in actin cytoskeleton could be responsible for neurite degeneration and tau toxicity by interfering with mitochondrial dynamics in neurons [19–22]. Since much of the research is focused on Aβ plaques and neurofibrillary tangles, actin aggregates, although observed in human AD brains, are less appreciated [23–25]. At this time, however, more research is needed to understand the role of ARAP3 in AD. 

AP2A2 internalizes APP and BACE1 proteins 


Protein AP2A2 is part of adapter protein complex 2 (AP-2) that serves as a cargo receptor for internalization of membrane proteins in clathrin-mediated endocytosis and recycling of synaptic membrane [26]. Recent mouse model evidences in AD, report the involvement of AP-2 in APP and BACE1 internalization [27,28]. Within neurons, and glial cells, increased expression of PICALM can affect the role of AP-2 clathrin-mediated endocytotic clearance of Aβ [29]. Impairment of APP shuttling by AP-2 from endocytotic pathway to autophagy degradation leads to intracellular aggregation of Aβ [30]. 

ATP2B4, ATP2A3, and ITPR2 maintains calcium homeostasis in neuron 


The next three candidates (ATP2B4, ATP2A3, and ITPR2) participate in neuronal calcium shuttling. A substantial body of evidence indicates ATP2B4, a plasma membrane Ca (2+) ATPases (PMCAs), regulated by calmodulin, critically maintain calcium homeostasis of the neuron [31]. PMCAs is the only calcium pump in the brain, which is inhibited by the presence of Aβ peptides [32]. This inhibition leads to the failure of maintaining the intracellular concentration of Ca(2+), causing cell death [33]. Similarly, ATP2A3 encodes SERCA Ca (2+)-ATPases (SERCA) that are intracellular calcium pumps in the endoplasmic reticulum. PSEN1 is a principal component of the γ-secretase that regulates intramembrane Aβ processing, whose mutation could perturb with SERCA function in handling calcium load and release [34]. Enhancing PSEN1 levels could accelerate the clearance of calcium through secondary messenger ITPR2. ITPR2 has been identified to play a pivotal role in maintaining and release of intracellular Ca (2+) stores. However, increased expression of ITPR2 could lead to calcium toxicity in neurons and finally cell death [35,36]. 
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