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Genetic Stratification to Identify Risk
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Abstract. Stratification by genetic risk factors for Alzheimer’s disease (AD) may help identify groups with the greatest
disease risk. Biological changes that cause late-onset AD are likely to occur years, if not decades prior to diagnosis. Here,
we select a subset of the Generation Scotland: Scottish Family Health Study cohort in a likely preclinical age-range of
60–70 years (subset n = 3,495 with cognitive and genetic data). We test for cognitive differences by polygenic risk scores for
AD. The polygenic scores are constructed using all available SNPs, excluding those within a 500 kb distance of the APOE
locus. Additive and multiplicative effects of APOE status on these associations are investigated. Small memory decrements
were observed in those with high polygenic risk scores for AD (standardized beta –0.04, p = 0.020). These associations were
independent of APOE status. There was no difference in AD polygenic scores across APOE haplotypes (p = 0.72). Individuals
with high compared to low polygenic risk scores for AD (top and bottom 5% of the distribution) show cognitive decrements,
albeit much smaller than for APOE �4�4 compared to �3�3 individuals (2.3 versus 3.5 fewer points on the processing speed
test, and 1.8 versus 2.8 fewer points on the memory test). Polygenic risk scores for AD may help identify older individuals
at greatest risk of cognitive decline and preclinical AD.
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INTRODUCTION

It is widely acknowledged that the neuropatho-
logical hallmarks of Alzheimer’s disease (AD)
present many years prior to diagnosis [1]. Cognitive
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decrements are expected to be observed closer to
clinical diagnosis [1]. Targeting individuals who are
likely to be in the earliest stages of the disease is there-
fore a key focus for clinical trials and interventions
[2–4].

Age is the biggest risk factor for AD although
there are also genetic components to the disease.
The apolipoprotein gene, APOE, which is involved
in lipid transportation, confers the greatest known
genetic risk of AD [5, 6]. APOE �4�4 homozygotes
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have a 14.9 increased odds of developing dementia
compared to those with the �3�3 reference haplotype
[7]. The �4 allele has a frequency in the general pop-
ulation of around 15% [8], implying that just over
2% of the population are �4�4 homozygotes. Despite
the well-replicated association between APOE and
AD, relatively little is known about its functional role
in the disease process [5], although many biological
processes including neuroinflammation, neurotoxic-
ity, and lipid metabolism among others have been
highlighted [6].

In addition to APOE, several other genes have
been implicated in the pathogenesis of AD [9]. As
with many other diseases, AD is a polygenic trait
whereby many genetic polymorphisms of small effect
are likely to contribute to the disease process [9]. One
method that incorporates many of these variants into
a single measure is polygenic risk scoring [10]. This
method uses existing results from genome-wide asso-
ciation studies (GWAS) to provide weights specific
to each genetic polymorphism, which can then be
applied to independent cohorts. Thus, each individual
in an independent cohort can be assigned a genetic
risk score that is based on potentially thousands of
genetic variants that individually explain some frac-
tion of the risk of AD. For example, polygenic scores
for AD predict around 2% of the variance of AD in
an independent cohort [11]. AD polygenic risk scores
were also shown to discriminate best between cases
and controls between the ages of 60 and 70 years [11].

Given the low frequency of the �4�4 haplo-
type, large sample population-based cohorts are
required to study its effects with precision. A pre-
vious study utilizing one such cohort, Generation
Scotland (n = 18,337), investigated cognitive ability
by APOE status [12]. It found evidence for poorer
memory and processing speed in �4�4 homozygotes
(compared to �3�3 homozygotes) in a sub-sample of
participants aged over 60 years. These age-stratified
findings coincide with the theoretical predictions of
Sperling et al. [1]. Furthermore, given the prediction
models of AD development, it is plausible that cogni-
tive decrements predictive of AD will be most notable
in populations between the ages of 60 and 70, i.e.,
the decade prior to an exponential increase in AD
diagnosis.

The primary aim of this study is to test if there are
cognitive decrements in those with a high polygenic
risk of AD and to see how these effects compare with
APOE �4�4 status. The analysis will focus on a sub-
group from the Generation Scotland cohort in the age
range of 60 to 70 years.

MATERIALS AND METHODS

Generation Scotland: Scottish Family Health
Study

Data came from Generation Scotland: Scottish
Family Health Study (hereafter referred to as Gen-
eration Scotland), a large population-based cohort
sampled from five regional centers across Scot-
land [13, 14]. Initial recruitment focused on 7,953
individuals aged between 35 and 65 years, who
were registered with a participating General Prac-
tice surgery; around 96% of the UK population is
registered with a general medical practitioner. Rel-
atives of these probands were then recruited. There
were up to three generations of ∼7,000 participat-
ing families in the study, recruited between 2006
and 2011, yielding a cohort of over 24,000 subjects.
There was no intended recruitment enrichment for
any disease or health condition. Details on cognitive,
anthropometric, and health measures were recorded.
A full description of the cohort and the data col-
lected have been reported elsewhere [13, 14] and at
http://www.generationscotland.org.

Cognitive data

As previously described, four domains of cognitive
function were assessed by single tests in nearly all
Generation Scotland participants (n = 21,524): pro-
cessing speed (Wechsler Digit Symbol Substitution
Test [15]), verbal declarative memory (Wechsler Log-
ical Memory Test; sum of immediate and delayed
recall of one paragraph [16]), verbal fluency (the
phonemic Verbal Fluency Test; using the letters C,
F, and L, each for one minute [17]), and vocabulary
(the Mill Hill Vocabulary Scale; junior and senior
synonyms combined [18]). As a previous Genera-
tion Scotland study showed evidence for age-related
cognitive decrements in processing speed and ver-
bal declarative memory but not verbal fluency or
vocabulary [12], we focused here on the former two
outcomes only.

Genetic data

Genome wide genotyping and APOE haplotyping
details have been described previously [12]. Briefly,
Generation Scotland participants were genotyped
with either the HumanOmniExpressExome8v1-2 A
or HumanOmniExpressExome-8v1 A. Quality con-
trol was carried out in PLINK version 1.9b2c [19, 20].

http://www.generationscotland.org
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Fig. 1. Flowchart documenting the selection process of the Generation Scotland analysis cohort.

SNPs were removed if they had a missingness rate
>2% or a Hardy-Weinberg Equilibrium test p < 10–6.
Duplicate samples were removed. Individuals were
removed based on gender mismatch and missing-
ness (>2% of genotypes missing). The subsequent
data were combined with the 1,092 individuals of
the 1000 Genomes population [21] prior to principal
components being calculated in GCTA [22]. Outliers,
defined by being more than six standard deviations
away from the mean of the first two principal com-
ponents, were removed [23]. This left a sample of
20,032 participants.

APOE haplotype status depends on the genotypes
of two single nucleotide polymorphisms (SNPs),
rs429358 and rs7412 that can form three possible
haplotypes: �2, �3, and �4 [24]). Array genotyping
of these SNPs is technically difficult and, as a result,
they are not available on the majority of commer-
cial arrays. SNP genotypes were thus obtained using
Taqman technology at the Wellcome Trust Clinical
Research Facility Genetics Core, Edinburgh. Blood
samples from Generation Scotland participants were
collected, processed, and stored using standard oper-
ating procedures and managed through a laboratory
information management system at the Wellcome
Trust Clinical Research Facility Genetics Core, Edin-
burgh [25]. APOE genotyping data were available on
21,039 individuals.

Analysis cohort

After merging the APOE, GWAS, and cogni-
tive data, and after excluding individuals with

self-reported AD (or a missing value) and restrict-
ing the cohort to individuals aged between 60 and
70 years, inclusive, the analysis population con-
tained 3,495 participants. A flowchart documenting
the selection process is provided in Fig. 1.

Polygenic risk scores

Polygenic risk scores for AD were calculated using
the PRSice software program with LD clumping
parameters set to R2 > 0.25 over 250 kb sliding win-
dows [26]. The discovery GWAS from which the
SNP weights were extracted was the Stage I AD
GWAS analysis by Lambert et al. [27]. The Gen-
eration Scotland polygenic scores were generated
using all possible SNPs (p < 1) from the discovery
GWAS [27] but excluding those within a 500 kb win-
dow of APOE. The p < 1 selection threshold was
based on previous polygenic score models for AD,
verbal-numerical reasoning (cognitive ability), and
educational attainment [11, 28]. In these studies,
while p < 1 was not the optimal threshold for AD
and verbal-numerical reasoning (p < 0.5 and p < 0.05,
respectively), there were negligible differences with
the results for the p < 1 threshold. A total of 539,368
genotyped Generation Scotland SNPs (with MAF <
5%) were used to construct the score using weights
from the Stage I analysis of Lambert et al. [27]. The
Lambert et al. study was a meta-analysis GWAS of the
1000 Genomes imputed SNPs (nSNPs > 7,000,000).
After excluding 2,581 SNPs within a 500 kb region of
APOE, we mapped the remaining SNPs to the over-
lapping genotyped variants in Generation Scotland.
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A summary of the methods and acknowledgements
from the discovery GWAS [27] are presented in the
Supplementary Material.

Ethics

All components of Generation Scotland received
ethical approval from the NHS Tayside Committee
on Medical Research Ethics (REC Reference Num-
ber: 05/S1401/89). Generation Scotland has also been
granted Research Tissue Bank status by the Tayside
Committee on Medical Research Ethics (REC Refer-
ence Number: 15/0040/ES), providing generic ethical
approval for a wide range of uses within medical
research.

Statistical analyses

Linear mixed modelling was used to test for
differences in cognitive ability by AD polygenic
risk scores and APOE status. A mixed modelling
framework is necessary to account for potential relat-
edness between participants; familial relationships
were fitted using a pedigree-based kinship matrix.
The polygenic score was entered as either a continu-
ous variable or as ventiles (5% groupings) of risk. A
fully adjusted model added self-reported educational
attainment, hypertension, stroke, diabetes, heart dis-
ease, and depression, along with a measure of social
deprivation (Scottish Index of Multiple Deprivation)
[12]. A sample size of 3,495 is sufficient to detect an
effect size with an R2 of 0.18% for a type-I error of
� = 0.05 at 80% power using a one-sided test. APOE
was entered as a factor with e3 homozygotes as the
reference category for all other haplotype combina-
tions.

All analyses were conducted in R, using the ‘pwr’,
‘kinship2’, and ‘coxme’ packages [29–32].

RESULTS

Description of the polygenic risk score cohort
(n = 3,495, age-range 60–70 years)

A demographic summary of the target population
aged between 60 and 70 years and with AD polygenic
risk scores is presented in Table 1. The median age of
the cohort was 63 (IQR 61–65) and 57% were female.
The mean BMI of the cohort was 27.5 kg/m2 (SD 5.0).
The median educational attainment was 12–13 years
(measured categorically). The self-reported health
questionnaire identified 27% of participants with

Table 1
Summary of the Generation Scotland AD polygenic risk cohort

Polygenic risk cohort
Variable n mean sd

Age (years – median, IQR) 3,495 63 61–65
Digit Symbol Test 3,495 62.5 14.4
Logical Memory 3,495 29.5 8.0
SIMD (rank, median, IQR)∗ 3,318 4566 2924–5542
Educational attainment† 3,365 4 3–5

n %
Sex (Female) 1,998 57.2
Self-report hypertension (yes) 929 26.6
Self-report stroke (yes) 79 2.3
Self-report diabetes (yes) 194 5.6
Self-report heart disease (yes) 285 8.2
Self-report depression (yes) 298 8.5
APOE
�2�2 19 0.5
�2�3 437 12.5
�2�4 86 2.5
�3�3 2,081 59.5
�3�4 782 22.4
�4�4 90 2.6

∗Scottish Index of Multiple Deprivation. †Education was measured
as an ordinal variable, so median and quartiles are reported. 0 : 0
years, 1 : 1–4 years, 2 : 5–9 years, 3 : 10–11 years, 4 : 12–13 years,
5 : 14–15 years, 6 : 16–17 years, 7 : 18–19 years, 8 : 20–21 years,
9 : 22–23 years, 10:≥24 years.

self-reported hypertension, 9% with depression, 6%
with diabetes, 2% with stroke, and 8% with heart
disease.

Cognitive differences by AD polygenic score with
and without adjustment for APOE status
(n = 3,495, age-range 60–70 years)

There was a statistically significant association
between the polygenic score and memory (Table 2):
effect size of –0.31 points per SD of the polygenic
score, SE 0.14, p = 0.020. A similar effect size was
observed for processing speed although it was not sig-
nificantly different from the null (effect size –0.28, SE
0.24, p = 0.25). There was no difference in polygenic
score by APOE genotype (age- and sex-adjusted
ANOVA p = 0.72). Moreover, the effect size for the
polygenic score in the memory model remained sig-
nificant and was not attenuated after adjusting for
APOE haplotype (effect size –0.30 points, SE = 0.14,
p = 0.025); there was also no evidence for an APOE
x polygenic score interaction (likelihood ratio test
P = 0.40). Similarly, there was no evidence of an
APOE x polygenic score interaction for the process-
ing speed model (likelihood ratio test p = 0.86). In
the fully adjusted models, which controlled for self-
reported diabetes, stroke, heart disease, diabetes, and
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Table 2
Comparison of cognitive outcomes by genetic risk for AD and APOE status. All models adjust for age, sex,

and pedigree-based relatedness

Variable beta SE p FDR Adjusted p∗

Effect per SD of PGRS
Digit Symbol Test –0.28 0.24 0.25 0.25
Logical Memory –0.31 0.14 0.020 0.04

Top versus Bottom 5% of PGRS
Digit Symbol Test –2.32 1.54 0.13 0.15
Logical Memory –1.84 0.83 0.028 0.04

APOE �4�4 versus �3�3
Digit Symbol Test –3.51 1.53 0.022 0.04
Logical Memory –2.78 0.86 1.2 × 10–3 0.007

PGRS, Polygenic risk score; SD, standard deviation; SE, standard error. ∗False discovery rate adjusted p-values
after applying a Benjamini-Hochberg correction to the six empirical p-values.

depression, along with educational attainment and a
social deprivation index, there was a slight increase
in the effect size of the polygenic score on both the
memory and processing speed measures: effect sizes
of –0.34, SE 0.14, p = 0.014 and –0.31, SE 0.24,
p = 0.20, respectively.

Cognitive differences in the top versus bottom
5% of the polygenic score distribution
(age-range 60–70 years)

A significant association was observed in the age-
and sex-adjusted analyses that compared the top and
bottom ventile (5%) of the polygenic distribution for
memory differences. Those in the top (highest AD
risk) ventile scored a mean of 1.8 points (SE 0.8,
p = 0.028) lower than those in the bottom ventile on
the memory test; for processing speed, those in the top
ventile scored a mean of 2.3 points (SE 1.5, p = 0.13)
lower than the bottom ventile.

Cognitive differences by APOE status (n = 3,495,
age-range 60–70 years)

In a regression of cognitive ability on age, sex, and
APOE, �4�4 homozygotes scored a mean of 2.8 and
3.5 points lower on memory and processing speed
(p = 0.001 and p = 0.022, respectively) compared to
�3�3 homozygotes.

Sensitivity and secondary analyses

While a kinship matrix was included to model
relatedness between participants, a sensitivity anal-
ysis on only unrelated individuals was performed.
A genetic relationship matrix was created in GCTA
and unrelated individuals (relationship coefficient

<0.025) were retained (n = 2,677). In this sub-group,
we observed results consistent with the primary anal-
ysis (Supplementary Table 1).

A second sensitivity analysis was run after exclud-
ing those with fewer than 5 years of education (n = 12)
or a missing value for education (n = 130). These
results were consistent with the primary analysis
(Supplementary Table 2).

To determine if cognitive decrements by AD
polygenic scores were present at younger ages, we
selected an analysis sub-cohort in the age range of
45 to 60 years (n = 6,853). We observed generally
smaller effect sizes to the 60 to 70 sub-group that
were all non-significant (Supplementary Table 3).
Similarly, we observed null associations between
the polygenic score and cognitive decrements in a
sub-group of participants aged over 70 years (Sup-
plementary Table 4).

DISCUSSION

In a group of over 3,000 individuals aged between
60 and 70 years, polygenic risk scores for AD were
associated with decrements for memory but not pro-
cessing speed. This was the case when considering
polygenic risk on a continuum and also when com-
paring the extremes (top and bottom 5%) of the
distribution.

The main limitation of the current study is the sam-
ple size. The power calculation showed that the total
number of participants in the 60–70 age range was
only just sufficient to detect relatively small mem-
ory decrements by AD polygenic score status. The
relatively modest association p-values for the pri-
mary analyses (Table 2) reflect this lack of power.
The associations remained significant after a FDR
correction; only the APOE association with Logical
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Memory would remain significant after a Bonferroni
correction (p < 0.05/6).

Another possible limitation is the construction of
the AD polygenic risk predictor. As the number of
cases and controls increases in the discovery GWAS
[27], the precision and reliability of the SNP regres-
sion weights will improve. The cross-sectional design
of the Generation Scotland analysis may also be a
limitation, as might the lack of information on sub-
jective memory complaints. One recent study showed
that a high genetic score for AD (based on 22 top
SNP hits from a GWAS study) was associated with
steeper decline in memory, although the magnitude
of the effect was reduced when the APOE locus was
removed from the score [33].

With sufficiently large sample sizes, it is likely
that cognitive differences in processing speed will be
present in the general population for those with high
versus low polygenic risk of AD. Larger discovery
GWAS studies will also help to identify the opti-
mal number of SNPs (all SNPs in a truly polygenic
architecture versus a smaller number of possibly
more biologically informative SNPs) for a polygenic
predictor. The genetic contribution to AD has been
shown to overlap with the genetics of education, intel-
ligence, and income but not other health, disease,
or psychiatric outcomes [28, 34, 35]. Intuitively, we
would therefore expect to see phenotypic differences
across all ranges of the polygenic scores and more
acutely with the extremes of the distribution.

The most comprehensive study to have examined
the association between polygenic scores for AD
with cognitive function [28] used a predictor based
on the Lambert et al. discovery GWAS [27]. The
independent target dataset in that study was the UK
Biobank study. Small but significant associations, not
explaining more than 0.05% of the variance in three
cognitive traits and 0.07% of the variance in educa-
tional attainment were observed [28].

In conclusion, there is potential clinical utility for
the stratification of mid-to-late-life population-based
cohorts into high and low risk groups (based on APOE
status and global polygenic risk) to better understand
the pathophysiology of AD. However, large sample
sizes for both the GWASs used to build the poly-
genic scores and to select at risk sub-groups of the
population are likely to be necessary. By contrast,
smaller sample sizes are likely to be required when
stratifying by APOE �4�4 status, as effect sizes are
far greater in magnitude. Nonetheless, with increas-
ingly powerful polygenic predictors—as a result of
bigger baseline GWAS studies—it seems likely that

the extremes of the distribution will provide high risk
groups equivalent to those with two �4 alleles. How-
ever, the extremes of the polygenic score distribution
will be of additional value as, by definition of their
construction, they will tap into genome wide risk and
multiple pathways that lead to AD. Longitudinal col-
lection of cognitive test data in addition to biomarker
panels and ‘omics data, such as methylomics, which
have been linked to AD pathology [36] may help
illuminate biological signatures for AD, and improve
long-term prediction of the disease.
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A, Nöthen MM, Graff C, Psaty BM, Jones L, Haines JL,
Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ,
Farrer LA, van Duijn CM, Van Broeckhoven C, Moskvina
V, Seshadri S, Williams J, Schellenberg GD, Amouyel P,
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