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Abstract.
Background: Recent studies report increases in neural activity in brain regions critical to episodic memory at preclinical
stages of Alzheimer’s disease (AD). Although electroencephalography (EEG) is widely used in AD studies, given its non-
invasiveness and low cost, there is a need to translate the findings in other neuroimaging methods to EEG.
Objective: To examine how the previous findings using functional magnetic resonance imaging (fMRI) at preclinical stage
in presenilin-1 E280A mutation carriers could be assessed and extended, using EEG and a connectivity approach.
Methods: EEG signals were acquired during resting and encoding in 30 normal cognitive young subjects, from an autosomal
dominant early-onset AD kindred from Antioquia, Colombia. Regions of the brain previously reported as hyperactive were
used for connectivity analysis.
Results: Mutation carriers exhibited increasing connectivity at analyzed regions. Among them, the right precuneus exhibited
the highest changes in connectivity.
Conclusion: Increased connectivity in hyperactive cerebral regions is seen in individuals, genetically-determined to develop
AD, at preclinical stage. The use of a connectivity approach and a widely available neuroimaging technique opens the
possibility to increase the use of EEG in early detection of preclinical AD.
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INTRODUCTION

Around 44 million people in the world are suffer-
ing from dementia [1]. Alzheimer’s disease (AD) is
the most prevalent cause of dementia and according to
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family history can be divided in autosomal dominant,
familial, and sporadic [2]. The most common cause of
familial early onset AD are the presenilin-1 (PSEN1)
mutations, and among these the E280A mutation.
These mutations are involved in the production of
amyloid-� [3]. The largest family group of carriers
with the E280A mutation is found in Colombian,
region of Antioquia. This mutation has an autosomal
dominant inheritance and carriers have an estimated
median age of 44 years at onset of mild cognitive
impairment (MCI) and 49 years at onset of dementia
[4, 5]. Given that the efficacy of some AD therapies
may depend on the initiation of treatment before the
clinical manifestation of the disease, stage when the
neuronal damage may be irreversible, is important to
search for early biomarkers. The study of mutation
carriers, in which the current study is focused, pro-
vides an unique opportunity to identify early changes
related to predisposition to the disease [6, 7].

Electroencephalography (EEG) represents a low
cost, portable, and non-invasive alternative to study
brain function and neurophysiological changes
associated with neurodegenerative processes, as com-
pared to other techniques like functional magnetic
resonance imaging (fMRI) or positron emission
imaging (PET). Additionally, it represents a brain
mapping technique with high temporal resolution,
closer to the timescale of the neuronal dynamics [8].
There is a lot of EEG applications covering different
stages in sporadic AD [9] and an increase in the use
of resting state EEG, given its potential use in popu-
lation with high levels of impairment by the dementia
[10, 11].

Whereas most of papers about AD are related
to the sporadic type, the AD related to PSEN1
E280A mutation has been investigated recently
through neuroimaging techniques. MRI in PSEN1
E280A mutation carriers have demonstrated preclin-
ical changes in cerebral thickness and volume [12].
Changes have also been shown in regional brain activ-
ity using PET [13], fMRI [14, 15], and quantitative
EEG [16–20].

There are different strategies for analysis of the
neural activity measured through EEG recordings.
The study of the spatiotemporal covariance of brain
neuronal activity, captured by techniques like fMRI
or EEG, is known as functional connectivity. This
approach provides information about the interaction
of different brain regions in terms of the underlying
brain networks. Recently has been discussed that the
connectivity approach is highly sensitive to the neuro-
logical disease presence, is able to distinguish among

alternate diagnostics, gives insights about the disease
phenomenology, and also is sensitive to progression
and therapy effect [21]. Although the connectivity can
be studied at electrode level, there are techniques like
the inverse solution methods, that enable the study
of the connectivity directly between brain regions
[22–24].

In a recent paper, Quiroz et al. described a set
of cerebral regions where PSEN1 E280A carriers
showed increased activity, measured by fMRI, while
encoding visual information [15]. We hypothesize
that by using EEG in patients with the mutation, it
is possible to detect altered connectivity features in
the same brain zones, and therefore, this work aims
to identify EEG correlates in presymptomatic carri-
ers using the brain regions reported by Quiroz et al.
as hyperactive [15].

Consequently, the EEG signals studied were
recorded during resting state and during the perfor-
mance of a memory-encoding task for two groups
of individuals: PSEN1 E280A presymptomatic car-
riers and non-carriers. For each individual the signal
at the cortex was obtained, through inverse solution
methods, and the directed connectivity was estimated
using transfer entropy (TE) [25]. Although EEG and
fMRI use different physical principles, and albeit
the connectivity approach is different from the uni-
variate analysis used in fMRI, our findings point to
an increase of activity, quantified by a connectivity
measure, during an encoding task in presymptomatic
carriers of the PSEN1 E280A mutation.

MATERIALS AND METHODS

Participants

Thirty volunteers were recruited from the Univer-
sidad de Antioquia (API Colombia) registry, which
included more than 1,500 living members with famil-
ial AD at the time of the study. Fifteen participants
were positive for the AD-associated PSEN1 muta-
tion E280A (ACr); the remaining fifteen participants
were PSEN1 mutation negative and served as con-
trols (Control). Subjects in the Control group were
matched by gender, age, and educational level to
ACr subjects (Table 1). Informed consent for par-
ticipation was obtained from all subjects according
to the protocol approved by the Human Subjects
Ethics Committee of the Universidad de Antioquia
(Approbation act: 13-10-519). In addition to the EEG
records, neurological and neuropsychological tests
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Table 1
Demographic and Mini-Mental State Examination (MMSE) of participants

ACr Mean (±SD) Control Mean (±SD) T-Test
15 15

Age (years) 28 (±4.1) 31.5 (±5.8) T = –1.93 df = 28 p = 0.06
Gender (F/M) 9/6 9/6 –
Education (years) 12.1 (±3.3) 11.2 (±3.4) T = 0.75 df = 28 p = 0.46
MMSE/30 29.7 (±0.6) 29.5 (±0.9) T = 0.22 df = 28 p = 0.83

Values denote mean (±Standard deviation). ACr, asymptomatic mutation carriers.

were performed [4]. Researchers, who were blinded
to the genetic status of participants, acquired all the
data. The exclusion criteria included severe physi-
cal illness, alcohol/drugs abuse, and regular use of
neuroleptics or antidepressants with anticholinergic
action.

Twenty-nine of the thirty subjects participated in a
previous study oriented to search differences in brain
rhythms [20]. The clinical assessment, gathering of
information, and genetic analysis were performed
under the protocols previously defined at the Neu-
roscience Group of Antioquia and were identical
to those previously reported in the work of Quiroz
et al. [15].

EEG recordings

A Neuroscan unit amplifier (Neuroscan Medical
System, Neurosoft Inc. Sterling, VA, USA) was used
to record EEG signals. EEG data were recorded
(1000 Hz sampling rate, 0.1 to 200 Hz bandpass fil-
tered) from 64 electrodes positioned according to the
international 10-10 system with midline reference. A
simultaneous electrooculogram (0.1 to 100 Hz band-
pass filtered) was also recorded. The impedance
was kept below 10 K� for all electrodes and
subjects.

Five-minute recordings were obtained at resting
state, with the subject relaxed and with eyes closed,

and also while performing a memory-encoding task
based on a paradigm previously used in the same pop-
ulation [26]. The paradigm is divided in two stages:
the study stage, where each subject completed 50 tri-
als of encoding concrete and nameable objects, and
the test stage, where the previous 50 objects must be
recognized among 50 new objects. Figure 1 shows
how the objects are presented for the encoding during
the study stage. For the current analysis the signals
acquired during the encoding task (ENC) and during
the resting state (REST) were used.

Preprocessing

Clean EEG recordings were obtained using an
automated preprocessing pipeline based in routines
from the EEGLAB [27]. Data were digitally fil-
tered (1 to 30 Hz; FIR filter) and bad channels were
detected and interpolated using spherical splines.
Then, data were referenced to average and segmented
in epochs of 1.5 s. The EEG epochs with ocular, mus-
cular, and other types of artifacts were removed by
a computerized automatic procedure based on linear
trend, joint probability, and kurtosis [28]. Indepen-
dent component analysis enhanced by wavelet was
used to correct remaining eye blink artifacts [29].

The corrected data were resampled to 500 Hz,
trying to keep enough data for the connectivity
measure which is based on a mutual information

Fig. 1. Sequence of stimulus used during the encoding paradigm. During “fixation” the participant look at the cross in the screen and during
the “stimulus target” the subject tries to memorize the object.
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Fig. 2. ROIs selected for analysis. The signals for each voxel inside colored regions are averaged to obtain the signal used for the transfer
entropy analysis.

estimator that improves with the amount of data [30],
and the cortical current density source model [31]
was used to solve the inverse problem through the
weighted Minimum Norm Estimation (wMNE) algo-
rithm included in the eConnectome software [32].
Solving the inverse problem implies that the signal
captured by electrodes is represented as current den-
sity signal in 7850 voxels, where each voxel is of
4 mm3, that cover the entire cerebral cortex. Signals
from seven regions of interest (ROIs) were obtained,
as an average of the current density from the voxels
of each ROI, according to the regions of increased
activation reported by Quiroz et al. [15]: right angu-
lar gyrus (113 voxels), right precuneus (272 voxels),
left frontal superior gyrus (171 voxels), right frontal
inferior gyrus (263 voxels), left parahippocampus
(58 voxels), left hippocampus (100 voxels), and
right hippocampus (78 voxels). The ROIs, that were
established according to the partition scheme defined
in the AAL atlas [33], differ in the number of voxels
covered. Figure 2 shows the selected ROIs.

Transfer entropy and connectivity analysis

The connectivity approach tries to explain the
emergence of cognition through the interaction of
functionally specialized brain regions [34]. In this
work, an interaction exists when information is

transferred, using the information definition given
by Shannon, that is, the amount of uncertainty con-
tained in the outcome of a random process. Although
different measures to quantify the brain connectiv-
ity have been proposed [35–37], TE was selected
because does not require the specification of the type
of interaction, capturing linear and non-linear inter-
actions, and has been used in different studies with
EEG data [38–46].

From epochs of 1.5 s, segments of 1.3 s, discard-
ing the 0.2 s of baseline in the case of ENC trials,
were used. Before the connectivity analysis, the sta-
tionarity of the data was verified using the Augmented
Dicker Fuller test implemented in Matlab (MATLAB
and Econometrics Toolbox Release 2012a, The Math-
Works, Inc., Natick, Massachusetts, USA). For the
estimation of the TE, the TRENTOOL toolbox was
used [47] following the methodology proposed for
optimal estimation [48]. Given that spurious con-
nections could exist due to indirect interactions, a
correction based in graph theory was used [49]. The
estimator of TE used is defined as [39]:

TE (X → Y, u) =
∑

yt,y
dy

t−1,x
dx
t−u

p
(
yt, y

dy
t−1, x

dx
t−u

)

log
p(yt|ydy

t−1, x
dx
t−u)

p(yt|ydy
t−1)
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Table 2
Parameters used for Transfer Entropy analysis. The parameters are given like are used in TRENTOOL software

Range of delays (u) Delay (u) Autocorrelation Minimum acceptable Range of embedding Range of embedding Samples to
evaluated step size time (ACT) number of trials dimension (d) evaluated delays (τ) predict

1–20 1 40 45 2:5 0.2–1.5 100

where X and Y are the signals under analysis, u is
the delay that might exist in the interaction between
them, and yt and xt , represent the state at time t of
the random process that generates the signals Y and
X respectively. Taken’s Embedding Theorem estab-
lishes that the state representations could be obtained
from consecutive measures of the underlying system,
in the current case the EEG signals, and two param-
eters: the dimension di, that is related to the possible
number of states of the system, and delayed versions,
with delay parameter τ, of the signal. The parameters
di and τ are obtained via the Ragwitz criterion [50].
The list of the parameters used for the TE estimation
is presented in Table 2. A common practice for the
embedding dimension selection for group compar-
isons is the selection of the higher dimension found in
subjects. The highest embedding dimension is three,
reason why the parameter di takes that value in TE
estimation for all subjects.

Statistical analysis

To perform comparisons, the t-test for paired
observations was used, where the null distribution
was obtained by permutations (10.000 permutations)
using the routine developed by Glerean et al. [51].
When multiple comparisons were needed, the p-
values were corrected using the False Discovery
Rate (FDR) through the Benjamini and Hochberg
linear-step up procedure (MATLAB and Bioinfor-
matic Toolbox Release 2012a, The MathWorks, Inc.,
Natick, Massachusetts, USA). To avoid possible con-
founding effects caused by differences in age between
groups, the age of the subjects was regressed out
of the connectivity values. Additionally, the effect
size was computed in different comparisons through
the Matlab toolbox provided by Hentschke and
Stüttgen [52].

The connectivity approach, based on a directed
measure, allows the quantification of the incom-
ing and outgoing TE for each ROI. Initially, a
broad connectivity analysis was performed to evalu-
ate differences in average connectivity between the
two groups. Subsequent analyses were directed to
search ROIs and connections with differences in

connectivity between the groups. Figure 3 shows
some of the steps used in the methodology.

RESULTS

Behavioral results of the subsequent memory test

There were no significant differences between
Control and ACr for the number of correctly encoded
items (p = 0.4) or reaction time (p = 0.7). To confirm
that subsequent memory effects were not influenced
by response times during the encoding, we analyzed
response times needed by the subject to answer: “Do
you like this item?” (Fig. 1), according to the recog-
nition performance in the test stage. This analysis
revealed no differences between groups (p = 0.7).

Connectivity results

In the resting condition the average connectivity
was higher for the Control group, although not sta-
tistical significant (p < 0.34; effect size: –0.15, CI
(–0.94, 0.58)); however, for the memory encoding
condition, the average connectivity was higher for the
ACr group (p < 0.00; effect size: 1.14, CI (0.4,2.43)).

In the evaluation of each ROI, there were no sta-
tistical differences in the resting condition, although
the average connectivity was higher for almost all
ROI for the Control group (Fig. 4). For the encod-
ing condition, differences were found for all the ROIs
(Table 3). Additionally, correlation analysis showed
that performance on the recognition test was signifi-
cantly correlated with the average connectivity in the
right precuneus (R = 0.53, p < 0.02) for the ACr group.

The study of the ENC condition at connection level
shows stronger connectivity for the ACr subjects for
almost all connections but only remain significant,
after multiple comparison corrections, some connec-
tions related to the right precuneus and the right
angular gyrus (Fig. 5).

Although the differences of the connectivity in
the REST condition did not reach statistical sig-
nificance, this could serve as baseline to compare
the change in connectivity in ROIs from the REST
to ENC condition. The average connectivity in the
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Fig. 3. Steps followed for connectivity analysis: The scalp EEG (a) is converted to cortical current density (b). The signal for transfer entropy
(TE) analysis is obtained as the average of the voxels contained in each ROI (c) and an Adjacency matrix is built, shown in colors where a
warmer color indicates higher TE, and contains all the relevant connections. From the adjacency matrix the connectivity indices are obtained
as sums over the rows or columns or both.

Control group decreased in the ENC condition
respect to the REST condition but without statisti-
cal significant effect (p < 0.33, effect size: –0.17, CI
(–0.91, 0.6)). Conversely, for the ACr group, there is
an increase in connectivity from the REST to ENC
condition (p < 5e-4, effect size: 1.37, CI (0.6, 2.8)).

These findings reveal that information encoding is
related to an increase of connectivity for ACr sub-
jects. A comparison between groups was done trying
to find those ROIs where the change in connectiv-
ity, computed as the difference between ENC and
REST, was statistically different. Statistical signif-
icant differences for all the ROIs were found. The
difference was always higher for the ACr group
(Table 4).

DISCUSSION

Despite identical behavioral performance during
the successful of encoding visual information, young
presymptomatic PSEN1 E280A mutation carriers
exhibited higher connectivity values, when compared
to non-carrier family members, in cerebral regions
that are also hyperactive during the encoding of com-
plex scenes for subjects with the same mutation [15].

Using EEG, different works have reported
differences in PSEN1 E280A mutation carriers

when compared against non-carriers. By estimat-
ing intracranial sources of evoked related potentials
(ERPs) during a semantic-matching task, different
topography and an increase of the ERP generator
strength in the left hippocampus and parahippocam-
pus was found in mutation carrier group with
respect to the non-carriers [17]. In another study
with young presymptomatic carriers, using the same
memory task that we used, despite an identical
behavioral performance, high density ERPs showed
lower positivity in frontal regions and increased
positivity in occipital regions in carriers compared
to control subjects. Discriminant analysis in the
200–300 ms interval showed promising sensitiv-
ity (72.7%) and specificity (81.8%) predicting the
presence of AD [18]. The quantitative EEG analy-
sis has also shown differences for the oscillations
in the beta band (12.5–19.1 Hz) and modification
of spectral parameters in fronto-temporal regions
for carriers [16]. Twenty-nine of the thirty sub-
jects included in the current study participated in
a previous analysis where differences in theta and
alpha2 were found [20]. The motivation for intro-
ducing a new analysis is related to the need of
finding an effective biomarker and the need to
expand the knowledge about the neurophysiology of
the AD.



J.F. Ochoa et al. / Connectivity in Presymptomatic AD 1201

Fig. 4. Differences in the REST condition for each ROI. Right Angular: r ang, left Frontal Superior: l front sup, right Frontal Inferior:
r front inf, left Parahippocampus: l parahipp, left Hippocampus: l hipp, right Hippocampus: r hipp. The mean connectivity for each ROI is
higher for Control although none of the comparison is statistical significant.

Table 3
Differences in connectivity between groups for the encoding con-

dition. For all nodes the ACr subjects have higher connectivity

ROI pval Size Confidence
(FDR corrected) effect interval

r angular 0.01 1.05 (0.33, 2.25)
r precuneus 0.01 1.22 (0.56, 2.20)
l frontal sup 0.01 0.95 (0.27, 1.99)
r frontal inf 0.01 0.88 (0.18, 1.96)
l parahippo 0.01 1.17 (0.43, 2.30)
l hippo 0.02 0.9 (0.21, 1.8)
r hippo 0.01 1.01 (0.35, 2.05)

We used a different approach to the previously
reported, basing the main computations in freely
available toolboxes: eConnectome [32] and TREN-
TOOL [47], and in methods that have reached a
high level of maturity and have been extensively
described in literature: the inverse solution methods
[53], and the non-linear approaches to study con-
nectivity [48]. Alternatives for improvement could
be pursued, such as the use of the MRI of each
subject instead of using a template [22] or the use

of a multivariate measure for connectivity instead
of a bivariate like TE. The bivariate approach is
fundamental for many of the connectivity analy-
sis done with fMRI [54], constituting one of the
main sources of knowledge about the brain func-
tion, unfortunately, the use of bivariate measures,
and even some multivariate measures, are related to
the risk of false connections [55] and the impos-
sibility of finding the sources of propagation [56].
Although the multivariate approach could better cap-
ture the structure of connections, assuming that all
the relevant nodes in the network are known [55],
the need for a different preprocessing approach,
where the common average and the inverse solu-
tion are forbidden steps [57], restricts its use in the
current study. Given the limitations of the bivari-
ate approach, we avoid discussing the structure of
the network, only concluding that there are differ-
ences, for all ROIs and for some specific connections,
between presymptomatic carriers and non-carriers
of the mutation E280A during the encoding of
information. The differences point to an increase of
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Fig. 5. Connections with increased values for the ACr group during the ENC condition.

Table 4
Difference between groups comparing the difference of connec-
tivity of the ROIs in the Encoding condition against the Resting

condition (ENC – REST)

ROI pval Size Confidence
(FDR corrected) effect interval

r angular 0.01 0.93 (0.29, 1.73)
r precuneus 0.01 1.02 (0.34, 1.99)
l frontal sup 0.01 0.93 (0.25, 1.91)
r frontal inf 0.01 1 (0.3, 2.05)
l parahippo 0.02 0.78 (0.09, 1.84)
l hippo 0.01 1.04 (0.28, 2.37)
r hippo 0.00 1.55 (0.76, 3.15)

neural activity in mutation carriers and can be mea-
sured using fMRI and EEG.

The task used in the current study was also differ-
ent from the task used by Quiroz et al. [15]. For the
current task, differences have been reported in the
PSEN1 E280A mutation carriers for encoding [19]
and recognition [18] conditions. It is possible that
the use of complex scenes elicit higher activity in the
medial temporal lobe as has been seen in epilepsy
studies [58], but given that our approach is based
on connectivity, we sought differences in the inter-
action assuming that the brain regions involved in
the encoding of complex scenes also interact during
the encoding of the objects used in our experiment
and even during the resting state. Our results show
the presence of interaction during REST and ENC

conditions and how the interaction is modulated by
the task change for Control and ACr groups. From
the results, it is possible to assume that tasks that have
been previously reported as biomarkers for AD [59]
might be analyzed under the connectivity approach
[60]. At this point, is necessary to develop tasks
that patients with cognitive impairment can execute,
avoiding the use of tasks that might be biased by the
performance of the patients.

In the current work, the analysis was restricted
to the regions previously reported as hyperactivated
under an encoding task [15]. The use of all gyri
included in the AAL atlas is computationally expen-
sive, even using the algorithms based in Graphical
Processing Unit included in TRENTOOL, and think-
ing of using the connectivity approach for hypothesis
testing instead of a fishing expedition should be
avoided [61]. Nevertheless, our approach detected
ROIs with different behavior between carriers and
non-carriers of the PSEN1 E280A mutation. One of
these regions, the right precuneus, which belongs to
the default mode network [62] and is a highly con-
nected brain region and key element for the possible
spreading of the neurodegenerative pathology [63],
is possibly the first brain region with altered activity
previous to the clinical symptoms [64]. Surprisingly
six of the seven ROIS are closer to the default mode
network nodes reported by Shirer et al. [65], and
seem to follow a contrary pattern in ACr in relation to
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the Control: increase its connectivity during the task
execution.

The pattern of increased connectivity found might
be used as a test in the early detection of AD. Our
study presents additional evidence of neurophysio-
logical changes, in the form of increased neuronal
interaction that happens years before of the clinical
manifestation of AD [14, 15, 19, 66] and even before
the advent of measurable amyloid plaques using PET
[64, 67]. Regarding the increase of connectivity that
occurs during the task compared with the resting con-
dition, with higher differences for the PSEN1 E280A
mutation carriers for a similar performance of the
task, we hypothesize that the increased connectivity
might be part of a neuronal reserve mechanism, where
existing resources in a given neuronal network are
used to maintain the regular function, instead of neu-
ronal compensation, where an alternative network is
used [68]. Unfortunately, the early use of the reserve
mechanism can be related to abrupt cognitive decline
seen in the mutation carriers, something that has been
seen in computational models [69].

We already know that the course from presymp-
tomatic to AD is non-linear [64], and also it is possible
that the increased neural activity is a part of a perpetu-
ating cycle, which implies increases in the production
of amyloid-� [70]. The current findings constitute a
starting point for future use of approaches like graph
theory, something that might help to understand the
relationship between highly connected brain regions
and the pathways observed of brain disease [71].

There are several limitations in the current study
such as the limited number of participants, the uncer-
tainty about the extent to which our current finding
may be generalizable to other forms of AD, and the
need of use the real anatomy of subjects instead of a
template. At this point, it is also necessary to empha-
size that the scope of our approach is limited in spatial
resolution; our analyses are based on signals obtained
from gyrus instead of voxels, a reason why our results
are complementary to the previous findings using
fMRI [15].

The strengths of our work are related to the use
of an economic, in comparison to fMRI and PET,
high temporal resolution approach in a very homo-
geneous population with a single-gene mutation for
early-onset AD, the statistical power reached in the
comparisons, and the concordance with previous
findings of increased neuronal activity. Although
there are differences in the methods of acquisition
and analysis, the use of previously reported regions
and a conservative approach, which provides results

that are consistent over the different tests, increase the
possibility of EEG use in the context of preclinical
AD.
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Jaramillo-Elorza MC, Moreno S, Aguirre-Acevedo DC, Sal-
darriaga A, Lopera F (2011) Pre-dementia clinical stages
in presenilin 1 E280A familial early-onset Alzheimer’s
disease: A retrospective cohort study. Lancet Neurol 10,
213-220.

[5] Ardila A, Lopera F, Rosselli M, Moreno S, Madrigal L,
Arango-Lasprilla JC, Arcos M, Murcia C, Arango-Viana
JC, Ossa J, Goate A, Kosik KS (2000) Neuropsychological
profile of a large kindred with familial Alzheimer’s disease
caused by the E280A single presenilin-1 mutation. Arch Clin
Neuropsychol 15, 515-528.

[6] Langbaum JB, Fleisher AS, Chen K, Ayutyanont N, Lopera
F, Quiroz YT, Caselli RJ, Tariot PN, Reiman EM (2013)
Ushering in the study and treatment of preclinical Alzheimer
disease. Nat Rev Neurol 9, 371-381.

[7] Sperling R, Mormino E, Johnson K (2014) The evolution of
preclinical alzheimer’s disease: Implications for prevention
trials. Neuron 84, 608-622.

[8] Tsolaki A, Kazis D, Kompatsiaris I, Kosmidou V, Tsolaki
M (2014) Electroencephalogram and Alzheimer’s disease:
Clinical and research approaches. Int J Alzheimers Dis 2014,
349249.

[9] Lizio R, Vecchio F, Frisoni GB, Ferri R, Rodriguez G,
Babiloni C (2011) Electroencephalographic rhythms in
Alzheimer’s disease. Int J Alzheimers Dis 2011, 927573.

http://j-alz.com/manuscript-disclosures/16-0803r1
http://j-alz.com/manuscript-disclosures/16-0803r1


1204 J.F. Ochoa et al. / Connectivity in Presymptomatic AD

[10] van Straaten EC, Scheltens P, Gouw AA, Stam CJ (2014)
Eyes-closed task-free electroencephalography in clinical
trials for Alzheimer’s disease: An emerging method based
upon brain dynamics. Alzheimers Res Ther 6, 86.

[11] Vecchio F, Babiloni C, Lizio R, De Vico Fallani F, Bli-
nowska K, Verrienti G, Frisoni G, Rossini PM (2013)
Resting state cortical EEG rhythms in Alzheimer’s dis-
ease. In Supplements to Clinical Neurophysiology, Başar
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