Supplementary Material B

Supplementary Methods
1. Overview of the automated segmentation of the whole brain and hippocampus
To automatically segment the whole brain and hippocampus of each 3D T1-weighted MPRAGE image, we used a multi-atlas image segmentation algorithm—joint label fusion [1]—implemented in Advanced Normalization Tools (ANTs; http://stnava.github.io/ANTs/). For the whole brain segmentation, the conditional dilatation adopted by [2] was additionally applied to the segmentation to improve segmentation accuracy. For the hippocampal segmentation, a segmentation post-processing technique—corrective learning [3]—in ANTs was additionally applied to obtain higher accuracy.
The joint label fusion used atlas sets that consisted of 3D T1-weighted images and their corresponding semi-automated or manual segmentations from the ADNI dataset (http://adni.loni.usc.edu/). For the whole brain segmentation, 1021 pairs of a 3D T1-weighted image and the corresponding semi-automated whole brain segmentation by the Medical Image Display and Analysis Software (MIDAS) [4] were used as the whole brain atlas set. The whole brain atlas set included 835 scans at 1.5 T at screening, 186 scans at 3 T at baseline, and the corresponding whole brain segmentations. For the hippocampal segmentation, 100 pairs of a scan that had been rigidly registered to the MNI ICBM152 Nonlinear Symmetric template with 1  1  1 mm voxel dimensions [5,6] and the corresponding manual hippocampal segmentations based on the harmonized protocol (http://www.hippocampal-protocol.net/) [7] were used as the hippocampal atlas set. The hippocampal atlas set was the preliminary release and consisted of 58 scans at 1.5 T, 42 scans at 3 T, and the corresponding hippocampal segmentations. Note that we excluded any internal cerebrospinal fluid pools in the manual segmentations.
Intensity inhomogeneity correction on the T1-weighted images in the hippocampal atlas set was performed using the N4ITK [8] in ANTs. Because the joint label fusion requires atlas sets that have been nonlinearly registered to the target T1-weighted images and the corresponding warped segmentations, we used nonlinear registration using a fast free-form registration approach with the graphic processing unit (GPU)-based implementation version of NiftyReg (http://sourceforge.net/projects/niftyreg/) [9]. The GPU computation enables nonlinear registration to be faster than CPU computation [9]. For the image processing in the present study, we used a 64-bit Linux workstation with two Intel Xeon E5-2670 v2 processors and a NVIDIA GeForce Titan Black GPU with 2880 CUDA cores and 6 GB of memory.

1-1. Pipeline for the whole brain segmentation
To validate the accuracy of the automated whole brain segmentation, we used a leave-one-out cross-validation procedure using the whole brain atlas set of 1021 images (835 at 1.5 T and 186 at 3 T). A target image was automatically segmented using the other 1020 atlas images. The procedures are summarized in Supplementary Figure B1 and detailed here:
B1) Each T1-weighted image in the whole brain atlas set was affinely registered to an unbiased template with NiftyReg 12 degrees-of-freedom (DOFs) registration [10]. The unbiased template was generated from 30 randomly selected participants in the ADNI dataset using the antsMultivariateTemplateConstruction2.sh script in ANTs that implements the Symmetric Group Normalization (SyGN) framework [11]. Intracranial masks were created for the unbiased template and each scan in the atlas set by using the partial volume effect image outputted from the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm8/). These intracranial masks were used as inclusive masks. The information within the 8-voxel dilated masks was used in registration.
B2) Over a two-voxel dilated intracranial mask of the unbiased template, a normalized cross-correlation (NCC) similarity metric was calculated between each target image and the other 1020 atlas images.
B3) A subset of the highest NCC atlas images was chosen as a final atlas set to segment each target image. They were affinely registered to each of the target images in their native spaces, followed by NiftyReg nonlinear registration with the control point spacing of 2.5 mm along each axis and the weight of the bending energy penalty term of 0.01. We empirically choose the 16 highest NCC atlas images for target images at 1.5 T and the 22 highest NCC images for target images at 3 T.
B4) The whole brain segmentations included in the final atlas set were deformed using the results of registrations at B3 with nearest neighbor interpolation.
B5) A new segmentation of the target image was automatically propagated by the joint label fusion using the atlas set that had been nonlinearly registered to the target image at B3 and B4. The parameters of the joint label fusion were the same as those used in Wang et al. [12].
B6) The gray level brain of the target image was extracted using the newly propagated whole brain segmentation. Next, the gray level brain was thresholded between 60% and 160% of the median intensity of the gray level brain image. Then, the thresholded segmentation was dilated by one voxel.
B7) The gray level brain of the target image was again extracted using the one-voxel dilated segmentation created in B6. Then, the gray level brain was again thresholded between 60% and 160% of the median intensity of the gray level brain image. These procedures of B6 and B7 aimed to recover missing brain tissues in the automated segmentation and were named “conditional dilation” in Leung et al. [2]. Note that we thresholded the gray level brain between 60% and 160% of the median intensity of the gray level brain rather than the mean intensity and used one-voxel conditional dilation rather than the two-voxel conditional dilation used by Leung et al. [2] for an empirical reason.
B8) The steps from B2 to B7 were repeated for each of the 1021 images in the whole brain atlas set to perform a leave-one-out cross-validation procedure.

1-2. Pipeline for the hippocampal segmentation
To validate the accuracy of the automated hippocampal segmentation, we performed 10 separate iterations of the two-fold cross-validation using the harmonized protocol hippocampal atlas set of 100 images (58 at 1.5 T and 42 at 3 T). At each iteration, each group was randomly sampled to be divided into training and test sets containing 29 images at 1.5 T and 21 images at 3 T in each set. At the training stage, a leave-one-out automated segmentation was performed in the training set. To be more specific, a target image was automatically segmented using the other 49 original and 49 flipped atlas images in the training set. Using the set of the automated and manual segmentations, we trained an AdaBoost classifier [13] with the corrective learning [3]. The classifiers were trained separately for 1.5 T and 3 T. For 1.5 T, 29 pairs of the automated and manual segmentations were used; for 3 T, 21 pairs of the segmentations were used. At the test stage, each target image in the test set was first segmented by the joint label fusion using the hippocampal atlas set containing 50 scans in the training set. Finally, the corrective learning was applied to the automated segmentations to correct any mislabeled voxels. The procedure is summarized in Supplementary Figure B2 and described in more detail below:
H1) All images in the hippocampal atlas set were flipped around the superior–inferior axis of the head to double the size of the atlas set.
H2) The hippocampal atlas set of 100 scans was randomly divided into two sets of  and .  and  were used as training and test sets, respectively. Note that both the training and test sets consisted of 29 scans at 1.5 T and 21 scans at 3 T.
H3) Each T1-weighted image in the hippocampal atlas set was registered to the unbiased template described in B1 with NiftyReg 12 DOF linear registration. Intracranial masks were created by VBM8 and dilated with 8 voxels for each scan for their use in registration as an inclusive mask.
H4) The hippocampal mask was manually labeled on the unbiased template. Over the two-voxel dilated hippocampal mask of the unbiased template, a NCC similarity metric was calculated for the right and left hippocampi separately between each target image and the other 49 original and 49 corresponding flipped atlas images in the training set.
H5) A subset of the highest NCC atlas images was chosen as a final atlas set to segment each target image in the training set. They were affinely registered to each of the target images in their native spaces, followed by NiftyReg nonlinear registration with the control point spacing of 2.5 mm along each axis and the weight of the bending energy penalty term of 0.01. We empirically choose the 30 highest NCC atlas images for target images at both 1.5 T and 3 T. Note that the target image and corresponding flipped image were excluded from the final atlas set.
H6) The hippocampal segmentations included in the final atlas set were deformed using the results of the registrations in H5 with nearest neighbor interpolation.
H7) A new segmentation of the target image was automatically propagated by the joint label fusion using the atlas set that had been nonlinearly registered to the target image in H5 and H6. The parameters of the joint label fusion were the same as those used in Wang et al. [12].
H8) Using the 50 pairs of the manual segmentations and automated segmentations propagated in H7, we trained an AdaBoost classifier with the corrective learning separately for 1.5 T and 3 T.
H9) Each of the 50 scans in the test set was automatically segmented by the joint label fusion using the hippocampal atlas set that consisted of the 30 highest NCC images chosen from the training set including the 50 original and 50 flipped scans, followed by mislabeling correction by the corrective learning that had been trained in H8.
H10) The steps from H3 to H9 were performed using  and  as a test set and training set, respectively.
H11) The steps from H2 to H10 were repeated 10 times to perform 10 separate iterations of two-fold cross-validation.

1-3. Quantitative similarity evaluation metrics
In the present study, the automated segmentations of both the whole brain and hippocampus were validated using the aforementioned semi-automated whole-brain labels and manually segmented hippocampal labels on the US-ADNI MRI dataset both at 1.5 T and 3 T as ground truth. The automated whole brain and hippocampal segmentations were compared with the MIDAS semi-automated segmentations and the hippocampal harmonized protocol manual segmentations using the Jaccard index (JI), Dice similarity coefficient (DSC), unsigned relative volume error (RVE), and signed RVE. JI and DSC are defined as:
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where  is the set of voxels in the automated segmentation and  is the set of voxels in the semi-automated MIDAS whole brain segmentation or the manual hippocampal harmonized protocol segmentation. The signed relative volume error  and unsigned relative volume error  are defined as:
	
	
	(3)

	
	
	(4)


where  and  denote volumes of the automated segmentation and the semi-automated or manual segmentation, respectively. Pearson’s coefficient was also calculated between the manual or semi-automated segmentation volume and the automated segmentation volume. These results are depicted in Supplementary Table B1. The automated segmentation of the whole brain provided a mean JI and DSC of 0.984 and 0.992 at 1.5 T and 0.973 and 0.986 at 3 T, respectively. These results are comparable with those of Leung et al. [2]. On the other hand, the automated hippocampal segmentation offered a mean JI and DSC of 0.811 and 0.896 at 1.5 T and 0.811 and 0.895 at 3 T, respectively. These results are comparable with those of Giraud et al. [14]. The JI and DSC of the automated segmentation of the whole brain at 1.5 T were better than those at 3 T. On the other hand, the median JI and DSC of the automated segmentation of the hippocampus were comparable between 1.5 T and 3 T. The differences in the accuracies of the automated segmentation for the whole brain between the magnetic field strengths were possibly due to higher gray/white matter contrast at 3 T than at 1.5 T. This is because the relatively low signal intensity in the gray matter at 3 T may not have been successfully captured by the one-voxel conditional dilation in the automated segmentation for the whole brain where the gray level brain image was thresholded at 60% of the median intensity of the gray level brain image and may have caused the lower (negative) signed relative volume error than 1.5 T by underestimating the whole brain volume.

2. Measurement of whole brain and hippocampal atrophy from serial MRI scans using symmetric affine registration and the k-means normalized boundary shift integral (summarized in Supplementary Figure B3)

2-1. Symmetric affine registration of serial MRI scans
We used the symmetric affine registration approach [15] implemented in NiftyReg to affinely (12 DOFs) register pairs of serial MRI scans. All pairwise registrations were then geometrically averaged and the serial scans were transformed to their middle space [16,17] with sinc interpolation. At this step, we dilated the above whole brain segmentations with 8 voxels and used them as inclusive masks for registration [17,18]. This symmetric affine registration enables atrophy measures using k-means normalized boundary shift integral (KN-BSI) to be unbiased by registration directionality [17].

2-2. Symmetric differential bias correction
To alleviate intensity inhomogeneity among serial scans that remained even after N3 bias field correction [19], a symmetric differential bias correction (DBC) was applied to the serial scans that had been transformed to the middle space [17,20]. We adopted a median filter with a radius of 5 for DBC with reference to Lewis and Fox [20].

2-3. K-means normalized boundary shift integral
K-means normalized boundary shift integral (KN-BSI) [21] and double intensity window KN-BSI [22,23] (http://sourceforge.net/projects/bsintegral/) were used to measure the volumetric differences in the whole brain and hippocampus, respectively, between the baseline and follow-up scans. The volume of follow-up scans in the middle space  was defined as:
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where  denotes the volume of the baseline scan in the middle space and  denotes the volumetric difference between the baseline and follow-up scans in the middle space calculated by KN-BSI.

3. Assessment of the reliability of the image analysis methodology for atrophy quantification
Fox et al. [24] proposed that image analysis quantification protocols of the brain atrophy should be assessed for use in clinical trials by certain tests, including:
· Symmetry: the measured value of the atrophy from image A to B should be the same as the negative value from image B to A.
· Transitivity: the sum of the measured values of the atrophy from A to B and B to C should be the same as the value measured directly from A to C when the measurements are over three time points.
· Reproducibility with short interval scans: the measured value of the atrophy calculated from short interval scans should be close to zero, regardless of the diagnostic group.
· Comparison with the known pathophysiology: the measured rate of the hippocampal atrophy in Alzheimer’s disease (AD) should be 3–5% per year because patients with AD have a hippocampal volume about ~15–20% lower than that of healthy elderly controls in cross-sectional studies and atrophy starts several years before symptom onset [24].
· Comparison with other more established techniques on the same dataset.
· Therefore, the image analysis methodology in the present study was assessed in the following ways:
· 
3-1. Symmetry
We used the symmetric affine registration and symmetric DBC for the longitudinal atrophy measurements with KN-BSI. Thus, the measured value of the atrophy from image A to B is equivalent but negative to that from image B to A.

3-2. Transitivity and linearity
To test the transitivity of the estimated volume loss, serial scans at baseline, 12 months, and 24 months were transformed into their middle space by the symmetric affine registration and the volume change was calculated from baseline to 12 months, from baseline to 24 months, and from 12 months to 24 months by KN-BSI. In these tests, serial scans of 97 AD, 186 mild cognitive impairment (MCI), and 130 cognitively normal (CN) participants were used because they all had serial scans at baseline, 12 months, and 24 months. For the test of transitivity, the difference  was evaluated as:
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as used by Cash et al. [25], where  denotes the volume change between scans at the x- and y-months in the middle space estimated by KN-BSI. One-sample t-tests were performed on the null hypothesis that the difference was zero. For the test of linearity, we fitted a regression line to the volume loss of the whole brain and hippocampus from baseline to 12 months and from baseline to 24 months to test the linearity of the estimated atrophy. The intercept of the regression line should be close to zero under the assumption that the change in the atrophy of the whole brain and hippocampus is linear over time.
The results of the test of linearity are displayed in Supplementary Table B2. No bias was introduced in the intercept of the regression line across all of the diagnostic groups. As shown in Supplementary Table B3, no significant transitive differences were found in the whole brain and hippocampal volume loss in the MCI and CN groups, whereas statistically significant transitive differences were found in the AD group for the whole brain atrophy of 0.441% and for the hippocampal atrophy of 4.157%. However, these transitive biases were small compared with the mean whole brain and hippocampal volume loss over 2 years.

3-3. Reproducibility with back-to-back scans
We calculated the volume differences in the whole brain and hippocampus between the back-to-back scans at baseline using KN-BSI with the symmetric affine registration and symmetric DBC. We analyzed the back-to-back scans of 146 AD, 225 MCI, and 148 CN participants who had scan–rescan pairs of MPRAGE at baseline. The back-to-back scans contain two within-session MPRAGE images where one of the scan pairs may have more movement, noise, artifacts, and physiological fluctuations than the other. Therefore, we randomly assigned the back-to-back scans into baseline and follow-up scans to avoid any systematic changes. One-sample t-tests were performed on the null hypothesis that the mean signed volume change and signed percent change between the back-to-back scans was zero. The signed volume change  and signed percent change  were defined as:
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In addition, the volume and percent changes between the back-to-back scans were pooled as unsigned values and compared using a nonparametric Kruskal-Wallis test to compare changes across the diagnostic groups. The unsigned volume change  and unsigned percent change were defined as:
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As shown in Supplementary Table B4, we found no statistically significant changes in the whole brain and hippocampus across the three diagnostic groups. Furthermore, as shown in Supplementary Table B5, we found no statistically significant volume and percent changes in the whole brain and hippocampus between the back-to-back scans.

3-4. Comparison with the known pathophysiology
As shown in Supplementary Table B6, we found significant differences in the baseline volumes and percent longitudinal changes of the whole brain and hippocampus among the three diagnostic groups, except for the whole brain baseline volume between the AD and MCI groups. The mean estimated atrophy rates per year of the whole brain and hippocampus were about 1.1% and 3.4% for AD participants and about 0.3% and 0.7% for CN participants, respectively. These results are in line with those reviewed by Frisoni et al. [26]. Moreover, the mean hippocampal atrophy rate is consistent with that proposed by Fox et al. [24] as a biologically plausible atrophy rate of AD.
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Supplementary Figure B1. Flow diagram representing the automated segmentation of the whole brain and the leave-one-out cross-validation procedure
[image: M5P:Users:glyzinie:Documents:FLOWDIAGRAM_WB.eps]
Supplementary Figure B2. Flow diagram representing the automated segmentation of the hippocampus and the 10 separate two-fold cross-validation procedures
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Supplementary Figure B3. Flow diagram representing the KN-BSI computation of the whole brain and hippocampus on serial MPRAGE scans
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Supplementary Table B1
Accuracy of the automated segmentation of the whole brain and hippocampus using the Jaccard index (JI), Dice similarity coefficient (DSC), Person’s correlation coefficient, signed relative volume error (RVE), and unsigned RVE†
	
	JI
(25%/50%/75%)
	DSC
(25%/50%/75%)
	Pearson’s r
[95% CI]
	, %
	, %

	1.5 T
	
	
	
	
	

	
	Whole brain
	0.984  0.011
(0.979/0.986/0.991)
	0.992  0.006
(0.990/0.993/0.995)
	0.990*
[0.989, 0.991]
	0.541  1.504
	1.165  1.093

	
	Left hippocampus
	0.813  0.026
(0.798/0.817/0.831)
	0.899  0.016
(0.888/0.899/0.908)
	0.972*
[0.967, 0.976]
	0.482  4.438
	3.194  3.115

	
	Right hippocampus
	0.809  0.026
(0.794/0.813/0.829)
	0.894  0.016
(0.885/0.897/0.906)
	0.964*
[0.958, 0.967]
	0.251  4.843
	3.750  3.071

	
	Whole hippocampus
	0.811  0.026
(0.796/0.816/0.830)
	0.895  0.016
(0.886/0.898/0.907)
	0.974*
[0.969, 0.977]
	0.323  3.799
	2.828  2.554

	3 T
	
	
	
	
	

	
	Whole brain
	0.973  0.021
(0.968/0.979/0.986)
	0.986  0.011
(0.984/0.990/0.993)
	0.969*
[0.959, 0.977]
	0.351  2.853
	1.865  2.183

	
	Left hippocampus
	0.812  0.020
(0.798/0.814/0.825)
	0.896  0.012
(0.888/0.897/0.904)
	0.944*
[0.933, 0.954]
	1.170  6.119
	4.936  3.794

	
	Right hippocampus
	0.811  0.023
(0.797/0.810/0.829)
	0.896  0.014
(0.887/0.895/0.907)
	0.905*
[0.886, 0.921]
	1.062  7.092
	5.544  4.541

	
	Whole hippocampus
	0.812  0.022
(0.797/0.812/0.827)
	0.896  0.014
(0.887/0.896/0.905)
	0.928*
[0.913,0.940]
	1.071  5.897
	4.613  3.821


*p < 0.001.
†Mean values are given with the standard deviation and the first, second, and third quartiles for JI, DSC, , and .
CI, confidence interval.


Supplementary Table B2
Linearity of the estimated atrophy rates using the intercept of the regression line from three time points (baseline, 12 months, and 24 months)*
	
	AD (n = 97)
	MCI (n = 186)
	CN (n = 130)

	KN-BSI whole brain
	
	
	

	
	Intercept
	0.437 [4.694, 3.821]
	0.266 [2.856, 3.389]
	0.710 [3.692, 2.272]

	
	p
	0.84
	0.87
	0.64

	KN-BSI hippocampus
	
	
	

	
	Intercept
	0.024 [0.107, 0.059]
	0.001 [0.067, 0.065]
	0.021 [0.075, 0.032]

	
	p
	0.57
	0.97
	0.43


*The table shows the intercepts [95% confidence interval] of the regression line fitted to the whole brain and hippocampal atrophy (ml) over 2 years.
AD, Alzheimer’s disease; MCI, mild cognitive impairment; CN, cognitively normal; KN-BSI, k-means normalized boundary shift integral.


Supplementary Table B3
Mean transitivity differences of the estimated atrophy rates using three time points (baseline, 12 months, and 24 months)*
	
	AD (n = 97)
	MCI (n = 186)
	CN (n = 130)

	KN-BSI whole brain
	
	
	

	
	, %
	0.441 [0.048, 0.834]
	0.257 [1.275, 0.761]
	0.819 [1.694,0.057]

	
	p
	0.03
	0.6
	0.07

	KN-BSI hippocampus
	
	
	

	
	, %
	4.157 [0.992, 7.322]
	2.816 [1.253, 6.886]
	0.408 [7.088, 6.272]

	
	p
	0.01
	0.2
	0.9


*Transitivity differences were defined as the difference between the two 24-month volume losses (one is derived from the sum of the atrophy changes between baseline and 12 months and between 12 months and 24 months, and the other is derived from the atrophy change between baseline and 24 months), divided by the average of these two volume losses. 95% confidence intervals are also reported in brackets.
AD, Alzheimer’s disease; MCI, mild cognitive impairment; CN, cognitively normal; KN-BSI, k-means normalized boundary shift integral.


Supplementary Table B4
Unsigned volume change and percent change  standard deviation [first quartile/second quartile/third quartile] between the back-to-back scans at baseline 
	
	AD (n = 146)
	MCI (n = 225)
	CN (n = 148)
	p

	Whole brain
	
	
	
	

	
	, ml
	2.034  1.678
[0.823/1.522/2.862]
	2.266  2.084
[0.759/1.637/3.161]
	2.140  2.580
[0.799/1.539/2.866]
	0.7

	
	, %
	0.203  0.167
[0.080/0.151/0.296]
	0.224  0.208
[0.073/0.162/0.303]
	0.198  0.233
[0.074/0.133/0.268]
	0.4

	Hippocampus
	
	
	
	

	
	, ml
	0.0498  0.0614
[0.0179/0.0373/0.0650]
	0.0482  0.0485
[0.0158/0.0361/0.0666]
	0.0567  0.0534
[0.0191/0.0419/0.0722]
	0.4

	
	, %
	0.804  1.115
[0.272/0.569/1.004]
	0.691  0.721
[0.235/0.509/0.987]
	0.689  0.632
[0.255/0.474/0.869]
	0.5


AD, Alzheimer’s disease; MCI, mild cognitive impairment; CN, cognitively normal.


Supplementary Table B5
Results of one-sample t-tests to assess volume and percent changes  standard deviation between the back-to-back scans at baseline*
	
	AD (n = 146)
	MCI (n = 225)
	CN (n = 148)

	Whole brain
	
	
	

	
	, ml
	0.099  2.640
[0.333, 0.530]
p = 0.7
	0.183  3.077
[0.587, 0.221]
p = 0.4
	0.050  3.356
[0.595, 0.495]
p = 0.9

	
	, %
	0.011  0.264
[0.032, 0.054]
p = 0.6
	0.019  0.306
[0.059, 0.021]
p = 0.4
	0.002  0.306
[0.051, 0.048]
p = 0.9

	Hippocampus
	
	
	

	
	, ml
	0.005  0.079
[0.018, 0.008]
p = 0.4
	0.004  0.068
[0.005, 0.013]
p = 0.4
	0.003  0.078
[0.010, 0.016]
p = 0.6

	
	, %
	0.096  1.373
[0.321, 0.128]
p = 0.4
	0.067  0.997
[0.064, 0.198]
p = 0.3
	0.053  0.935
[0.099, 0.205]
p = 0.5


*The estimated mean difference in volumes and rates [95% confidence interval] are shown.
AD, Alzheimer’s disease; MCI, mild cognitive impairment; CN, cognitively normal.


Supplementary Table B6
Estimated percentage atrophy rates from the time intervals of baseline and 12 months, baseline and 24 months, and 12 months and 24 months
	Time interval
	AD (n = 97)
	MCI (n = 186)
	CN (n = 130)
	MCI versus CN§
	AD versus CN§
	AD versus MCI§

	KN-BSI whole brain
	
	
	
	
	
	

	
	Baseline, ml
	989.6  92.9
	1021.0  100.3
	1093.0  105.6
	34.7*
[45.9, 23.4]
	40.1*
[53.2, 27.0]
	6.6
[17.9, 4.6]

	
	Volume change, ml
	
	
	
	
	
	

	
	
	Baseline and 12 months
	10.6  7.3
	8.1  7.6
	4.1  7.0
	3.8*
[5.6, 2.0]
	8.2*
[10.2, 6.1]
	2.7†
[4.6, 0.9]

	
	
	Baseline and 24 months
	21.3  11.2
	16.2  11.2
	8.8  8.2
	7.3*
[9.8, 4.8]
	14.5*
[17.4, 11.7]
	5.6*
[8.2, 2.9]

	
	
	12 months and 24 months
	10.8  7.2
	8.1  6.8
	4.7  6.2
	3.5*
[5.1, 1.9]
	6.4*
[8.4, 4.4]
	2.8†
[4.5, 1.1]

	
	Percent change, %
	
	
	
	
	
	

	
	
	Baseline and 12 months
	1.07  0.74
	0.80  0.74
	0.36  0.63
	0.40*
[0.57, 0.23]
	0.85*
[1.04, 0.65]
	0.28†
[0.46, 0.10]

	
	
	Baseline and 24 months
	2.17  1.15
	1.60  1.10
	0.80  0.72
	0.76*
[0.99, 0.52]
	1.51*
[1.78, 1.23]
	0.58*
[0.84, 0.31]

	
	
	12 months and 24 months
	1.11  0.75
	0.81  0.69
	0.44  0.57
	0.37*
[0.53, 0.21]
	0.67*
[0.87, 0.48]
	0.30*
[0.47, 0.13]

	KN-BSI hippocampus
	
	
	
	
	
	

	
	Baseline, ml
	6.255  0.951
	7.014  1.166
	8.199  0.894
	0.971*
[1.199, 0.743]
	1.632*
[1.869, 1.395]
	0.655*
[0.905, 0.405]

	
	Volume change, ml
	
	
	
	
	
	

	
	
	Baseline and 12 months
	0.205  0.136
	0.179  0.138
	0.047  0.128
	0.126*
[0.159, 0.093]
	0.167*
[0.206, 0.128]
	0.024
[0.058, 0.009]

	
	
	Baseline and 24 months
	0.435  0.221
	0.359  0.253
	0.118  0.141
	0.227*
[0.279, 0.175]
	0.342*
[0.394, 0.289]
	0.072‡
[0.130, 0.013]

	
	
	12 months and 24 months
	0.231  0.137
	0.180  0.159
	0.071  0.118
	0.101*
[0.136, 0.065]
	0.174*
[0.212, 0.137]
	0.047‡
[0.084, 0.010]

	
	Percent change, %
	
	
	
	
	
	

	
	
	Baseline and 12 months
	3.36  2.17
	2.73  2.14
	0.59  1.56
	2.07*
[2.54, 1.60]
	2.90*
[3.45, 2.35]
	0.59‡
[1.11, 0.07]

	
	
	Baseline and 24 months
	7.14  3.62
	5.46  3.92
	1.46  1.76
	3.82*
[4.60, 3.05]
	5.99*
[6.79, 5.19]
	1.55*
[2.46, 0.64]

	
	
	12 months and 24 months
	3.93  2.34
	2.84  2.54
	0.87  1.43
	1.85*
[2.38, 1.33]
	3.25*
[3.81, 2.70]
	1.00†
[1.59, 0.41]


*p < 0.001; † p < 0.01; ‡ p < 0.05
§Comparisons across groups exhibit the estimated mean difference in volumes or rates [95% CI] after adjustment for baseline intracranial volume, age, and gender.
AD, Alzheimer’s disease; MCI, mild cognitive impairment; CN, cognitively normal; KN-BSI, k-means normalized boundary shift integral.
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