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Abstract. Neurodegenerative diseases including Alzheimer’s disease are complex to tackle because of the complexity of the
brain, both in structure and function. Such complexity is reflected by the involvement of various brain regions and multiple
pathways in the etiology of neurodegenerative diseases that render single drug target approaches ineffective. Particularly in
the area of neurodegeneration, attention has been drawn to repurposing existing drugs with proven efficacy and safety profiles.
However, there is a lack of systematic analysis of the brain chemical space to predict the feasibility of repurposing strategies.
Using a mechanism-based, drug-target interaction modeling approach, we have identified promising drug candidates for
repositioning. Mechanistic cause-and-effect models consolidate relevant prior knowledge on drugs, targets, and pathways
from the scientific literature and integrate insights derived from experimental data. We demonstrate the power of this approach
by predicting two repositioning candidates for Alzheimer’s disease and one for amyotrophic lateral sclerosis.

Keywords: Alzheimer disease, amyotrophic lateral sclerosis, biological expression language, disease-drug modeling,
drug repositioning, neurodegenerative diseases

INTRODUCTION

The human brain represents the most complex
biological system, both structurally and function-
ally. Due to the inherent complexity, treating or even
alleviating brain diseases, particularly neurodegener-
ative diseases, is not trivial. Development of drugs
against neurodegenerative diseases has turned out to
be among the greatest challenges in the pharmaceu-
tical industry, as reflected by the high attrition rates
and withdrawal of high profiled pharmaceutical com-
panies from research on relevant indication areas [1].
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A recent survey of success rates of drugs in clinical
phases between 2003 and 2011 demonstrates that the
likelihood of approval for drug candidates in the cat-
egory of neurodegenerative diseases was only 9.8%,
mainly limited by efficacy issues [2]. In fact, older
empirical drug discovery methods are ignorant of
mechanisms of actions and modern target-based drug
discovery strategies follow a reductionist approach
that excessively focuses on drug-receptor interactions
and pharmacodynamics/pharmacokinetic properties
of the candidate molecule. Both approaches do not
consider the complex interplay of various biological
entities across multiple biological scales and largely
ignore the concept of polypharmacology [3].

Although new postgenomic technologies have pro-
duced a considerable amount of data at the molecular
level, there has been little progress in inferring disease

ISSN 1387-2877/17/$35.00 © 2017 – IOS Press and the authors. All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).

mailto:martin.hofmann-apitius@scai.fraunhofer.de


678 M.A.E.K. Emon et al. / Drug Repositioning by Knowledge Driven Model

mechanisms from these data. To overcome this
hurdle, computational modeling methods, particu-
larly model-driven systems analysis approaches, have
opened up the opportunity to interpret biological
datasets in a mechanistic context. Most of the rel-
evant published studies, particularly in the data-rich
field of cancer research, have used such methods to
model the mechanism drug response around one or
two signaling pathways using quantitative data and
very limited amount of prior knowledge from litera-
ture [4, 5]. However, in a data-scarce field of research
such as neurodegenerative diseases, aggregation of
prior knowledge plays a key role in unraveling the
puzzle of mechanisms underlying disease. This strat-
egy leads to a second category of methods that aim
at complementary integration of prior knowledge
and experimental data to increase the interpreta-
tion power. Biological Expression Language (BEL)
(http://www.openbel.org) is a comparably new and
state-of-the-art mechanistic modeling syntax that
offers a method to combine literature-derived ‘cause-
and-effect’ relationships and data-driven results into
a consolidated causal network model, which is
amenable to further analysis for mechanistic biologi-
cal interpretation. We have recently demonstrated the
benefit of BEL modeling approaches in the area of
neurodegenerative diseases by differential analysis of
the mechanisms of Alzheimer’s disease (AD) [7].

For example, in the context of AD where most
likely multiple mechanisms contribute to its pathol-
ogy, systematic approaches such as a BEL-based
mechanism-of-action discovery method instead of
conventional drug-target-centric methods are more
likely to deliver new, promising drug candidates.
BEL-based modeling can help to repurpose other,
already approved drugs with polypharmacological
properties from other indications, as many of the
drug targets are functionally pleiotropic and involved
in multiple diseases. Drug repositioning, defined
as the process of identifying and developing new
indications for existing drugs, is also known as
“drug redirecting”, “drug repurposing”, or “drug
reprofiling” [8]. Off label use of Food and Drug
Administration (FDA) approved drugs are very popu-
lar in many disease treatments; for instance, 50–75%
of prescribed drug therapies for cancer are counted
for off label uses [9]. One of the well-known exam-
ples for drug repositioning is sildenafil (Viagra),
which is used in erectile dysfunction, but was ini-
tially developed to treat angina [10]. Another benefit
of drug repositioning is that it offers very low risk, as
repositioning candidates have already passed through

several stages of clinical development. Therefore,
repositioning can offer a better risk-versus-reward
trade-off compared with other strategies in drug
development.

Motivated by the capabilities that come with the
cause-and-effect modeling approach, we have devel-
oped a causal model of drug-target interactions in
the context of NDD. We demonstrate how scattered
information existing in the scientific literature can
be mechanistically linked to support the detection of
putative drug action mechanisms in a defined disease
context.

METHODS

Construction of drug-target interaction model
around NDD

Using SCAIView (http://academia.scaiview.
com/), our literature mining environment [11], we
retrieved NDD related drugs based on PubMed
abstracts with the query ([MeSH Disease: “Neu-
rodegenerative Diseases”]) AND [Drug Names].
Next, we extracted related mechanistic informa-
tion of all the drugs that reached clinical trials
for NDDs using simple queries with the defined
disease context (NDD) and specific drug names.
For example, ([MeSH Disease: “Neurodegenerative
Diseases”]) AND [Drug Names: “Donepezil”]
has been performed to extract all PubMed articles
containing information related to the mode-of-action
of donepezil in the NDD context. We manually
extracted causal information from these articles
and coded into a BEL model. Then, we integrated
this model with our in-house AD model [7], to
achieve greater disease biology context for the
analysis. In order to enrich this primary model by
additional interactions for NDD related drugs, we
extracted all interactions related to these drugs such
as drug-drug interactions, target-target interactions,
and drug-target interactions that occur within the
brain from different drug interactions databases
including Comparative Toxicogenomics Database
(http://ctdbase.org/), Therapeutic Target Database
(http://bidd.nus.edu.sg/group/cjttd/), DrugBank
(http://www.drugbank.ca/), and STITCH database
(http://stitch.embl.de/). The purpose of this enrich-
ment was to integrate the biology context around
drug targets, in particular those causal relationships
that can be used to describe the physiological
mode-of-action of a drug-target combination.

http://www.openbel.org
http://academia.scaiview.com/
http://academia.scaiview.com/
http://ctdbase.org/
http://bidd.nus.edu.sg/group/cjttd/
http://www.drugbank.ca/
http://stitch.embl.de/


M.A.E.K. Emon et al. / Drug Repositioning by Knowledge Driven Model 679

Model analysis and visualization

We used DAVID (http://david.abcc.ncifcrf.gov), a
tool widely used for gene set enrichment analysis,
to find the most significant pathways and biological
processes associated to the drug targets in our model.
The Cytoscape software was used for subnetwork
extraction and visualization [12].

Target similarity approach

Using the query ([MeSH Disease: “Neurodegener-
ative Diseases”]) AND [Drug names] in SCAIView,
PubMed abstracts were searched for all drugs men-
tioned in the context of neurodegenerative diseases.
Targets of all NDD drugs were systematically com-
pared against targets of five approved drugs for AD,
and ranked based on the number of shared targets.
Hence, NDD drugs having the highest number of
shared targets with approved AD drugs were consid-
ered for further analysis in the context of AD. Only
those targets having direct interactions are considered
for this approach to avoid redundancy. Drugs from
these lists were then spotted in the AD-specific BEL-
based model for the prediction of similarity of their
mechanism of action with five approved AD drugs.

RESULTS

Analysis of NDD-specific cause-and-effect model

The retrieved mechanistic information from the
text mining tool SCAIView was manually inspected
and filtered for relevant information. Both litera-
ture and data driven information were encoded into
the NDD-specific BEL model and this model con-
tains 9645 nodes and 26,660 edges including 7,215
genes/proteins, 442 biological processes, 101 dis-
ease concepts, and 1,081 chemical entities, coded
into 34,403 BEL statements (Fig. 1). This model
is comprised of several types of interactions such
as drug-target interactions, drug-disease interactions,
target-target interactions, target-pathway interac-
tions, and drug-pathway interactions represented by
mainly ‘increases’, or ‘decreases’ types of relation-
ships in BEL.

GSEA for this model resulted in a list of signifi-
cant pathways, in which Alzheimer’s disease pathway
was on top of the list, followed by the Amyotrophic
Lateral Sclerosis (ALS) pathway (Table 1). Two ‘tar-
get sets’ associated with these two pathways were

selected from the model for further analyses with
the intention of the identification of potential drug
repurposing candidates from the model.

Model-based mechanistic analysis of drug
repositioning candidates

We systematically analyzed our model in order to
detect the mechanism of action of the drugs in the
context of their causal relationships with the avail-
able targets, pathways, and biological processes in
the NDD-specific mechanistic model. This sort of
analysis helps to find possible interaction similarities
between drugs of one indication to other indications
within the disease context. In this study, we were able
to predict three candidate drugs for drug repurposing
by using our enriched NDD-specific BEL model:

Donepezil as potential repurposing candidate
for ALS

Functional analysis of genes/proteins in our model
revealed the “ALS disease pathway” as the putative
shared pathway with AD, suggestive of evidence to
explore the possibility of repositioning drugs between
these two diseases. Further analysis of the ALS path-
way sub-network based on our model led to the
identification of the AD approved drug donepezil
as a potential candidate for repositioning. Donepezil
affects 26 proteins in the ALS mechanistic pathway
sub-network in our model.

Mutant SOD1 protein is believed to be a key player
in the pathology of ALS, which disturbs the normal
physiological conditions and initiates a number of
pathways that ultimately lead to the disease condition
[13]. Our mechanistic analysis reveals that donepezil
can prevent effects of mutant SOD1 by interfering
the activities of many proteins that are altered by
this mutation under ALS conditions. Mutant SOD1
protein in ALS mainly exerts its effect by three
mechanisms that ultimately lead to neuronal cell
death. Firstly, mutant SOD1 can exert its effect by
stimulating pro-apoptotic proteins BAD and BAX
and inhibiting the activity of anti-apoptotic proteins
BCL2 and BCL2L1, which leads to an increase in
cytochrome C (CYCS) release from the mitochon-
dria [14, 15]. The activation of BAD and BAX can
be also be achieved by recruiting TP53 proteins via
mutant SOD1 [16]. The released CYCS interacts and
forms a complex with APAF1 in the presence of ATP
and activates the key player of the cell death CASP9,
which subsequently activates CASP3 and initiates
cell death [17]. Secondly, mutant SOD1 can initiate

http://david.abcc.ncifcrf.gov
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Fig. 1. AD-specific BEL model enriched with drug-target interactions. The extract represents various interaction types for Riluzole such as
drug-protein, drug-bioprocess, and drug-pathology interactions encoded into the BEL model.

Table 1
Top Pathways from the gene set enrichment analysis (GESA)

Pathway Names Count p-value Bonferroni FDR

Alzheimer’s disease 30 2.02E–29 2.43E–27 2.32E–26
Amyotrophic lateral sclerosis (ALS) 24 7.85E–18 9.41E–16 9.01E–15
Pathways in cancer 50 1.98E–14 2.37E–12 2.27E–11
Prostate cancer 26 4.82E–14 5.78E–12 5.53E–11
MAPK signaling pathway 39 1.20E–10 1.43E–08 1.37E–07
Neurotrophin signaling pathway 26 1.46E–10 1.75E–08 1.67E–07
Bladder cancer 16 1.52E–10 1.83E–08 1.75E–07
Calcium signaling pathway 31 1.55E–10 1.86E–08 1.78E–07
Pancreatic cancer 20 2.04E–10 2.44E–08 2.34E–07
Toll-like receptor signaling pathway 23 4.13E–10 4.96E–08 4.75E–07

oxidative stress via P38 signaling pathway, which in
turn inhibits EAAT2, a regulator of the glutamate con-
centration [18]. The inhibition of EAAT2 produces

excess glutamate in synapses, which overstimulate
glutamate receptors and initiate high calcium influx
in the cytosol and produce reactive oxygen species
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Fig. 2. Model-based prediction of donepezil’s mode-of-action in the context of the ALS Pathway. The figure illustrates how donepezil
modifies the ALS shared pathway. Red lines represent perturbations in disease condition and green lines indicate normal physiological
processes, while blue lines indicate drug effects on targets. Arrows represent increased activities of entities while T lines stand for decreased
activities of entities and dotted lines represent intermediate interactions.

(ROS), which will ultimately activate CASP9 [19]. In
the third pathway, mutant SOD1 inhibits the activity
of XIAP, which regulates CASP9 in normal condi-
tion, ultimately leading to activation of CASP9 and
CASP3 and initiating neuronal death [20].

According to our model, donepezil can interact
with several significant targets in each of these three
routes of the ALS pathway. Donepezil can increase
the activity of BCL2, BCL2L1, and XIAP, which are
inhibited by mutant SOD1 in ALS. It is also able
to reduce the level of Ca2+ and ROS production in
oxidative stress and to inhibit the activation of CASP9
and CASP3 too (Fig. 2).

Epidemiological evidences suggest that early
treatment of donepezil in mild cognitive impair-
ment plays a neuroprotective role by preventing
neuronal cell death in the hippocampus, hence,
reduces the likelihood of disease progression to AD
[21, 22]. Interestingly, cognitive dysfunction and

inflammation in ALS are broadly associated with
morphological changes in the hippocampal region
due to excessive neuronal cell death [23–25]. There-
fore, based on mechanistic analysis of our model
along with the evidences presented; we can hypothe-
size that donepezil may be a promising repurposing
candidate for treating ALS and absolutely worthy of
further investigations.

Riluzole as potential repurposing candidate
for AD

Being motivated by the donepezil reposition
prospect for ALS, we investigated the likelihood of
repurposing any ALS drugs for AD with the help of
our model. Using our literature-mining environment
SCAIView, we found riluzole as the most prominent
and effective drug for ALS treatment until now, which
helps to prolong the survival of ALS patients. There-
fore, we inspected all interactions related to riluzole
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Fig. 3. Schematic representation of Riluzole mechanism of action and its neuroprotective Effect in the context of AD. Blue lines here
represent only the alternative effect of riluzole on these pathways. Purple boxes represent the direct protein target and green nodes represent
channels and receptors, which can be targeted by riluzole. Yellow nodes represent targeted ions/chemicals and red nodes represent biological
processes.

in our model to investigate its potential influences on
the AD pathology. Interestingly, our model was able
to bring together some mechanisms of actions of rilu-
zole, which interfere with some crucial mechanisms
of AD etiology as described below (Fig. 3).

Riluzole is usually known to prolong life longevity
of ALS patients by inhibiting Ca2+ and Na+ channel
activities and increasing K+ channel activity, which
result in decreased glutamate release in the cell [26].
Decreased glutamate concentration contributes to
TNF inactivation, which leads to inhibition of inflam-
matory processes in the brain. The model predicts that
riluzole can be beneficial in AD by interfering with
a number of mechanistic routes in AD pathology, as
follows: in addition to glutamate release inhibition,
riluzole can stop neuronal excitotoxicity by inhibiting
NMDA and Kainate binding to the NMDA receptor.
Riluzole can impede oxidative stress by inhibiting
lipid peroxidation via blocking PLA2 activity. Rilu-
zole can also suppress VEGFA and PRKC activities,
which are found to be upregulated in AD [27, 28]
and believed to be involved in tau phosphorylation
[29, 30]. Moreover, riluzole can inhibit pro-apoptotic
CASP3 and stimulate anti-apoptotic BCL2 protein
to prevent apoptosis [31]. Excessive N-methyl-D-
aspartate (NMDA) receptor activation is believed to
mediate calcium-dependent glutamate excitotoxicity

in different neurodegenerative disorders like AD
[32]. Our mechanistic model predicts that glutamate
release inhibitor riluzole can provide further ther-
apeutic benefits in AD when used in combination
with memantine, the first-in-class approved drug for
AD, by modifying excess transmission of synap-
tic glutamate. Additionally, an ongoing clinical trial
NCT01703117, where riluzole is being tested for
treating mild stage AD patients, provides further sup-
porting evidence for the mechanism hypothesis we
present here. Therefore, we feel encouraged to spec-
ulate that riluzole might have therapeutic benefits
for AD.

Identification of potential drugs for AD
by a target similarity approach

The mechanistic prediction capability of our model
inspired us to pursue this slightly different approach
for exploring the repositioning potential of drugs
present in our model. Analysis for finding common
targets between NDD drugs in our model and 5
approved AD drugs identified resveratrol and sim-
vastatin, as drugs that share the highest number of
targets with approved AD drugs. Interestingly, these
two drugs are already being proposed or investigated
for their therapeutics effects in AD (Supplementary
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Fig. 4. Distribution of common targets between cyclosporine and
five AD approved drugs. The pie chart shows the number of targets
that cyclosporine shares with 5 different approved AD drugs.

Table 1), which points to the legitimacy of our
approach to find drugs that can be used for similar
therapeutic approaches based on their target similar-
ity. To this end, we have selected another top-ranked
drug “cyclosporine”, from our target similarity list,
for further mechanistic analysis.

Cyclosporine mode-of-action analysis
in the context of AD

Cyclosporine is a drug against rheumatoid arthritis
and has common targets with all five AD approved
drugs (Fig. 4), but has not been previously considered
for its potential effects in AD.

Instead of being an immunosuppressive agent, the
NDD-specific BEL model predicts that cyclosporine
can exert neuroprotective effects in various alterna-
tive ways. Cyclosporine mainly inhibits immuno-
competent lymphocytes (T1 helper cells) in a specific
and reversible manner so that T1H cells decrease IL2
and IFNG production and release, which leads to
suppression of the immune system response partially
(Fig. 5).

According to the model prediction in Fig. 5,
cyclosporine can also repress the apoptosis of neu-
ronal cells by inhibiting Cyclophilin D, a member
of mitochondrial permeability transition complex
(MPTP) [33]. Cyclophilin D inhibition results in
regulation of the MPTP complex and decreased
Cytochrome C (CYCS) release from mitochondria
[34, 35]. This inhibition of CYCS prevents CASP9
and CASP3 mediated apoptotic cell death [20]. The
apoptosis inhibition through prevention of CYCS
release is also facilitated by the inhibitory effects
of cyclosporine on the anti-apoptotic protein BCL2,

pro-apoptotic BAD, BAX, and also AKT [36, 37].
Cyclosporine activity inhibits BAX and BAD via
stimulation of AKT activity [38], which in turn
inhibits GSK3� that phosphorylates and activates
BAX [39]. It also inhibits calcineurin, which results in
repression of inflammation [40] and down-regulation
of ACHE and BCHE, potentially via increasing AKT
activity [41, 42], while AKT degeneration leads
to increased ACHE and BCHE levels in AD [32].
There is also evidence that cyclosporine decreases
ABCB1 and ABCC2 activity [38, 43], which has been
reported to increase amyloid-� (A�) accumulation in
the brain of AD patients [44].

Further support for this hypothesis was provided
by a number of patents that explain the putative
mechanisms we reconstructed for the potential role
of cyclosporine in AD. The claims sections of these
patents state clearly, that apart from immunosuppres-
sive activity, cyclosporines could also be effective to
improve disease condition by interfering cyclophilins
activity and A� accumulation. According to US
Patents US6583265 and US7538084, cyclosporines
can have therapeutic effect in AD by inhibiting the
catalytic activity of cyclophilins. A European Patent,
EP1893226, recommends the use of cyclosporine
to treat AD by preventing A� accumulation in the
brain in addition to their cyclophilin inhibition activ-
ity. Therefore, cyclosporine can be proposed as a
multipotent therapeutic agent for AD treatment and
this hypothesis bears potential for further clinical
investigation.

DISCUSSION

Structural and functional complexity of the human
brain has posed serious challenges to the develop-
ment of novel therapeutics against neurodegenerative
diseases. Capturing this complexity across different
molecular entity types and various biological scales
can be assisted by computational systems modeling
approaches that aim at linking molecular mecha-
nisms to clinical phenotypes. Particularly, in complex
diseases like AD, integrating all the entities and bio-
processes involved in the disease into consolidated,
cause-and-effect models bears some potential to shed
light on interdependent processes and pathways that
remain unnoticed in the shadow of disease complex-
ity otherwise. In fact, representing a priori relevant
knowledge in the form of causal relationship mod-
els confers enhanced interpretation power that is well
suited to back up experimental data and generate new
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Fig. 5. Neuroprotective effects of cyclosporine in the context of AD. This cartoon demonstrates the mode of action of cyclosporine explicitly.
The blue lines here represent the alternative effect of cyclosporine on these different pathways. Cyclosporine mainly inhibits T helper cells
to suppress the immune system. Cyclosporine found to affect neuronal cell death by inhibiting cyclophilin D that prevents the cytochrome
C release and CASP9, CASP3 activation. Cyclosporine can also down regulate ACHE and BCHE which can provide improved cholinergic
function. Moreover, cyclosporine might be useful to prevent amyloid beta accumulation by preventing ABCC2 and ABCB1 proteins.

testable hypotheses. Once such mechanistic, context-
sensitive models are available, the molecular space
can be enriched for chemical entities to facilitate pre-
diction of mode-of-action for drugs and biomarkers.

As demonstrated in this work, disease-specific
mechanistic models that are enriched with chemical
entities can be used not only to explain the physio-
logical action mode of approved drugs or candidate
drugs, but also to explore the multi-targeting nature of
potent compounds and predict the suitability of exist-
ing drugs for repurposing in another indication area as
well. Based on their role in our cause-and-effect drug-
target network, two FDA approved drugs, riluzole and
cyclosporine, may be repurposing candidates for AD.
Another FDA approved drug, donepezil, could be a
potential repurposing candidate for ALS. Although
our inferences are based upon the aggregated a priori
knowledge consolidated in BEL models, further func-
tional or translational validation can be provided by
integration of experimental data such as gene expres-
sion values. Cross-validation of our models with the
signature-based results of Siavelis et al. [14] indi-
cates that rilozule and cyclosporine belong to PKC
and GSK3 inhibitor classes of repurposing candidates
for AD.

Our approach of using drugs as molecular
probes supports the notion that integration of
literature-driven information into a formalized model
can be instrumental for prediction, analysis, and

interpretation of possible biological mechanisms
underlying a disease process. Using this approach, we
could demonstrate that potential new roles of existing
approved drugs can be predicted based on a mean-
ingful functional context. Nevertheless, BEL based
mechanistic models, of course, cannot be considered
as a replacement for any structure-activity relation-
ship (SAR) model based drug discovery approach. On
the contrary, the BEL model presented here merely
provides a common platform to put drug-target infor-
mation into a functional, mechanistic context that
focuses on causes and effects and allows for predic-
tion of the repurposing potential of drugs.

It should be noted here, however, that computa-
tional models like the ones presented in this study
assist hypothesis generation and candidate prioritiza-
tion. Indeed, these models are merely precursors to
clinical and laboratory research findings so that pre-
dicted candidates enriched with supporting evidence
should be ultimately confirmed by experimental and
clinical studies. But such prioritized candidates at this
stage can guide future validation efforts in experimen-
tal research settings with lower decision-making and
investment risk.

CONCLUSION

Failure of conventional drug discovery and devel-
opment approaches to deliver new drugs for complex
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disease like, AD or ALS, has proven that the “one
size fits all” paradigm can no longer hold true for
chronic and complex idiopathic diseases, particularly
in the area of neurodegenerative diseases. This is
because of the inherent multitargeting nature of ther-
apeutic agents that modify often unknown pathways
with unwanted effects. However, this property can be
used positively for repositioning of already approved
drugs if the mechanism of action for these drugs
can be shown in the context of other diseases. Thus,
consolidating the mechanistic information within
causal computational models lends support to sci-
entists and decision makers to substantiate their
hypotheses based on collective information from both
knowledge- and data-driven approaches. It is fore-
seen that, with the consistent growth of published
knowledge and advent of big data, such mechanistic
models will play an increasingly important role in the
future generation of drug discovery and repurposing
pipelines.
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[41] Herink J, Krejčová G, Bajgar J, Svoboda Z, Květina J,
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