
Journal of Alzheimer’s Disease 51 (2016) 657–669
DOI 10.3233/JAD-151075
IOS Press

657

Hypothesis

Do Microglia Default on Network
Maintenance in Alzheimer’s Disease?
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Abstract. Although the cause of Alzheimer’s disease (AD) remains unknown, a number of new findings suggest that the
immune system may play a critical role in the early stages of the disease. Genome-wide association studies have identified
a wide array of risk-associated genes for AD, many of which are associated with abnormal functioning of immune cells.
Microglia are the brain’s immune cells. They play an important role in maintaining the brain’s extracellular environment,
including clearance of aggregated proteins such as amyloid-� (A�). Recent studies suggest that microglia play a more active
role in the brain than initially considered. Specifically, microglia provide trophic support to neurons and also regulate synapses.
Microglial regulation of neuronal activity may have important consequences for AD. In this article we review the function
of microglia in AD and examine the possible relationship between microglial dysfunction and network abnormalities, which
occur very early in disease pathogenesis.

Keywords: Microglia, network abnormalities, neural networks, phagocytosis, synapse pruning

INTRODUCTION

Alzheimer’s disease (AD) is a progressive, neu-
rodegenerative disease that primarily affects the
regions of the brain that are associated with high func-
tioning. AD is characterized by progressive dementia
that begins with mood changes, memory loss, and
reduced cognition [1]. The primary pathogenic pro-
cess in AD is the accumulation of amyloid-� protein
(A�) [1–3]. A� aggregates into extracellular amyloid
plaques that are a hallmark pathological feature of
the disease. A� is cleaved from the larger amyloid-�
protein precursor (A�PP) [4–6]. However, it remains
unclear why A�, a protein fragment normally only
present in small amounts within the brain, is able to
accumulate in the AD brain and cause toxicity. In

1These authors contributed equally to this work.
∗Correspondence to: Dr. Katherine Southam, Menzies Institute

for Medical Research, University of Tasmania, 17 Liverpool Street,
Hobart, TAS 7000 Australia. Tel.: +61 3 6226 4834; Fax: +61 3
6226 7704; E-mail: Katherine.Southam@utas.edu.au.

a small percentage (5%) of AD sufferers, the cause
of the disease is genetic. Inherited mutations within
the A�PP gene itself appear to predispose the protein
to A� production [7]. Mutations within the prese-
nilin 1 and 2 genes, encoding proteins that form part
of the secretase complex that cleaves the A� pep-
tide from A�PP, also result in inherited AD due to
accumulations of A� [8–11].

The cause of AD is largely unknown for the
remaining 95% of cases of sporadic AD, which typi-
cally develops a decade or two later than familial AD
[12]. However, the degenerative processes are nearly
identical between the two forms of the disease. There-
fore, it is reasonable to assume that the underlying
disease process is the same between the two forms of
the disease. Genetic studies have identified a number
of genetic risk factors for AD. An early discovery was
that allelic variants of apolipoprotein E (ApoE) carry
inherently different risks of AD [13–15]. In particular,
the �4 allele carries a high risk of AD, with risk of dis-
ease occurring in a dose-dependent manner based on
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zygosity. The ApoE �4 allele is associated with
increased A� aggregation, reduced lipid transport,
and reduced receptor-mediated A� clearance [16].
Interestingly, ApoE is predominantly expressed by
non-neuronal cells—astrocytes and microglia, rather
than by neurons [17]. These findings suggested that
although clinical AD manifests from neuronal degen-
eration, other cells of the central nervous system
(CNS) may be intimately involved in pathogenesis
or disease progression.

More recently, genome-wide association studies
(GWAS) have been used to identify a large number of
risk genes for AD. In 2013, a mutation in the trigger-
ing receptor expressed on myeloid cells 2 (TREM2)
was identified [18, 19]. TREM2 is almost exclusively
expressed by immune cells within the brain, and
mutations to TREM2 are associated with decreased
phagocytosis and an increased pro-inflammatory
reactive phenotype. Individuals heterozygous for
TREM2 mutations have a high risk of developing AD,
however the mutation is rare [18, 19]. Additional AD
risk factor genes that have been identified include
genes associated with lipid processing, endocyto-
sis, and the immune response, which have recently
been covered in excellent reviews [20, 21]. The com-
mon unifying feature of these immune-associated
mutations is that they are proposed to interfere with
microglial function, in particular, the efficiency of
phagocytosis [20]. Specifically, mutations to comple-
ment receptor 1 (CR1) and cluster of differentiation
33 (CD33) can result in reduced activity of the com-
plement system and reduced phagocytosis [22, 23].
Phosphatidylinositol binding clathrin assembly pro-
tein (PICALM) and bridging integrator 1 (BIN1)
mutations affect clathrin-mediated endocytosis [24,
25] and SORL1 mutations reduce intracellular traf-
ficking of A�PP [26]. The function of some of these
proteins in relation to phagocytosis is discussed later
in this review. The identification of such a wide array
of risk genes associated with reduced immune cell
function now leads us to believe that abnormal func-
tioning of immune cells may play a more important
role in the early stages of disease than previously
considered.

MICROGLIA

Microglia are the immune cells of the CNS and
account for approximately 10% of the CNS cell
population, with regional variation in density [27, 28].
During embryonic development, microglia originate

from yolk sac progenitor cells that migrate into the
developing CNS during early embryogenesis [29,30].
Following construction of the blood-brain barrier
(BBB), microglia are renewed by local turnover
[31]. In the healthy brain, microglia actively support
neurons through the release of insulin-like growth
factor 1, nerve growth factor, ciliary neurotrophic fac-
tor, and brain-derived neurotrophic factor (BDNF)
[32–34]. Microglia also provide indirect support to
neurons by clearance of debris to maintain the extra-
cellular environment, and phagocytosis of apoptotic
cells to facilitate neurogenesis [35, 36]. In the adult
brain, microglia coordinate much of their activity
with astrocytes and activate in response to similar
stimuli [37, 38]. Dysfunctional signaling between
microglia and astrocytes often results in chronic
inflammation, a characteristic of many neurodegen-
erative diseases [39, 40].

Historically, it has been thought that microglia
‘rest’ when not responding to inflammatory stim-
uli or damage [41, 42]. However, this notion is
being increasingly recognized as inaccurate [43].
When not involved in active inflammatory signaling,
microglia constantly patrol the neuropil by exten-
sion and retraction of their finely branched processes
[44]. Microglial activation is often broadly clas-
sified into two states; pro-inflammatory (M1) or
anti-inflammatory (M2) [36, 45], based on simi-
lar phenotypes in peripheral macrophages [46]. M1
activated microglia are characterized by increased
expression of pro-inflammatory mediators and
cytokines, including inducible nitric oxide syn-
thase, tumor necrosis factor-�, and interleukin-1�,
often under the control of the transcription factor
nuclear factor-κB [45]. Pro-inflammatory microglia
rapidly retract their processes and adopt an amoe-
boid morphology and often migrate closer to the
site of injury [47]. Anti-inflammatory M2 activa-
tion of microglia, often referred to as alternative
activation, represents the other side of microglial
behavior. Anti-inflammatory activation is character-
ized by increased expression of cytokines including
arginase 1 and interleukin-10, and is associated with
increased ramification of processes [45]. The polar-
ization of microglia into M1 or M2 throughout the
brain is well characterized, especially in neurode-
generative diseases [48]. In the AD brain, microglia
expressing markers of M1 activation are typically
localized to brain regions such as the hippocampus
that are most heavily affected in the disease [49].
However, it is important to note that M1 and M2 clas-
sifications of microglia may over-simplify microglial
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phenotypes and may only represent the extremes of
microglial activation [50]. It has been more recently
proposed that microglia likely occupy a continuum
between these phenotypes [39, 51].

Do microglia have multiple roles in AD?

Classical pro-inflammatory activation of microglia
has long been associated with AD [39, 49]. Samples
taken from late-stage AD brains contain charac-
teristic signs of inflammation, including amoeboid
morphology of microglia, high levels of pro-
inflammatory cytokines in the cerebrospinal fluid,
and evidence of neuronal damage due to chronic
exposure to pro-inflammatory cytokines and oxida-
tive stress [52, 53]. The cause of this inflammation
may be in response to direct toxicity of A� to
neurons resulting in activation of nearby microglia
and astrocytes [53, 54]. However, A� may also
induce inflammatory activation of microglia and
astrocytes. Activated immune cells are typically
present surrounding amyloid plaques [55–57], with
such peri-plaque cells exhibiting strong evidence of
pro-inflammatory activation [56, 58–60]. The pres-
ence of undigested A� particles within these activated
microglia may suggest that the A� peptide itself is
a pro-inflammatory signal for microglia [61–64]. In
vitro experiments provide supporting evidence for the
in vivo studies, with A� promoting pro-inflammatory
microglial activation [65, 66], and also acting as a
potent chemotactic signal [67].

However, it is important to note that although
widespread inflammation is characteristic of late-
stage AD, it remains unclear what role inflammation
could play in early stages of the disease. Some evi-
dence suggests that reducing inflammation through
the long-term use of some non-steroidal anti-
inflammatory drugs (NSAIDs) can reduce the risk of
AD [68]. However, these findings have not yet been
verified in clinical trials [69, 70]. Little is understood
about how NSAIDs and related compounds affect
the delicate balance of pro- versus anti-inflammatory
microglial activity within the brain. Although there is
considerable evidence to suggest that chronic inflam-
mation may contribute to pathology in the later
stages of AD, it is important to note that inflam-
mation normally only represents a small aspect of
microglial function. The non-inflammatory functions
of microglia may play a more important role in early
disease; specifically, microglial functions relating to
maintenance of the CNS.

Phagocytosis: A vital role of microglia that may
be lost in AD

Phagocytosis is a complex process involving the
recognition, engulfment, and degradation of parti-
cles larger than 0.5 �m [71]. Although most cell
types have the capacity to phagocytose, it is normally
the role of highly specialized cells, predominantly
those of the immune cell lineage [72]. Within the
brain, microglia perform the bulk of phagocyto-
sis, although astrocytes also contribute [37]. Many
peripheral phagocytic cells have a preferred target
for phagocytosis; however, microglia are most like
their peripheral cousins, macrophages, and readily
ingest a wide array of structures, including dead cells,
invading pathogens and extracellular proteins [45].

Microglial phagocytosis is triggered by a number
of stimuli, for which microglia express a wide vari-
ety of receptors. Release of adenosine triphosphate
(ATP) from apoptotic or damaged cells is a potent
signal for microglial phagocytosis, triggering the
purinergic receptor P2Y2 [73]. Similarly, fractalkine,
recognized by the microglial receptor CX3CR1, is
released by damaged cells and promotes microglial
phagocytosis [74]. Microglia also express a wide
array of ‘scavenging receptors’, defined by having
a relatively broad range of ligand targets [75], and
receptors for various components of the complement
system, including complement C1q and complement
C3, the receptor for which is known by many names
including CR3, CD11b, MAC1, and integrin �m [36].
A number of scavenging receptors have been pro-
posed to interact with A� peptides, including receptor
for advanced glycation products, macrophage scav-
enger receptor with collagenous structure, scavenger
receptor A-1 (SCARA-1), SCARB-1 and SCARB-
2/CD36 [76–80]. However, it is important to note that
these receptors also interact with a broad range of
other phagocytic ligands, suggesting that microglia
detect A� in a non-specific manner.

Phagocytosis of A� by immune cells, includ-
ing microglia, is proposed to assist with clearance
of A� from the brain [81]. Other mechanisms
of A� clearance include extracellular proteolysis
by A�-degrading enzyme and neprilysin, astrocyte-
mediated interstitial bulk-flow [81], and potentially
direct clearance into the lymphatic system [82].
Microglia in AD appear to have a reduced capac-
ity for A� clearance which is likely to result in
additional accumulation of A� [83]. The TREM2
mutation that increases the risk of AD reduces the
normal inhibitory effect of TREM2 on microglial
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activation and thereby increases microglial pro-
inflammatory signaling [84, 85]. This leads to
reduced A� uptake. Similarly, mutations in comple-
ment receptor CR1 and CD33 are associated with
an increased risk of AD [86, 87]. These mutations
are proposed to cause a loss of receptor activity,
thereby reducing phagocytosis of their respective
ligands. Other putative genetic risk alleles for AD
include the lipid transporter ATP-binding cassette
subfamily A member 7 (ABCA7) and interleukin-1
receptor accessory protein (IL-1RAP) [88, 89]. Muta-
tions in ABCA7 can cause a loss of receptor activity,
resulting in reduced microglial phagocytic func-
tion [88, 90]. Similarly, an intronic single-nucleotide
polymorphism identified in IL-1RAP is proposed to
reduce expression of IL-1RAP, resulting in reduced
microglial activation and phagocytosis [89]. The
activity of microglia in the CNS is affected by a
wide range of stimuli and is also dependent on the
composition and function of surface receptors. These
results highlight how minor changes to a number of
microglial receptors have major implications in the
context of disease and lead us to consider how these
changes to microglial function increase the risk of
AD, a disease that is characterized not only by accu-
mulation of A�, but also synapse loss and neuronal
dysfunction.

SYNAPTIC PRUNING: MICROGLIA CAN
REGULATE NETWORK ACTIVITY

Recently, a new function has been proposed for
microglia. A number of studies have provided evi-
dence that microglia prune synapses throughout life.
Microglia are known to remove extraneous synapses
during development to ensure that only meaningful
connections remain [43]. It was, however, thought
that differentiated astrocytes performed the major-
ity of synaptic pruning in the adult brain [91]. The
discovery that microglial processes are constantly
active within the brain and are often positioned near
synapses raised the question of whether microglial
synaptic pruning continued throughout life [44, 47,
92–94]. This question was answered in 2014 in
a study that demonstrated that microglia do prune
synapses into adulthood, and that this activity is
important for normal brain function [95]. These find-
ings supported those found a year earlier in a study
reporting that ablation of microglia from brain slices
increases synapse density and results in abnormal
firing of hippocampal neurons [96].

Astrocytes have long been known to have impor-
tant roles in synaptic maintenance and are considered
to be as much a part of the synapse as pre- and post-
synaptic neurons. Hence the term ‘tripartite synapse’
was coined for the structure [97]. Microglia are
increasingly considered to be equally important at
the synaptic structure, forming a key component
of a ‘quadripartite synapse’, comprising pre- and
post-synaptic neurons, astrocytes, and microglia [98].
Microglial synaptic pruning is proposed to occur
alongside astrocytic synaptic pruning and occurs
in response to astrocyte-derived signals including
transforming growth factor-� and the complement
proteins C1q and C3 [98–101].

Microglia prune synapses as an extension of
normal phagocytosis. Synapses to be cleared are
tagged with complement proteins [101], expressed
by the neurons under the direction of astrocytes [99].
Microglial synaptic pruning is dependent on neu-
ronal activity [101]. Active synapses are protected by
expression of C1q on the membrane, whereas quiet
synapses express C3 that triggers C3 cleavage and
binding of C3 to CR3 on microglia. CR3 activation
results in microglial phagocytosis of the synapse [99,
101]. Deletion of complement C1q or C3 in mice
reduces synaptic loss during postnatal development,
resulting in increased synaptic density within the
cortex and hippocampus [102, 103], an effect that
lasts with aging [104]. Conversely, activation of CR3
during inflammation and hypoxia induces long-term
depression in the hippocampus [105]. These findings
highlight the importance of complement regulation
for normal synaptic maintenance; however there are
additional mechanisms that may also be utilized by
microglia to regulate synapses. Neuronally-derived
fractalkine appears to regulate synaptic strength inde-
pendently of electrical activity. Selective activation
of the fractalkine receptor CX3CR1 increases synap-
tic strength [106], whereas deficiency in CX3CR1
results in impaired long-term potentiation and
reduced hippocampal synaptic plasticity [107].

Multiple elements of the complement cascade are
expressed in AD brains [108]. The complement sys-
tem has also been implicated in AD because a number
of risk mutations involve complement genes, includ-
ing CR1 and CD33. Current findings suggest that
CR1 mutations are associated with reduced inhibition
of phagocytosis [109]. Reducing C3 in AD transgenic
mice reduces microgliosis and increases cerebral A�
load [110]. Elevated complement is also a feature of
epilepsy, Huntington’s disease, Parkinson’s disease,
and multiple sclerosis [111, 112].
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Although the use of the complement system
appears to be the primary mechanism for synap-
tic pruning, other signaling pathways have also
been described. Neuronal expression of PirB, a
major histocompatibility class I receptor, controls
synaptic plasticity by promoting synaptic pruning
by microglia [113, 114]. Interestingly, A� is pro-
posed to activate PirB resulting in increased synaptic
pruning [115], an interaction that may be respon-
sive to pharmacological intervention. Furthermore,
microglial release of BDNF promotes synaptic prun-
ing through the induction of tyrosine receptor kinase
B autophosphorylation and downstream signaling
[116]. Specific depletion of BDNF expression in
microglia results in learning and memory impair-
ments [116]. Circadian expression of cathepsin S,
a microglial-specific lysosomal cysteine protease,
is associated with modulation of cortical neuron
activity [117]. Increased cathepsin S secretion by
microglia during the awake phase of mice (dark
hours) reduces synaptic neurotransmission by corti-
cal neurons to strengthen synapses [117]. Ablation
of cathepsin S induces hyperexcitability and loss
of coordinated neuronal activity. A common thread
to these findings is that disruption of microglial
signaling either through deletion of microglia or
impairment of key receptors, results in similar func-
tional deficits. In particular, microglial abnormalities
dramatically impair normal hippocampal function,
which may have direct consequences for the coor-
dination of neuronal activity such as during memory
consolidation.

Altered microglial behavior may underlie altered
neuronal firing in AD

Although we lack information about how
microglia may affect network function in early AD,
there is evidence to suggest that altering microglial
function has direct consequences for neuronal activ-
ity (Fig. 1). Targeted deletion of key microglial
receptors reduces the capacity of the mice to learn
tasks, specifically those involving hippocampal learn-
ing [107, 116]. Reduced developmental synaptic
pruning in mice results in overall decreased func-
tional connectivity in the brain and autism-like
behaviors including deficits in social interaction and
increased repetitive activity [118]. These behavioral
effects occur due to reduced functional brain con-
nectivity and weak synaptic neurotransmission as a
result of reduced microglial pruning of synapses. In
hippocampal tissue slices, depletion of microglia is
followed by increased synaptic density and excitatory
postsynaptic currents, reversible upon replenishment
of cultures with microglia [96].

Altering microglial activity by exposure to pro-
inflammatory stimuli results in changes to synaptic
activity. Pro-inflammatory activation of microglia
with lipopolysaccharide (LPS) in hippocampal slice
preparations results in a rapid increase in excita-
tory postsynaptic currents in neurons, mediated by
astrocytic activation [38]. Inflammation has also
been shown to trigger a regional-specific increase
in neuronal spines, specifically thin dendritic spines
that are associated with plasticity [119]. Microglia

Fig. 1. Increased microglial reactivity or increased protein clearance may reduce microglial synaptic maintenance. (1) Microglia monitor and
prune CNS synapses throughout life in conjunction with peri-synaptic astrocytes. Microglia also phagocytose small amounts of extracellular
protein such as A�, although it is not yet known whether microglia perform both phagocytic tasks simultaneously. Dysfunctional microglial
activity at the synapse may produce one of the two following scenarios. (2) Increased pro-inflammatory activation of microglia results in
increased production of inflammatory cytokines, co-activating peri-synaptic astrocytes, resulting in neuronal excitability and degeneration.
(3) Alternatively, increased demands on microglial phagocytosis, such as elevated A� production, may reduce synaptic maintenance and
result in increased A� at the synapse.
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also increase release of BDNF following LPS expo-
sure [120]. Activation of microglial CR3 during
hypoxia has been shown to increase hippocam-
pal long-term depression via nicotinamide adenine
dinucleotide phosphate (NADPH) signaling and
internalization of �-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) GluR2 subunits
[105]. These findings suggest that activation of
microglia can alter both synapses and neuronal
activity.

Altered neuronal activity is an early phenomenon
in AD

Increasingly, altered network activity is considered
a feature of AD, specifically, early dysfunction within
the default mode network (DMN). The DMN coor-
dinates introspective thought such as day-dreaming
and self-referential thought and is normally deacti-
vated during focused thought on external tasks [121,
122]. Imaging of white matter using diffusion tensor
imaging [123] or measurement of neuronal activ-
ity through glucose metabolism [124] demonstrates
that the DMN is consistently hypoactive in AD.
Such DMN hypoactivity may represent a diagnos-
tic marker for AD [125]. As AD worsens, network
abnormalities progress through to interconnected
regions including the hippocampus, dorsal attention
network, salience network, sensorimotor network,
and executive control network [126]. These net-

Fig. 2. A model for microglial dysfunction that occurs downstream
of A�, resulting in network dysfunction progressing to AD.

work abnormalities closely correlate with increasing
symptom severity [126]. A small number of studies
have demonstrated that these regions that are specif-
ically affected in AD are also characterized by an
increase in activated microglia [127, 128]. It must be
noted that some of the changes in neuronal activity
that are seen in AD may be due to synaptic tox-
icity of A� [129]. A� has been demonstrated to
cause damage to synapses and predispose neurons
to hyperexcitability and excitotoxicity [129, 130].
Specifically, A� binds to subunits of AMPA and
N-methyl-D-aspartate (NMDA) excitatory receptors
and causes increased calcium influx into the neu-
ron [131–133]. A� may reduce inhibitory synapses
[134], and may directly perturb astrocyte-neuron sig-
naling, on which neurons are typically heavily reliant
[135].

The cause of DMN hypoactivity in AD is not yet
clear; however studies performed in cohorts that are
genetically predisposed to AD suggest that DMN
hypoactivity is preceded by a period of hyperactiv-
ity and increased functional connectivity [123, 136],
often manifesting as an absence of normal DMN
deactivation during external tasks [137–140]. DMN
hyperactivity may interfere with hippocampal mem-
ory encoding, leading to the memory deficits that are
present in mild cognitive impairment [141, 142]. It
has been proposed that hippocampal hyperexcitabil-
ity in AD may develop as a protective mechanism
against increased input from the DMN [142–144].
As AD progresses, the initial hyperexcitability of the
DMN and hippocampus may result in hypoactivity
due to exhaustion of compensatory mechanisms [123,
136]. Evidence from both transgenic AD mice and
longitudinal human studies supports an exhaustion
model of hyperactivation leading to later hypoac-
tivation [143, 145–147]. Interestingly, a number of
studies report a lower incidence of AD among those
who regularly practice meditation which specifically
‘calms’ the DMN [148].

CONCLUSIONS

Our understanding of AD as a disease is chang-
ing. Historically considered to be primarily a disease
of neuronal degeneration, this neurocentric view
has widened to encompass non-neuronal cells such
as astrocytes into our understanding of the disease
process and pathogenesis. A proposed model for
microglia in AD is shown in Fig. 2. Microglia per-
form a wide range of functions in the CNS and
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although this includes induction of an inflammatory
reaction in response to damage, they also have criti-
cal roles for maintaining normal function in the brain.
Recent evidence shows that microglia regulate neu-
ronal activity through synaptic pruning throughout
life as an extension on their normal phagocytosis
behavior. The discovery of a large number of AD
risk genes associated with reduced immune cell func-
tion suggests that perturbed microglial phagocytosis
could lead to AD. In our model, altered microglial
phagocytosis of synapses results in network dys-
function and onset of AD, occurring downstream
of A�.

The immune system and microglia represent a
novel target for intervention in AD. Importantly, a
large number of anti-inflammatory drugs are already
in use for other conditions. What is important to
know at this stage is exactly how to best target
immune cell function. The studies outlined here
provide evidence that an indiscriminate dampen-
ing down of all microglial activity may result in a
worse outcome for individuals by suppressing nor-
mal microglial regulatory functions. We currently do
not know whether future microglial-based therapies
should focus on reducing chronic inflammation or
conversely, whether they should be aimed at boost-
ing microglial phagocytosis. It is also likely that
future treatment strategies may use a combination of
approaches to target A�, immune cell phagocytosis
and network activity. An increasing view in the AD
field is that any drug or therapy needs to be provided
very early in the disease process to maximize its ben-
eficial effects. Although we are currently unable to
effectively target those at risk of AD at such an early
stage, advances in neuroimaging for subtle changes
in network activity, or in assays for immune cell func-
tion, may provide new avenues for identification of
early damage and risk of disease.
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