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Abstract.

Background: Multiple neurological disorders including Alzheimer’s disease (AD), mesial temporal sclerosis, and mild traumatic
brain injury manifest with volume loss on brain MRI. Subtle volume loss is particularly seen early in AD. While prior research
has demonstrated the value of this additional information from quantitative neuroimaging, very few applications have been
approved for clinical use. Here we describe a US FDA cleared software program, Neuroreader™, for assessment of clinical
hippocampal volume on brain MRI.

Objective: To present the validation of hippocampal volumetrics on a clinical software program.

Method: Subjects were drawn (n = 99) from the Alzheimer Disease Neuroimaging Initiative study. Volumetric brain MR imaging
was acquired in both 1.5 T (n=59) and 3.0 T (n=40) scanners in participants with manual hippocampal segmentation. Fully
automated hippocampal segmentation and measurement was done using a multiple atlas approach. The Dice Similarity Coefficient
(DSC) measured the level of spatial overlap between Neuroreader™ and gold standard manual segmentation from 0 to 1 with
0 denoting no overlap and 1 representing complete agreement. DSC comparisons between 1.5 T and 3.0 T scanners were done
using standard independent samples 7-tests.

Results: In the bilateral hippocampus, mean DSC was 0.87 with a range of 0.78—0.91 (right hippocampus) and 0.76-0.91 (left
hippocampus). Automated segmentation agreement with manual segmentation was essentially equivalent at 1.5 T (DSC =0.879)
versus 3.0 T (DSC=0.872).

Conclusion: This work provides a description and validation of a software program that can be applied in measuring hippocampal
volume, a biomarker that is frequently abnormal in AD and other neurological disorders.
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INTRODUCTION brain disorders including Alzheimer’s disease (AD),

depression, schizophrenia, traumatic brain injury, post-

The hippocampus is a vital temporal lobe struc-
ture in memory [1, 2] and loses volume in multiple
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traumatic stress disorder, and mesial temporal sclerosis
from temporal lobe epilepsy [3-7]. There are there-
fore multiple diseases in which clinicians could derive
actionable information from hippocampal volume. Of
the disorders listed above, AD has received the most
attention with respect to potentially applying hip-
pocampal volumes in clinical practice.
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Currently for any person suspected having AD, the
standard of care includes obtaining magnetic reso-
nance imaging (MRI) of the brain [8]. However, the
main purpose of doing so is to exclude any other causes
of cognitive impairment (e.g., tumor, large stroke)
as opposed to directly assessing the patterns of atro-
phy for indications of AD. The hippocampus is one
of the first structures affected by the neuropathology
of AD that is visible with MR imaging [9, 10] and
the extent of atrophy correlates strongly with gen-
eral and domain specific tests of cognitive function
[11]. One pathology study found that visual assess-
ments by two experienced neuroradiologists of the
size of the hippocampus on MR imaging was insen-
sitive for detecting early stage AD, with only 27%
sensitivity [12]. Thus, while visual assessments cannot
detect early hippocampal pathology, such identifica-
tion is possible with quantitative approaches [13]. An
Alzheimer Disease Neuroimaging Initiative (ADNI)
study also showed that quantitative hippocampal vol-
umetrics with FreeSurfer in 189 subjects (49 controls,
89 with mild cognitive impairment (MCI), and 50 with
AD) were superior to visual ratings both for identify-
ing controls from persons with MCI and for tracking
progression from MCI to AD over 3.2 years [14].
Hippocampal volumetrics can therefore longitudinally
assess progression in those at earlier stages of neurode-
generation.

Relevance of hippocampal volumetrics in AD is
applicable not only to accurate and early diagnosis
but also for preventive approaches due to increasing
recognition of lifestyle factors in AD risk reduc-
tion [15-20]. The hippocampus is an increasingly
identified target of risk modification in AD [21, 22].
Lifestyle factors from obesity to physical activity and
diet have been shown to influence hippocampal struc-
ture measured on quantitative MR imaging volumetrics
[23, 24]. Such prevention strategies will be needed
as the number of persons with AD is projected to
increase from 5.1 million in 2015 to 13.8 million by
2050 [25].

Hippocampal volumetrics can also provide addi-
tional important information in diagnosis and treat-
ment of other disorders. Mild traumatic brain injury,
for example, can present with hippocampal atrophy
[4, 26] that can be detected with MR imaging in
collegiate football players. Longitudinal assessment
of hippocampal volume in a prospective study of
62 moderate to severe traumatic brain injury (TBI)
patients secondary to trauma also showed abnormal
low volumes evaluated on MR imaging at 3 and 12
months. Hippocampal volume loss is also related to

combat service and post-traumatic stress disorder [27,
28]. Hippocampal volume has been suggested as a
viable treatment biomarker in major depressive disor-
der [29, 30]. Additionally, hippocampal volume can
aid in distinguishing bipolar from unipolar depres-
sion [31]. Severity of hippocampal volume is also
useful in assessment of psychiatric diseases such as
schizophrenia, has a larger degree of volume loss
on MRI quantified volumes, particularly in the pre-
subiculum and subiculum compared to bipolar [32].
Mesial temporal sclerosis, which is seen in 65% of
persons with temporal lobe epilepsy, can present with
hippocampal atrophy [33-36]. Asymmetry of such
hippocampal atrophy has been shown to distinguish
temporal lobe epilepsy, the cause of 60% of all epilepsy
cases, from controls with 94% accuracy [13, 37]. Hip-
pocampal volumetric asymmetry may also be used to
predict laterality of seizure activity in medial tempo-
ral lobe epilepsy [38]. Imaging the hippocampus is
therefore important for neurodegenerative and non-
neurodegenerative diseases.

Multiple quantitative methods exist for measuring
hippocampal volume; the original method was by
hand traced borders of the hippocampus on serial
MR images by a trained operator with knowledge
of hippocampal anatomy [39]. While this method is
considered the most rigorous for hippocampal volu-
metrics, the length of time required to trace one scan
makes routine clinical use impractical. This has given
rise to automated or semi-automated quantitative algo-
rithms of that the boundary shift integral was one
of the earlier examples [40]. Voxel-based methods
have also been developed for hippocampal quantita-
tion [41-43]. However, despite being available since
the 1980s and the presence of meta-analysis results
about the added value of hippocampal volumetrics in
AD [44], automated hippocampal assessments are not
routine standard of care.

Recently, commercial hippocampal segmentation
algorithms are being developed, but they have yet to
gain widespread use [45]. However, the importance
of developing such tools is recognized and guide-
lines have been proposed [46—48] for incorporating
hippocampal volumetrics into clinical assessments for
AD and drug trials. The potential of such a clini-
cal application can also be applied to other disorders
known to affect the hippocampus such as epilepsy, TBI,
and depression. This work describes the validation
of this automated hippocampal volumetric measure-
ment program on 99 subjects from the ADNI study
with manually segmented hippocampi. For this work,
we specifically draw these images from scans on
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which Delphi consensus criteria were reached on the
boundaries and standards for gold standard manual
hippocampal volumetry [48]. This consensus provides
the single best available manual volumetry standard to
which we can compare a new fully automated brain
MR imaging program, Neuroreader™.

MATERIALS AND METHODS
Subjects

All analyses of the de-identified human data were
done or in accord with the Helsinki Declaration
of 1975. Subjects were drawn from the European
Alzheimer’s Disease Consortium - Alzheimer’s Dis-
ease Neuroimaging Initiative Harmonized Protocol
(EADC-ADNI HarP) sub-study from the larger ADNI
[48]. The EADC-ADNI HarP for Manual Hippocampal
Segmentation project provided manually segmented
100 ADNI MR images for analysis of this study. The
scans were obtained on a variety of commercial 1.5 T
and 3.0 T MR imaging scanners on subjects across
the continuum of cognitive health including healthy
controls, MCI, and AD as described in recent work
[49]. Experts designated “master tracers” segmented
the hippocampi based upon standardized HarP guide-
lines for anatomical landmarks of the hippocampus
on MR imaging detailed in a separate user manual
(http://www.centroalzheimer.it/public/SOPs/online/

HarmonizedProtocol ACPC_UserManual_Biblio.Pdf).

Tobe considered amaster tracer, an intra- and inter-rater
intra-class correlation coefficient of at least 0.9 was
required for all segmented hippocampal volumes [42].

We downloaded the hippocampal expansion labels
produced by that manual segmentation and used
them as ground truth in assessing the quality of our
automated hippocampal segmentation. The list of the
100 original images used for the segmentation and the
labels were retrieved from the EADC-ADNI HarP web-
page:  http://www.hippocampal-protocol.net/SOPs/
index.php.

MRI technique

All MR images were produced as part of the ADNI
study as fully described in prior work [41, 50, 51].
Table 1 describes the scanning protocol of the ADNI
MRI dataset, specifically the T1-weighted axial 3D
MRIs used in the EADC-ADNI HarP project.

Image quality pre-processing

Image pre-processing was done using standard
methodology from ADNI as described in prior work

Table 1

Scan protocols
Tesla 1.5 3.0
Scanner GE Medical systems Philips Medical systems
Sequence MP-RAGE MP-RAGE
Flip angle (°) 8 8
Matrix size 256 x 256 x 170 256 x 256 x 170
TE (ms) 3.9 32
TR (ms) 8.9 6.8
Voxel size (mm?) 09x09x1.2 I1x1x12

[51] and on the LONI website (http://adni.loni.usc.edu/
methods/mri-analysis/mri-pre-processing/). To sum-
marize, the images acquired using GE scanners
received the following correction steps: Gradwrap to
correct for the geometric distortion, B 1 non-uniformity
correction of intensity non-uniformity and N3 cor-
rection to sharpen the image by removing residual
intensity non-uniformity. The images acquired using
the Philips scanner only received an N3 non-uniformity
correction.

Neuroreader™ automated hippocampal and
brain MRI segmentation

Figure 1 describes steps of the Neuroreader™ pro-
cessing algorithms.

The following analyses were performed twice: once
at the Brainreader ApS. (J.A.) and for a second time at
the University of Wisconsin (E.D.; J.M.). There were
no differences in the results of these separate anal-
yses. This work is based in part upon hippocampal
volumetric algorithms applied in earlier work [52].

We downloaded the original ADNI images from
the Laboratory of Neuroimaging Image Data Archive
(https://ida.loni.usc.edu/login.jsp) by following the
instructions provided on the website. The level of
agreement between manual segmentation and auto-
mated quantitation was assessed by the Dice Similarity
Coefficient (DSC), first described by Dice [53]. The
DSC measures the similarity index, defined as the
intersection divided by the mean volume of the two vol-
umes. DSC measures similarity indices range between
0 (no overlap) and 1 (complete or perfect agreement)
[54]. Only one image showed poor dice similarity [53,
55] between manually segmented hippocampal struc-
ture and Neuroreader™. The DSC visual inspection
of the manually produced hippocampal mask from
this one image showed poor quality segmentation of
that image and was therefore omitted from the DSC
calculations.

The Neuroreader™ image processing pipeline is
based on multi-atlas segmentation through use of non-
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Fig. 1. Neuroreader™ image processing pipeline.

linear registration. All original code for the following
steps was written in C++ and combined into a concise
program with a graphical user interface for poten-
tial clinical use. Images to be segmented are first run
through an N4 correction that adds additional bias
correction not addressed by N3 to further optimize
non-uniformity correction [56]. Hippocampal segmen-
tation was achieved with a multi-atlas based approach
as this provides superior segmentation performance
compared to segmentation based on a single atlas [57].
In a multiple atlas approach, probabilistic information
is incorporated from multiple templates to account for
anatomical variability in different populations [58].
The bias corrected image was linearly registered to
the ICBM 2009c Nonlinear Symmetric 1 x 1 x 1 mm
template using a block matching algorithm [59]. From
a cohort of 200 images also registered to this template,
the 10 atlases that corresponded best with the input
image were selected based upon the highest normalized
correlation coefficient between the atlas and the input
image. Each of these 10 atlases was non-linearly reg-
istered to the input image using an inverse-consistent
symmetric free form deformation method [60] running
on a graphics processing unit. Based on the computed
deformation fields from the non-linear registration,

the hippocampus segmentations from each atlas were
transferred to the input image and hippocampus proba-
bility maps were created. Local intensity and gradient
information from the input image were then used in
the segmentation algorithm to resolve which voxels to
include in the hippocampus segmentation.

Processing times for Neuroreader™ range from
between 3—7 minutes as a function of image size, for 64
brain structural volumes including both hippocampi,
irrespective of magnetic field strength. Hippocampal
volumetry by expert manual tracers takes 30 minutes,
15 minutes for each hippocampus [61]. A list of brain
structures segmented by Neuroreader™ is provided
in Supplementary Table 1 with results and analysis
detailed on hippocampal volume as that is the main
focus of this work.

Statistical analysis

The General Linear Model was utilized to statisti-
cally predict hippocampal volumes. Age and gender
adjusted comparisons are then used for computa-
tion of z-scores to allow for potential comparisons
between an image and a normative database. The
normative database used for z-score calculations in
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Results

The estimated total intracranial volume (eTIV) = 2463 ml.

727

Structures Vol mi Vol/e TIV ratio (%) |95% Conf Interval Z-score
Whole Brain Matter 1361.14 55.27 1295.31 - 1368.72 1.59
Hippocampus 9.20 0.37 8.38-9.44 1.10
Right Hippocampus 4.90 0.20 4.26 - 4.80 2.73

Fig. 2. Neuroreader™ hippocampal volumetric measurements with statistical analysis.

Neuroreader™ is derived from MP-RAGE 3.0T vol-
umetric sequences obtained in cognitively normal
persons from the ADNI-GO study [62]. It included
231 individuals, 113 women (age range 62-90 years)
and 118 men (age 6088 years). Lower z-scores denote
volume loss in the hippocampus compared to norma-
tive data. The statistical model is used to calculate
the confidence interval and the z-score for each mea-
sured volume, which is presented in a sample patient
report from Neuroreader™ in Fig. 2. Output includes
hippocampal volume in milliliters, proportion of hip-
pocampal volume as a proportion of estimated head
size as measured as total intracranial volume (gray mat-
ter volume + white matter volume + cerebrospinal fluid
volume + dura) and a z-score that can be expressed
when comparing Neuroreader™ output to normative
data.

Additional analyses were performed with indepen-
dent samples #-tests in order to assess if the DSC varied
as a function of field strength. Statistically significant
results were further assessed with a Cohen’s D value
to measure effect size [63].

RESULTS

Table 2 displays the subject characteristics and
quantitative results from Neuroreader™ as a function
of field strength. There were no statistically significant
differences between the 1.5 T and 3.0 T groups in age,
gender, or total intracranial volume.

Table 2 also shows that the DSC between the 1.5 T
and 3.0 T groups statistically significant (p = 0.03) with
a small magnitude effect size (Cohen’s D =0.3).

Table 3A shows DSC values in control, MCI,
and AD. Statistically significant differences are seen
between the DSC values when comparing control
and AD in both hippocampi. Statistically significant
differences are seen between MCI and AD DSC val-
ues in the right hippocampus. Table 3B shows that
Neuroreader™ can segment the hippocampus with an
average DSC of 0.87 for both the right and left hip-
pocampus across 1.5 T and 3.0 T field strengths. The
DSC reaches a maximum of 0.91 across both samples.

Figure 3 displays a row of images representing
color-coded hippocampal images.

Table 2

Subject characteristics

Variable 1.5T (n=59) 3.0 T (n=40) t value Statistics (p-value)
Age 744+74 749+7.9 -0.30 0.39
Gender (M/F) 31/28 24/16 NA 0.54
Total Intracranial Volume 1887.16 = 188 1891.37 206 -0.12 0.45
Dice Similarity Coefficient (%) 87.93+£1.6 87.26£2.4 1.99 0.03, 0.3*
*Cohen’s D effect sizes for statistically significant results.
Table 3A

Dice similarity coefficients (DSC) comparing Neuroreader™ and manual volumetry in controls, MCI, and AD
Manual Compared Control MCI AD t, p-values t, p-values t, p-values
to Neuroreader™ DSC (n=28) DSC (n=33) DSC (n=38) MCI/NC MCI/AD AD/NC
Left Hippocampus 88.7% + 1.7 87.7% £ 3.1 86.9% + 1.8 1.3,0.09 1.09,0.13 <0.001, 1*
Right Hippocampus 88.5% + 1.6 87.8% +2.3 86.9% + 1.7 0.77,0.22 1.91, 0.03, 0.4* 0.003, 1*

*Cohen’s D effect sizes for statistically significant results.
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Fig. 3. Color coded hippocampal image segmentation.

Table 3B
Dice similarity coefficients between the ground truth and the
Neuroreader™ segmentation for the right and left hippocampus

Hippocampus Min Max Mean Median Std. Dv. Variance

Right 0.7852 0.9155 0.8749 0.8810 0.0239  0.0006
Left 0.7630 0.9185 0.8739 0.8782 0.0247 0.0006
DISCUSSION

This work describes a hippocampal volumetric tech-
nique, Neuroreader™ that can be applied in a routine
clinical environment. Our results demonstrate overlap
with gold standard manual volumetry approaching
close to perfect agreement with average and maximal
DSC values of 0.87 and 0.91 in an ADNI sample.
This information can be generalized across both 1.5
and 3.0 T scanners as we included data from both
types of MR imaging field strengths. Neuroreader™
is a Class I medical device with Food and Drug
Administration (FDA) 510(k) clearance (http:/www.
accessdata.fda.gov/cdrh_docs/pdf14/K140828.pdf)
for the automated segmentation and labeling of brain
structures on MR images. FDA clearance refers to a
specific process whereby the FDA permits the mar-
keting of medical devices, including software, after a
careful review process more fully described elsewhere
(http://www.fda.gov/MedicalDevices/Productsand
MedicalProcedures/Device ApprovalsandClearances/
510kClearances). For Neuroreader™, this included a
review of the segmentation process, as seen in Fig. 1,
and an overview of the data output for clinical use
as summarized in Fig. 2. FDA clearance carries the
implication that clinicians may apply Neuroreader™
with safety and effectiveness on patient MR images of
the brain.

While Neuroreader is the second FDA cleared MR
imaging volumetric software program, there is no
information available on DSC values for the other
FDA-cleared tool, NeuroquantTM. However, there
have been multiple studies done comparing manual
volumetry to Freesurfer for the hippocampus, the
progenitor software program to Neuroquant™ [64].
One study of 10 healthy controls, 10 persons with
AD, and 10 with semantic dementia found a similar-
ity index range of 0.45-0.59 between Freesurfer and
manual volumetry in the hippocampus [65]. Another
study in a Spanish cohort of 41 healthy controls, 23
with MCI, and 25 persons with AD found overlap
between Freesurfer and manual volumetry between
0.74-0.81 in the hippocampus [66]. An ADNI cohort
study of 80 subjects including healthy controls, MCI,
and AD subjects found a similarity index of 0.82
between Freesurfer calculated hippocampal volumes
and manual volumetry [67]. In the context of this
literature, Neuroreader™ performs well in comput-
ing hippocampal volumes. While the magnitude of
the DSC is slightly lower in persons with AD, the
overall DSC still compares favorably to other values
found in the literature, as described above. However,
future studies should be performed to further com-
pare Neuroreader™ in direct comparisons to other
automated volumetric tools available for clinical appli-
cation.

A misdiagnosis of AD incurs high cost [68] ranging
from $9,500 to $14,000 per year, thus highlighting the
potential cost-savings from imaging approaches that
improve the correct identification of AD. One sug-
gested approach for structural imaging is to therefore
use hippocampal volumetrics added to MRI scans that
are already indicated by current practice standards to
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determine who should obtain additional biomarkers,
such as cerebrospinal fluid amyloid or other imaging
tests, if an underlying neurodegenerative process is
suspected based upon the results of hippocampal vol-
umetrics [69]. Fast efficient and accurate hippocampal
volumetric algorithms as detailed in the current study
can therefore provide important information to clin-
icians in the work up and care of persons with AD
[70]. Although molecular imaging biomarkers with
amyloid imaging exist [71], there are several prac-
tical limitations. First, such methods involve the use
of ionizing radiation. Second, no reimbursement from
Centers for Medicare & Medicaid Services exists for
amyloid imaging, although this issue continues to pro-
duce controversy [72]. Third, even if reimbursement
was available for amyloid imaging, the costs of PET
imaging are high at between $2,700-$5,000 [73, 74].
FDG-PET, which provides a broader array of differen-
tial considerations compared to compared to amyloid
imaging, including the ability to identify frontotem-
poral and Lewy body dementia, costs an average of
approximately $1,300 per scan [74]. By contrast, a
non-contrast volumetric MR imaging scan of the brain
costs $437.20 on average per scan [74]. The additional
cost of using Neuroreader™ or a program like it is
approximately $80 on average [74]. Thus, the addition
of MR imaging quantitative volumetrics can provide
useful information at modest financial costs.

While the focus of this study was to describe
the overlap between Neuroreader™ automated hip-
pocampal volumetrics and manual volumetry, this
program is also FDA cleared for computing volumes
of other brain structures. This has implications for
application to other disorders featuring volume loss in
non-hippocampal regions. A recent meta-analysis of
193 studies composed of 15,892 individuals across six
diverse diagnostic groups including addiction, obses-
sive compulsive disorder, and anxiety feature gray
matter volume loss particularly in the frontal lobes
[75]. Whole brain volume changes longitudinally can
have clinical importance, with change in total gray mat-
ter and white matter volumes over time being predictive
of treatment response in multiple sclerosis [76]. Con-
sequently, the potential for Neuroreader™ to evolve
for clinical application in other disorders given its
measurement of various brain structures carries con-
siderable potential.

Advantages of the work presented here are the use
of a rigorous algorithm with validation against man-
ually segmented images in a well-characterized and
validated cohort with MR imaging on different scan-
ners and field strengths. We have also shown in this

work that the agreement between hippocampal vol-
ume and manual segmentation is high at both 1.5
T and 3 T MR imaging. Thus, using older 1.5 MR
scanners will still allow for a highly effective segmen-
tation and volumetric assessment. Implications of this
work are therefore applications of hippocampal volu-
metrics in routine clinical practice onto a pre-existing
workflow that results in MR imaging on persons with
memory complaints and dementia. The main area of
future improvement in this work is testing on sub-
jects with serial MR imaging over time. Consequently,
future directions include applications of this algorithm
in community cohorts with longitudinal information to
see if it is possible to identify potential pre-destined
converters to mild cognitive impairment and AD.
Other cohorts with diseases such as TBI, depression,
and epilepsy can also be tested with this algorithm.
Such work will improve the identification and subse-
quent care of persons with hippocampal specific brain
disease.

We have shown in this work that Neuroreader™
quantifies hippocampal volume that correlates with
high fidelity to manual tracings. This software demon-
strates sensitive volumetric assessments regardless of
field strength used, either 1.5 or 3 T scanners. Such
a program has the potential to be used in the clinical
assessment of hippocampal disorders with particular
applicability to AD and possible extension to other
neuropsychiatric disorders.
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