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Abstract.

Background: Alzheimer’s disease (AD) is a highly heritable disease, but until recently few replicated genetic markers have
been identified. Markers identified so far are likely to account for only a tiny fraction of the heritability of AD and many more
genetic risk alleles are thought to be undiscovered.

Objective: Identifying genetic markers for AD using combined analysis of genetics and brain imaging data.

Methods: Imaging quantitative trait loci (iQTLs) has recently emerged as an interesting research area for linking genetics of
brain changes to AD. We consider a genome-wide association scan of 109 brain-wide regional imaging phenotypes to identify
genetic susceptibility loci for AD from a combined set of 1,045 subjects from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and the AddNeuroMed studies. We use one-SNP-at-a-time as well as multi-SNP Hyperlasso based iQTL methods for
the analysis.
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Results: We identified several novel markers associated with AD, namely HOMER?2 (rs1256429; intronic, p=8.7 x 107'),
EOMES (1s2724509; flanking), JAM2 (rs2829841; intronic), and WEE1 (rs10770042; coding). The SNP rs1256429 (HOMER?2)
was one of the top hits in Hyperlasso as well as in the single-SNP analysis showing an association with the volume of the right
thalamus and AD, a brain region reported to be linked with AD in several studies.

Conclusion: We believe that the markers identified in this study are novel additions to the existing list of genetic variants
associated with AD which can be validated in future replicated studies.

Keywords: Alzheimer’s disease, genome wide association study, imaging quantitative trait loci, magnetic resonance imaging,

mild cognitive impairment

INTRODUCTION

Genome wide association studies (GWAS) have
been successful for understanding the genetic basis
of many complex diseases. Alzheimer’s disease (AD)
is a major cause of dementia around the globe in the
elderly. It is a progressive and irreversible brain disor-
der characterized by gradual degradation of a person’s
memory, communicability, decision making, and the
ability to perform daily activities. Despite being com-
plex and highly heritable (up to 79% [1]), relatively
little is known about the genetic basis of AD. The
APOE (apolipoprotein E) gene, residing in chromo-
some 19, was the only important genetic factor known
to be linked with late onset AD in the pre-GWAS era.
Increasing availability of larger samples and advances
in high throughput genomic and brain imaging tech-
nologies have recently led to discovery of more genetic
susceptibility loci for AD [2-5]. However, the genetic
markers identified so far are likely to account for only
a tiny fraction of the heritability of AD and many more
genetic risk alleles are thought to be undiscovered.
Two types of studies have been used to investigate the
genetic susceptibility loci for AD: case-control type
GWAS and imaging quantitative trait loci (imaging-
QTL) analysis. Case-control studies and meta-analysis
of case-control studies directly test the association
between case-control status and genetic variants [2, 3].
They are intuitively appealing, but require larger sam-
ples to achieve power comparable to imaging-QTLs [4,
6, 7]. Imaging-QTLs, on the other hand, test whether
the effects of genetic variants, e.g., single nucleotide
polymorphism (SNPs), on the quantitative phenotype
such as regional brain volumes or cortical thick-
ness measures differ between disease groups. Such
analyses are usually done by testing SNP x Disease
interaction in regression type models. As pointed
out by Potkin and colleagues [4, 6], imaging-QTLs
have several advantages over case-control type studies.
Quantitative phenotype measures are more informa-
tive than the dichotomous case-control status, and

require smaller sample size to achieve statistical power
comparable to case-control association analyses. Gain
in statistical power can be up to eight fold in an
equivalent size imaging-QTL study [4]. This would
imply that an effect requiring several thousand sub-
jects to be detected in a case-control GWAS should be
detectable from several hundred individuals in a QTL
analysis.

In 2010, we reported two SNP markers (rs1925690,
in an intron of ZNF292, p-value=2.6 x 10~8; and
rs11129640, flanking ARPP-21, p-value =2.6 x 10_8)
in an imaging-QTL study showing associations with
AD through their effects on entorhinal cortical volume
and thickness measures [7]. In this study, we extend our
previous work in two main ways. Firstly, our previous
study focused on brain regions most commonly associ-
ated with AD such as the hippocampus and entorhinal
cortex. In the current study we consider a genome-wide
scan of 109 brain-wide regional imaging phenotype
measures to identify genetic susceptibility loci for AD
by using a combined set of 1,045 subjects from the
US based Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) and the European AddNeuroMed studies.
The current study therefore considers more phenotypes
and is based on a larger sample.

Secondly, we undertake a simultaneous analysis of
all SNPs and their interactions with the disease sta-
tus using a penalized regression method (Hyperlasso
[8]) in addition to the standard single-SNP imaging
QTL analysis. Our previous study [7] and other similar
imaging QTL analyses [4] only considered single-SNP
analysis. Such analyses test each SNP separately with-
out adjusting for the effects of other SNPs on the
disease phenotype. In reality we expect SNPs not to
act in isolation and polygenic approaches may hold the
key to some of the missing heritability. Simultaneous
analyses are intuitively more appealing and appropri-
ate than single-SNP approach for identifying multiple
associated variants as they can make a weak associa-
tion more visible by adjusting for the effects of other
associated SNPs, and also can weaken a false signal
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by including the stronger effects of the true associated
SNPs in the model.

METHODS
Data

The analyses in this study are based on a com-
bined dataset from two studies, the US based ADNI
database (http://adni.loni.usc.edu) [9] and the Euro-
pean AddNeuroMed study [10]. The ADNI was
launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imag-
ing and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical compa-
nies and non-profit organizations, as a $60 million,
S5-year public-private partnership. The primary goal
of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomog-
raphy (PET), other biological markers, and clinical
and neuropsychological assessment can be combined
to measure the progression of mild cognitive impair-
ment (MCI) and early AD. Determination of sensitive
and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well
as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and Uni-
versity of California—San Francisco. ADNI is the result
of efforts of many co-investigators from a broad range
of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across
the U.S. and Canada. The initial goal of ADNI was
to recruit 800 subjects but ADNI has been followed
by ADNI-GO and ADNI-2. To date these three pro-
tocols have recruited over 1,500 adults, ages 55 to
90, to participate in the research, consisting of cog-
nitively normal older individuals, people with early or
late MCI, and people with early AD. The follow up
duration of each group is specified in the protocols for
ADNI-1, ADNI-2 and ADNI-GO. Subjects originally
recruited for ADNI-1 and ADNI-GO had the option
to be followed in ADNI-2. For up-to-date information,
see http://www.adni-info.org/.

The AddNeuroMed study is a European multi-
centre private-partnership project - a pilot for the
FP6 Innovative Medicine Initiative. The main aim of
AddNeuroMed study is to find biomarkers for AD, in
particular for early diagnosis of AD. We integrated
brain imaging and common SNP data from the ADNI
and AddNeuroMed studies.

Subjects and samples

We started with 1,198 subjects, 818 from the ADNI
and 380 from the AddNeuroMed studies. Genotype
data was available for each subject on a common
set of 551,342 SNPs in the merged dataset. ADNI
data for 818 individuals are publicly available from
the ADNI database (http://adni.loni.usc.edu/) which
includes brain imaging data (1.5T MRI scans), geno-
type data based on Illumina platform (Illumina, San
Diego, CA), and demographic and neuropsychologi-
cal information. More details of this data are available
in the supplementary materials of Furney et al. [7].

AddNeuroMed is a Europe-wide multi-center study
with six data collection centers: University of Kuo-
pio (Finland), University of Perugia (Italy), Aristotle
University of Thessaloniki (Greece), King’s College
London (United Kingdom), and University of Toulouse
(France). Data collection at all centers was subject
to patient consent and protocol approval by the rel-
evant authority at each site. All subjects went through
aneuropsychological screening battery at baseline. All
MCI and AD subjects were free from any other form
of neurological or psychiatric disorder and were not
exposed to alcohol or any other substance misuse.
The National Institute of Neurological and Commu-
nicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association (NINCDS-
ADRDA) Alzheimer’s Criteria were used to diagnose
AD. These criteria are one of the most commonly used
in the diagnosis of AD.

Genotyping and QC of genetic data

Ilumina HumanHap610-Quad BeadChip platform,
containing 620,901 markers, was used for genotyping
all samples. A description of the genotyping proce-
dure of the ADNI samples can be found in Shen and
colleagues [5]. Genotyping of the AddNeuroMed sam-
ples was carried out at the CNG (Centre National de
Génotypage, France) as described previously by Fur-
ney and colleagues (See Supplementary Materials) [7].
ADNI and AddNeuroMed genotype data were merged
using PLINK [11]. After repairing strand-flipping and
removing any ambiguous SNPs, the merged data con-
sisted of 1,198 subjects and a common set of 551,342
SNPs.

We then applied the following quality control
(QC) steps to filter out subjects and SNPs based on:
(i) Genotype call rate, (ii) Minor allele frequency
(MAF), (iii) Hardy-Weinberg Equilibrium (HWE)
test, (iv) Gender mismatches, (v) Genetic relatedness,
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Fig. 1. Manhattan plot for the phenotype right thalamus.

(vi) Autosomal heterozygosity, and (vii) Divergent
ancestry (population structure). We excluded SNPs
and subjects with call rate <98%, MAF <1%, and
failing Hardy-Weinberg Equilibrium (HWE) test
at p<0.001. We also excluded individuals whose
clinical gender does not match with the genetically
inferred gender, those who are genetically related,
and individuals with unusually high or low autosomal
heterozygosity score. For genetic relatedness, we
calculated the Identical-by-descent (IBD) score and
dropped one individual (lowest SNP call rate) of each
pair with IBD >0.1875, which is the half-way point
between 2nd and 3rd degree relatives. For filtering
based on autosomal heterozygosity, we excluded sub-
jects with unusually high or low (outside 4SD about
mean) heterozygosity score (F) which can be obtained
from PLINK [11] software using the —het flag. For
filtering divergent ancestry outliers we combined our
study samples with the HapMap3 data, and excluded
outliers based on the first two principal components
(PCs), calculated using the EIGENSOFT package
(http://genetics.med.harvard.edu/reich/Reich_Lab/

Software.html). A scatterplot of the first two PCs
based on the combined study samples and HapMap3
data is shown in Supplementary Fig. 1. We calculated
the medians of the corresponding PCs based on the

European (CEU, ADNI, and AddNeuroMed) samples
and excluded all samples in ADNI and AddNeuroMed
data outside 8 x I QR (inter-quartile range) about the
medians as outliers.

In summary, call rate and MAF thresholds based
filtering removed 22,186 SNPs. Another 2,282 SNPs
failed the HWE test, leaving around 504,874 SNPs in
the analysis. 17 subjects were removed for gender mis-
matches and for being genetically related, 41 subjects
for having outlying autosomal heterozygosity score
and genotype call rate < 98%, 43 for having ances-
try differences (population structure), and finally 52
subjects because no imaging data were available for
those subjects. This left 1,045 subjects for the analysis.
A summary of baseline demographics (age, gender),
Mini-Mental State Examination (MMSE) test scores,
and the number of APOEe4 alleles by disease status
of the available subjects is shown in Table 1.

Acquisition and QC of imaging data

Imaging data acquisition of the AddNeuroMed sam-
ples was compatible with that of the ADNI study
and detailed protocols were described previously in
Liu and colleagues [12]. Briefly, the imaging proto-
col included a high resolution sagittal 3-dimensional
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Table 1
Summary of baseline demographics, Mini-Mental State Examination (MMSE) test scores, and the number of APOEe4 alleles by disease status
of the selected sample

Male Female
Control MCI AD Control MCI AD
n (% within Gender) 155(27) 282(50) 132(23) 145(31) 183(38) 148(31)
Mean (SD) — Age 75.2 (5.7) 75.3 (6.8) 75.9 (7.0) 74.9 (5.9) 73.6 (6.8) 74.6 (7.1)
MMSE 28.9 (1.5) 27.2 (1.7) 23.01 (3.3) 29.11 (1.4) 26.9 (1.7) 21.7 (3.9)
Count (% within Gender)
APOEeg4 : 0 111 (37) 139 (47) 48 (16) 102 (42) 86 (35) 55 (23)
APOEe4 : 1 38 (18) 113 (54) 60 (28) 40 (22) 76 (42) 66 (36)
APOEe&4 : 2 6 (10) 30 (50) 24 (40) 3(6) 21 (41) 27 (53)
TM6SF2
GATAD2A
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Fig. 2. Manhattan plot for the phenotype lateral orbitofrontal cortex.

T1-weighted magnetization prepared rapid gradient
echo (MPRAGE) volume and axial proton density/T2-
weighted fast spin echo images using 1.5-T MR
systems. Image analysis uses an automated atlas
based segmentation scheme developed by Fischl and
colleagues [13-15] to define regional volumes and
regional surface area patches. The regional volumes
were normalized measures by the intracranial vol-
ume (e.g., hippocampal volume divided by intracranial
volume), while the regional surface measures are char-
acterized by average cortical thickness and were not
normalized [16]. Each volume or cortical thickness
measure is described by an anatomical region. Exam-

ples of the regional volume measures and regional
cortical thickness measures are shown in Supplemen-
tary Figure 2.

QC of the imaging data was carried out as previously
described [17, 18]. We checked the imaging data for
violation of any standard assumption of the statistical
model (linear regression) that we used for the analysis.
Appropriate transformation, e.g., log-transformation
was applied where necessary to enhance symmetry.
Each of the (transformed) volume and thickness mea-
sures was normalized to have mean zero and unit
standard deviation. Some example phenotype distri-
butions and their transformed versions are shown in
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Supplementary Figure 3. Volume and thickness mea-
sures outside == 3 were treated as outliers and set to
missing (9) in the plink phenotype file to be removed
from the analysis.

Imaging QTL analysis

Image analysis and subsequent QC procedures
resulted in 109 quantitative phenotype measures (34
left cortical thickness, 34 right cortical thickness,
and 41 regional volume measures). Analyses were
performed under an additive genetic model where
genotypes were coded as 0, 1, and 2 representing the
number of minor alleles in the genotype. We were
interested in testing whether the effects of SNPs on
the quantitative phenotype differ between the dis-
ease groups. Therefore our main interest is in the
SNP x Disease interaction terms in a regression type
model. Such interaction effects are usually tested
for each SNP separately in single-SNP regression
models [4, 7]. Single-SNP analysis tests each SNP
separately without taking account of the effects of
other (possibly correlated) SNPs on the disease phe-
notype. We therefore also considered simultaneous
analysis of the entire set of SNPs and the corresponding
SNP x Disease interactions using penalized regression
models (Hyperlasso [8]) as a supporting or comple-
mentary analysis tool.

Single-SNP imaging QTLs

We initially considered the commonly used single-
SNP analyses where we test SNP x Disease interaction
for every SNP separately considering a multiple linear
regression model of the form:

E(y) = Bo + B1SNP + BrDisease + B3 Age
k
+BaSex + PsSAPOEe4 + > B PC;
j=1
+B6SNP x Disease (D

where y is the quantitative phenotype measure,
B1 and B¢ are the SNP effect and SNP x Disease
interaction effect, respectively. PCj is the j-th principal
component to take account of population structure
or any other omitted confounders (j=1, ... k). The
value of k is equal to the number of statistically sig-
nificant PCs based on the Tracy-Widom distribution
[19, 20] implemented in the EIGENSOFT package
(http://genetics.med.harvard.edu/reich/Reich_Lab/

Software.html). The EIGENSOFT package combines

functionality from population genetics methods
[21] and EIGENSTRAT stratification correction
method [22]. We also adjusted for Age, Sex, and
APOEe4 genotype. Although APOEe4 is a well-
known genetic risk factor for AD, some studies
(e.g., de-Almada [23]; Berge et al.[24]) suggested
protective effect of APOEe2 and APOEe3 genotype
markers. To identify possible (protective) effects
of APOEe2 and APOEe&3 markers, we tested Dis-
ease x APOEe2 and Diseasex APOEe3 interaction
effects within the single-SNP imaging QTLs models
(1) controlling for the effects of Age, Sex, APOEe4
genotype, and population structure (via the principal
components).

In model (1), the disease variable is treated as
quantitative (0 = Control, 1 =MCI, 2 = AD). The quan-
titative coding of the disease variable automatically
imposes the effect homogeneity assumption, that is, it
assumes that (MCI versus Control) effect is the same
as (AD versus Control) effect. This, however, is a
very strong assumption and may not hold in general.
We therefore performed a complementary analysis by
considering the disease variable as categorical. This
requires replacing the original disease variable by two
dummy variables: MCI (coded as MCI =1, if MCT; 0,
otherwise) and AD (coded as AD =1, if AD; 0, other-
wise) leading to an alternative form of the single-SNP
model (1):

E(y) = Bo+ B1SNP + o MCI + B3AD + BsAge
k

+B5Sex + PeAPOEe4 + > B PC;
Jj=1

+B7SNP x MCI + fgSNP x AD  (2)

The main interests in model (2) are the SNP x MCI
and SNP x AD effects. Statistical significance of either
one or both of the effects will indicate SNP-Disease
association.

LD-based result clumping

We further processed the results of single-SNPs
analysis based on empirical estimates of linkage dis-
equilibrium between SNPs using PLINK’s clumping
procedure. This procedure is useful to assess how
many independent loci are associated and to report
the top SNP list in terms of a smaller number of
clumps of correlated SNPs. For clumping the results
of single-SNP analysis we used a p-value threshold,
pl=107*, with all other parameters set to their default
values.
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Simultaneous (multi-SNP) imaging QTLs

Simultaneous analysis of the entire set of SNPs is
possible using penalized regression methods which
offer an attractive alternative to standard single-SNP
testing in genetic association analysis. We used Hyper-
lasso [8], a Bayesian-inspired penalized maximum
likelihood approach based on normal exponential
gamma prior having a sharper peak at zero and heavier
tails which facilitates heavily penalizing the near zero
coefficients but leaving the larger effects less affected
by the shrinkage process. This is considered as an
advantage of Hyperlasso over other penalized regres-
sions as it is preferable for variable selection when
there are few true causal variables as is likely to be the
case for most GWAS. Penalized regression requires
choosing the value of the penalty parameter (1) which
controls the amount of shrinkage. For simultaneous
analysis of all SNPs and SNP x Disease interactions,
we considered a regression model of the form:

E(y) = Bo + B1Disease + prAge + Pz Sex
k

+B4APOEe4 + ) " B, PC;
j=1

ns
+ Z {ﬂsiSNPi + Bsai SN P; x Disease}
i=1

3

where the SNP and SNP x Disease interaction effects
for the i-th SNP are now denoted B;; and B4 respec-
tively. Similar to the single-SNP model, the disease
variable in model (3) is also considered to be quan-
titative (0=Control, 1=MCI, 2=AD). We used a
permutation procedure as discussed by Ayers and
colleagues [25] to choose the penalty parameter in
such a way that the false positive rate is controlled
at 1x 1078, the genome-wide significance thresh-
old. Calculation of this threshold is further discussed
in the ‘Genome-wide significance threshold’ section.
Regression coefficients with smaller effects are driven
down to zero by the shrinkage process and any non-
zero terms can be considered statistically significant.
We focused on the SNP x Disease interaction terms,
i.e., statistical significance of the By, terms to identify
susceptibility loci for AD.

Genome-wide significance threshold

Typical single phenotype GWAS such as the
Wellcome Trust Case Control Consortium (WTCCC)

paper [25] uses 5x 1077 as a p-value cut-off for
genome-wide statistical significance. When there
are multiple phenotypes involved in the associ-
ation analysis, this threshold should be adjusted
accordingly which will lead to a more stringent
p-value cut-off. Although we have 109 phenotypes,
they are not fully independent of each other and
the effective number of independent phenotypes
should be used for adjusting the multiple correction
threshold. Using the Matrix Spectral Decomposition
(http://gump.qimr.edu.au/general/daleN/matSpD/)
based on a method by Nyholt [26], we found the
effective number of independent phenotypes to be
~ 60. We therefore set our p-value threshold for
genome-wide statistical significance at (5 x 1077)/60
~1x 1078,

RESULTS
Single-SNP imaging QTLs

We initially performed single-SNP analysis for test-
ing SNP x Disease interaction for each of the 109
phenotypes at 504,874 SNPs (model 1 — disease coded
0, 1, 2 for Ctrl, MCI, AD). By single-SNP analysis,
we refer to models where a single SNP was tested for
SNP x Disease interaction in each model adjusting for
the covariates and significant principal components.
The list of significant SNPs is shown in Table 2. We
identified the SNP rs1256429, intronic to HOMER?2,
as the top hit. The marker was found to be signif-
icantly associated (p=8.7 x 10710) with the volume
measure of the right thalamus and the disease sta-
tus. Regression effects of this marker on the regional
volume of the right thalamus are significantly dif-
ferent (p=8.7 x 107'%) between the disease groups
(Table 4). Negative coefficients for the Disease and
SNP x Disease interaction effects implies that the pro-
gression of AD results in a significant shrinkage of the
volume of this brain region, and the atrophy is greater
with every extra dose of the minor allele in that genetic
marker (SNP).

Table 2
List of SNPs significant at p<3 x 1078 based on the single SNP
model. Several markers in chromosome 15 and 19 show significant
SN PxDisease associations.

Phenotype SNP

Right Thalamus Proper 151256429 15 8.7 x 1071 HOMER?2
Left Lateral 15735273 19 62 x 107 TM6SF2
Orbitofrontal

CHR p-value Annotation

16909 19 6.7 x 1079 GATAD2A
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We found another two markers that passed the
genome-wide significance threshold for the test of
SNP x Disease interaction. Regression analysis of the
cortical thickness measure of left lateral orbitofrontal
cortex identified two markers TMO6SF2 (rs735273;
flanking, p=6.2 x 107%%) and GATAD2A (rs6909;
flanking, p=6.7 x 107%) located in chromosome 19
showing significant interaction with the disease.

With the categorical coding of the disease variable
in model (2), test for SNP x (AD versus Ctrl) effect
led to similar results to that of continuous disease
coding. The marker rs1256429 was again found to
show significant (p=6.7 x 10710 interaction with
the (AD versus Ctrl) effect for the volume measure
of the right thalamus. Markers rs735273 and rs6909
(flanking TM6SF2 and GATAD2A, respectively) were
also found to be significant for the phenotype left lateral
orbitofrontal cortex, but with a slightly less significant
p-values (p=1.058 x 1078 and p=1.064 x 10798,
respectively). None of the SNPx(MCI versus Ctrl)
interaction effects, however, passed the significance
threshold. The Manhattan plots are shown in Figs. 1
and 2. The full results for LD-based clump procedure
are given in the Supplementary file clumped analysis.
csv. Table 5 lists selected SNPs and their p-values from
the LD-based clumped results which were previously
identified as associated with AD in the GWAS literature
extracted from the NHGRI GWAS catalogue [27].

Simultaneous (multi-SNP) imaging QTLs

For all 109 phenotypes, Hyperlasso selected around
500 SNP x Disease interaction terms that passed the
penalization process, but most of the effects were
very close to zero. We therefore performed another
filtering of the significant SNP x Disease interaction
terms based on the magnitude of the penalized regres-

sion coefficients (Bsd). We consider SNPs as potential
risk markers for AD that were found to have sig-
nificant SNP x Disease interaction effects and have
penalized regression effects of magnitude 0.15 or more
(|Bsd |>0.15). We have reported both negative and
positive interactions, but negative coefficients may be
more interesting as the negative effects correspond
to atrophy of the brain regions and are likely to be
linked to AD. The resulting SNP list and the corre-
sponding phenotypes are summarized in Table 3 and
Fig. 3. Within this list, the four markers (rs1256429,
rs2724509, rs2829841, and rs10770042 on chromo-
somes 15, 3, 21, and 11, respectively) relating to the
genes HOMER? (intronic), EOMES (flanking), JAM2
(intronic), and WEEI (coding) appear to have interest-
ing links with AD. These markers showed significant
SNPxDisease interaction effects for the phenotypes
corresponding to right thalamus, left isthmus cingu-
late, brain stem and right putamen respectively. Tests
of Disease x APOEe2 and Disease x APOEe3 inter-
action effects, based on the ten brain imaging measures
showing association with AD in the single-SNP and
simultaneous multi-SNP analyses, did not lead to any
statistically significant interaction effect after correc-
tion for multiple testing (see Supplementary Table 1).
This study therefore does not verify APOEe2 and
APOEg3 as protective genetic markers for AD.

Previously associated AD GWAS findings

A considerable number of genetic markers for AD
have been reported in the literature based on imaging-
QTL studies as well as various case-control GWAS.
The AlzGene database [28] (http://www.alzgene.org)
ranked those genes in order of meta-analysis p-values
and assessed for their epidemiological credibility. The
top 10 genes with meta-analysis p-values < 0.00001

List of SNPs selected by Hyperlasso. Listed SNPs can be regarded as significant at the genome-wide level (p <1 x 10~8). The SNPx Disease
interaction effects with absolute coefficient values >0.15 are tabulated. Main interest is in the negative coefficients as negative effects correspond
to shrinkage of the brain regions and are likely to be linked to AD

Phenotype SNP CHR Coeff. Annotation
Left Isthmus cingulate 1s2724509 3 —0.240 EOMES
Brain Stem 1s2829841 21 —0.236 JAM2
Right Putamen rs10770042 11 —0.184 WEE1

Right Putamen rs802101 7 —0.183 LOC645617
Right Isthmus cingulate rs11118607 1 —0.162 MOSCl1
Left Thalamus Proper rs10129316 14 —0.156 Cl14o0rf83
Right Thalamus Proper rs1256429 15 —0.152 HOMER2
Right Thickavg Lingual rs10196975 —0.152 FLJ16124
Right Thickavg Lingual 1s2527083 8 —0.152 LOC392180
Left Lateral Ventricle rs1265143 8 0.19 RRM2B
CSF rs12462609 19 0.17 CACNAIA
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Fig. 3. Plot of the SNPs selected by Hyperlasso analysis. The horizontal axis shows the chromosome numbers - SNPs are plotted in order of
their positions within chromosomes. The vertical axis represents the penalized regression coefficients (Bsq) for the SNP x Disease interactions.

Table 4
Right thalamus-parameter estimates. The regression coefficients of
interest for the SNP marker rs1256429 on the right thalamus region
from the single-SNP model

Variable B SE(B) t p-value
SN P (1s1256429) 02469  0.066  3.738 0.0002
Disease -0.0034 0.042 -0.082 0.9348
SN P x Disease -0.3415  0.055 —-6.190 8.7x10°'0

are: APOE, BINI1, CLU, ABCA7, CRI1, PICALM,
MS4A6A, CD33, MS4A4E, and CD2AP. Although
the current study did not identify any marker from
the top 10 genes of the AlzGene, the study replicated
two previous hits from the literature, namely ARPP-
21 and DISCI originally identified in our previous
work [7] and [30], respectively (see full Hyperlasso
results—Supplementary document). In a recent meta-

analysisof 74,046 subjects, Lambertetal. [29]identified
11 new susceptibility loci for AD: HLA-DRB5-DRBI1,
SORLI1,PTK2B, SLC24A4/RIN3,ZCWPW1,CELF1,
NMES, FERMT2, CASS4, INPP5D, and MEF2C. Two
of the new genes, PTK2B (rs755951) and SLC24A4
(rs8019291), were identified in our study at the signifi-
cance thresholds p=3.95 x 107% and p=4.29 x 1079,
respectively. These genes were associated with the cor-
tical thicknesses of left frontal pole and left inferior
temporal regions. Our current study identified rela-
tively more markers as possible susceptibility loci for
AD than our previous study. This is not surprising
as this study is more extensive in terms of statistical
analysis, data size as well as the number of imag-
ing phenotypes and the coverage of the brain region
considered.

Table 5

List of SNPs from the LD-based clump procedure, which were also identified as associated with AD in the previous GWAS literature. Previous
GWAS hits in the LD-based clumped analysis.

Phenotype SNP CHR p-value Annotation
Right Middle Temporal rs2063648 3 4.87 x 107° ARPP-21
Right Inferior Parietal rs6784162 3 2.89 x 1073 ARPP-21
Right Inferior Temporal rs6784162 3 3.12x 1073 ARPP-21
Right Caudal Anterior Cingulate rs661319 10 2.53 x 1073 SORCS1
4th Ventricle rs1074903 16 1.18 x 1073 FTO
5th Ventricle 12237198 6 247 x 1073 ATXN1
Left Paracentral rs6458573 6 8.80 x 1073 CD2AP
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DISCUSSION

Although HOMER?2 was not reported to be linked
with AD in the GWAS literature, neurobiological
research [30] has linked HOMER?2 with neurodegen-
erative process. This gene was associated with the
volume of right thalamus, a brain region reported to
be linked with AD in several studies [31-36]. The vol-
ume of right thalamus was found to be smaller in the
diseased group with the difference being significantly
greater for increased number of minor alleles in the
associated SNP marker (rs1256429, HOMER2). One
important pathologic feature of AD is the formation
of neuritic plaques in the brains. Major components
of these plaques are small peptides called amyloid-3
(APB) that is derived from amyloid-f3 protein precur-
sor (ABPP). Because of the critical role of A in the
pathogenesis of AD, understanding the cellular and
molecular process underlying ABPP/A3 metabolism
has been of paramount importance to AD research. A
recent study by Parisiadou and colleagues [30] pro-
vides evidence that expression of HOMER?2 protein
inhibits ABPP processing and reduces secretion of
AP peptides. In addition, they decrease the levels of
cell surface ABPP and inhibit maturation of ABPP
and B-secretase. The effects of HOMER2 on ABPP
trafficking to the cell surface could be part of the
mechanism by which the expression of these proteins
leads to the significant reduction of A peptide pro-
duction. A genetic mutation in HOMER?2 that leads to
under-expression of this protein is therefore likely to
be related to AD.

EOMES (eomesodermin) is a protein-coding gene
and functions as a transcriptional activator playing
a crucial role during development. EOMES gene
belongs to the TBR1 subfamily, which encodes
T-box brain protein-1. This protein is believed to
be involved in the differentiation and migration of
neurons and plays important roles by regulating corti-
cal development in human brain (Hsueh et al. [37]).
Point mutations in the presenilin-1 gene (PS1) are
thought to be causative in familial AD [38]. mRNA
microarray studies (e.g., [39]) have demonstrated
that PS1-deficiency is correlated with expression of
EOMES and various other genes. This may support the
finding from our Hyperlasso analysis that the EOMES
is linked to AD.

Recent literature on AD research also linked JAM2
and WEEI with AD. JAM2 belongs to the junc-
tional adhesion molecule (JAM) family, and the
immunoglobulin superfamily and is a protein-coding
gene. The protein encoded by this gene is a type I

membrane protein that is localized at the tight junc-
tions of both epithelial and endothelial cells. It acts
as an adhesive ligand for interacting with a variety of
immune cell types, and may play a role in lympho-
cyte homing to secondary lymphoid organs (RefSeq).
A recent study (Guffanti et al. [40]) found associ-
ations between deletions of copy number variation
regions and AD. The study suggested, via a functional
cluster analysis annotation, that proteins containing
immunoglobulin-like domains and genes coding for
neural cell adhesion molecules (e.g., JAM2) may co-
function in the biological network of genes putatively
affected by deletions of copy number variation-regions
associated with AD. Antonell and colleagues [41] per-
formed neuropathological examination of patients with
aprogressive cognitive decline and observed a chromo-
somal 21 region duplication spanning 0.59 Mb, which
comprised JAM2 and some other genes.

The WEEI gene encodes a nuclear protein, which
is a tyrosine kinase belonging to the Ser/Thr family of
protein kinases. This protein catalyzes the inhibitory
tyrosine phosphorylation of CDC2/cyclin B kinase,
and appears to coordinate the transition between DNA
replication and mitosis by protecting the nucleus from
cytoplasmically activated CDC2 kinase (RefSeq, Jul
2008). It has been reported in the literature that WEE1
activity is altered in AD neurodegenerative process.
Tomashevski and colleagues [42] reported WEEI as a
mitotic regulator that participates in the AD neurode-
generative process.

Hyperlasso analysis also detected another two mark-
ers (rs2063648; intronic to ARPP-21 and rs980989;
flanking DISC1) showing significant association with
AD at the genome-wide significance level. The gene
ARPP-21 was reported to be associated with AD in our
previous study [7] via another SNP (rs11129640) and
the association between DISC1 and AD was reported
previously (rs12044355, p=9 x 107%) by Beecham
and colleagues [43]. These two markers however did
not pass the additional filtering criterion based on
the penalized regression coefficient (|3sd |[>0.15) that
we used in this analysis. The estimated (penalized)
SNP x Disease interaction effect for these markers were
Bsd=-0.08 and —0.03, respectively.

CONCLUSIONS

We identified several novel markers associated with
AD through our one-SNP-at-a-time and simultane-
ous multi-SNP Hyperlasso analysis, one of which
was replicated in both analyses. The SNP rs1256429
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(p=8.7 x 10719, intronic to HOMER2) was found to
be significantly associated with AD in one-SNP-at-a-
time analysis. This SNP was also one of the top hits in
the Hyperlasso analysis. The other SNPs that passed
our stringent Hyperlasso penalty (to ensure statistical
significance at the genome-wide level; p=1 x 107%)
and the additional filtering threshold (Bsd<-0.15) of
the penalized regression coefficients are: rs2724509
(flanking EOMES), rs2829841 (intronic to JAM?2) and
rs10770042 (in the coding region of WEE1).

A limitation of the current study is that, due to
the unavailability of similar additional datasets, we
were unable to replicate our findings in an indepen-
dent validation study. An obvious future direction of
research in this area would be to validate the findings
in a replication study using an independent validation
dataset. Collecting brain imaging and genetic data on
big enough samples is challenging due to high cost of
such studies. However, imaging-genetics studies may
provide realistic opportunity in finding the unidentified
genetic markers of AD in the near future when such
studies become more affordable due to technological
advances.

Nevertheless, the discussions of previous literature
relevant to those genes in the previous section support
our belief that the markers identified in this study are
novel additions to the existing list of genetic variants
associated with AD which can be validated in future
replicated studies. We have also been we have been
able to replicate some earlier findings and have been
able to suggest the genetic basis for some genes that
have been previously identified as being linked to AD
and cognitive performance such as the genes ARPP-21
[7, 44], JAM2 [44] and DISC1 [43].
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