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Abstract.
Background: The focus on Alzheimer’s disease (AD) is shifting from dementia to the prodromal stage of the disorder, to a large
extent due to increasing efforts in trying to develop disease modifying treatment for the disorder. For development of disease-
modifying drugs, a reliable and accurate test for identification of mild cognitive impairment (MCI) due to AD is essential.
Objective: In the present study, MCI progressing to AD will be predicted using blood-based gene expression.
Material and Methods: Gene expression analysis using qPCR was performed on blood RNA from a cohort of patients with
amnestic MCI (aMCI; n = 66). Within the aMCI cohort, patients progressing to AD within 1 to 2 years were grouped as MCI
converters (n = 34) and the patients remaining at the MCI stage after 2 years were grouped as stable MCI (n = 32). AD and
control populations were also included in the study.
Results: Multivariate statistical method partial least square regression was used to develop predictive models which later were
tested using leave-one-out cross validation. Gene expression signatures that identified aMCI subjects that progressed to AD
within 2 years with a prediction accuracy of 74%–77% were identified for the complete dataset and subsets thereof.
Conclusion: The present pilot study demonstrates for the first time that MCI that evolves into AD dementia within 2 years may
be predicted by analyzing gene expression in blood. Further studies will be needed to validate this gene signature as a potential
test for AD in the predementia stage.
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INTRODUCTION

The World Alzheimer Report in 2009 estimated that
36 million people worldwide are living with demen-
tia, with numbers nearly doubling every 20 years to 66
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million by 2030, and 115 million by 2050 [1], that is
unless no effective treatment is developed to prevent
its progression. The 2010 report calculated the world-
wide costs of dementia (US$604 billion in 2010) to
amount to more than 1% of global GDP [2]. The rapidly
increasing impact and cost for people and society rep-
resents a strong driving force for the development of
new drugs and diagnostic tools for early treatment and
disease management. As of now, no disease modifying
treatment for Alzheimer’s disease (AD) or any other
dementia disorder is available. The development of
diagnostic tools may aid in identifying individuals eli-
gible for clinical trials as well as in clinical practice
aiding in the decisions of whom to treat.

In clinical practice today, the diagnosis of AD is
made on the basis of clinical symptoms and signs,
requiring the presence of memory impairment as well
as impairment in one additional cognitive domain, and
with a concomitant functional decline lasting for more
than six months. However, several studies have shown
that there are biochemical [3, 4] and neuroanatomical
[5] signs of a developing disorder many years before
the onset of clinical symptoms in AD. To enable an
early diagnosis and incorporate these repeated new
findings, new guidelines have been developed and
published [6]. These include the use of biomarkers
in the diagnosis of mild cognitive impairment (MCI)
that evolves into AD [6]. Several biomarkers such as
volumetric magnetic resonance imaging (MRI) [7],
amyloid imaging using positron emission tomography
(PET) [8], and cerebrospinal fluid (CSF) biomarkers
such as amyloid-� (A�) and total-tau have been pro-
posed in the early diagnosis of AD [9]. However, these
are either more invasive, time-consuming, procedure
complex, or very expensive compared to that of a sim-
ple blood test. A cost benefit analysis by Yu et al. [10]
demonstrated that removal of both CSF biomarkers and
FDG-PET from the enrichment strategy for clinical tri-
als provided both considerable cost savings and shorter
screening times. Methodological and technical varia-
tion has also been described [11]. Thus, there is need to
develop biomarkers that are practical to use, minimally
invasive and reliable, yet still highly accurate [12–15].

Several independent studies have indicated that a
blood-based test could be used for diagnostic profiling
in neurological diseases [16–24]. Lönneborg [21] sum-
marized in 2008 that of several studies that investigated
plasma A� levels in AD; one study showed an increase
in A� levels [25] and the majority of studies found
no significant differences between AD and controls
[26–30]. Later, a systematic review and meta-analysis
in 2012 by Koyama et al. [31] concluded that plasma

A�42:A�40 ratio may predict development of AD,
however, significant heterogeneity in the meta-analysis
underlines the need for substantial further investiga-
tion of plasma A� levels as a preclinical biomarker.
Thambisetty et al. have identified plasma clusterin as a
potential biomarker for AD [32] and present data that
suggests that plasma clusterin is associated with rate
of atrophy in MCI [33].

As the first company in the world, DiaGenic devel-
oped a CE marked blood-based diagnostic test for AD
(ADtect®) which identifies patients with mild to mod-
erate AD with an accuracy of 72%. The development
and validation of this 96-assay gene expression signa-
ture has been described in Booij et al. and Rye et al. [34,
35]. This test detects the blood-based gene expression
signature in blood samples and adopts a combination
of multiple gene expression assays to obtain a predic-
tion value for disease classification. Alterations in a
gene expression signature in peripheral blood are pos-
tulated as a result of a systemic disease response in AD
as verified by many previous studies [34–38].

Based on the same approach, DiaGenic has inves-
tigated the gene expression signature in blood of
patients with amnestic MCI (aMCI) who within 2
years progress to AD dementia and compared this with
the gene expression pattern in stable MCI. Diagnos-
tic performance (prediction accuracy, sensitivity, and
specificity) of the identified multivariate biomarker is
presented.

MATERIAL AND METHODS

Participants

Patients with MCI (n = 66) were recruited from 8
centers in Norway and Sweden from January 2007 until
January 2011. All patients were clinically examined
longitudinally on a yearly basis.

MCI patients progressing to AD within 2 years were
grouped as MCI converters (n = 34) and the patients
maintaining an MCI diagnosis after 2 years (i.e., at the
3rd visit) were grouped as stable MCI (n = 32).

The clinical investigations were performed by clini-
cians with expertise in diagnosing MCI and dementia.
Clinical interview and medical examination were per-
formed, and physical diseases and drug use were
recorded. Imaging (either MRI or CT) and routine
blood tests were performed for all subjects to exclude
other causes of MCI or dementia than MCI or AD,
respectively.

The cognitive and functional test battery included
an overall cognitive screening test (Mini-Mental State
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Examination, MMSE) [39] and a set of standardized
cognitive tests assessing verbal and non-verbal mem-
ory, processing speed and executive function (shifting
attention): The Clock Test [40, 41], Kendrick OLT
test [42], 10-word test [43, 44], and Trail Making test
A and B [45]. In addition, the clinical dementia rat-
ing (CDR) scale [46] was scored based on a detailed
clinical interview with the patient and a caregiver.

MCI (amnestic MCI) was diagnosed in accor-
dance with the Petersen criteria [47] with symptoms
present for at least 6 months, and a diagnosis of
AD was in accordance with International Classifica-
tion of Diseases (ICD) adopted by the WHO member
states in 1994 (ICD-10) and the National Institute
of Neurological and Communication Disorders and
Stroke/Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) criteria [48].

All diagnoses and the staging of cognitive impair-
ment/dementia were evaluated blindly by an expert
group of clinicians having access to all relevant clini-
cal, laboratory, and imaging longitudinal patient data
in order to independently establish a consensus clinical
diagnosis.

The procedures included blood sample collection
and were approved by local ethics committees. The
blood samples were obtained at the clinical centers
at the time of clinical evaluation. Written informed
consent was obtained from each included subject.

Sample collection

Venous blood samples (2.5 mL) were drawn into
PAXgene™ tubes (Becton & Dickenson, Qiagen Inc.,
Valencia, CA) according to the manufacturer’s instruc-
tions. Tubes were incubated at room temperature
overnight prior to freezing and stored at −70◦C or
below. RNA was extracted from all samples (n = 66)
within 6 months of blood draw and stored at −70◦C or
below in the DiaGenic biobank.

Assay selection and micro-fluidic card (MFC)
layout

A total of 1,239 gene probes have previously been
selected [35] and served as a basis for the identifica-
tion of informative genes. The 1,239 gene probes were
selected based on an AD classifier developed follow-
ing a whole genome screen comprising in total 126
clinically diagnosed AD patients, 98 age-matched cog-
nitively healthy controls, 28 young controls, 28 Parkin-
son’s disease patients, and 10 subjects with MCI. Taq-
Man assays with adequate efficiency, expression level

in blood RNA, and absence of signal from genomic
DNA, were available for 970 of the 1,239 initial genes
(Applied Biosystems, Foster City, CA). In addition,
reference assay candidates and assays for transcripts
identified by an extended literature search were also
included. A total of 1,152 assays distributed on three
different micro-fluidic cards (MFCs) were custom
ordered from Applied Biosystem (Foster City, CA).

In addition to the study MFCs, a DiaGenic technical
control MFC (4 × 96 assay format) was used to mon-
itor the temporal stability during the gene expression
analyses.

RNA extraction and cDNA synthesis

Total RNA was extracted from blood samples using
PAXgene™ Blood RNA kit for manual extraction
(PreAnalytix, Hombrechtikon, Switzerland) accord-
ing to the manufacturer’s instructions. Total RNA
was stored at −70◦C or below until analysis. The
RNA was assessed for quality using the NanoDrop
ND-1000 spectrophotometer (NanoDrop, Wilming-
ton, DE) and the Agilent 2100 BioAnalyzer (Agilent,
Santa Clara, CA), with sample acceptance limits RIN
≥7.3; 28S/18S ≥1.0; A260/A230 ≥1.0; A260/A280
≥1.8; RNA concentration ≥30 ng/�L. The cDNA
was prepared according to a predefined randomization
scheme using the High-Capacity cDNA Reverse Tran-
scriptase kit (Applied Biosystems, Foster City, CA)
according to the manufacturer’s instructions. From
each subject sample, 2,210 ng RNA was used to pre-
pare adequate amounts of cDNA for gene expression
analysis on the complete set of MFCs (3 × 384-assay
cards). The final concentration of RNA in the cDNA
reaction mixture was 8.5 ng/�l. This concentration was
tested and shown to be below the limit of inhibition of
the cDNA synthesis. The cDNA was stored at −70◦C
or below until analysis.

Real time qPCR

Real time qPCR (RT-qPCR) was performed using
the TaqMan® Universal PCR Master Mix II (2X)
with uracil-N-glycosylase according to the manu-
facturer’s instructions in the standard run mode on
2 ViiA7 Dx systems (Life Technologies, Carlsbad,
CA) equipped with MFC blocks and robotic feeders
(TwisterII, Caliper, Hopkinton, MA). The ViiA7 sys-
tems were operated by the ViiA7 Software version 1.0
(Life Technologies). The two instruments used during
the study were qualified according to internal proce-
dures prior to use and normalized against each other
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according to the manufacturer’s procedures. Subse-
quently, side-by-side studies were performed to verify
that the two instruments yielded comparable results
(data not shown).

Samples were run on MFCs according to a prede-
fined randomization scheme different from that used
for cDNA synthesis. The donors were randomized
independently for each of the MFCs. All samples were
run on a complete set of MFCs, i.e., 3 × 384-assay
cards. Prepared cDNA was diluted 1/10 in the PCR
reaction mixture, which was tested and shown to be
below the level of inhibition of the qPCR. Each of the
8 lanes of each card was loaded with 97 �l PCR reac-
tion mixture. Five MFCs were filled simultaneously
and loaded into the RT-qPCR using the robotic feeder.
To avoid potential fading of the fluorescent dye and to
ensure stability of the reaction mixture on the MFCs,
the instruments were in a room with dimmed light and
temperature control.

During the study RNA reference samples were run
at regular time intervals randomized among and pro-
cessed as the study samples. The reference samples
were used to monitor technical aspects such as instru-
ment variation, inter-card and inter-day variability.
Analysis of the gene expression of the reference mate-
rial demonstrated no significant difference between the
two instruments for the 20 assay set with a p = 0.3 using
multivariate ffmanova (an R package implementing
fifty-fifty ANOVA) [49].

Reference samples were both run on study MFCs
and on technical control MFCs. Temporal drift was
investigated by monitoring the average CT of the
technical replicates of the reference material. No
systematic drift of average CT value was observed fol-
lowing analysis of the technical replicates (Fig. 1), and
the average CT was in the range of 1 CT.

Data analysis

The present study was performed as a retrospective
analysis. Subject data collection and blood draw were
both performed prior to inclusion in the present study.

Optimal thresholds were set by the ViiA7 software
for determination of CT for each assay. Missing values
were imputed using k-Nearest Neighbors (k-NN) [50].
A panel of reference assays was investigated. Beta-
actin demonstrated to be stably expressed and was used
for reference gene normalization of the data.

Partial Least Square Regression (PLSR) and Leave
One Out Cross-Validation (LOO-CV) were used to
build the gene expression algorithm (model) and
to estimate the diagnostic performance. Jack-knife

Fig. 1. Variation of average CT of an RNA reference material during
the study.

feature [51] was used for variable selection. A number
of models were developed and evaluated, investigating
complete datasets which excluding reference assays
constituted 1,123 assays or subsets thereof. For each
model the LOO-CV estimates of sensitivity, specificity,
prediction accuracy, and area under the receiver operat-
ing characteristic curve (AUC) were used as a measure
of the models performance as compared to the clin-
ical diagnosis. The statistical computing language R
version 2.10.0 was used [52].

Clinical interferences

Clinical interferences were studied in the study pop-
ulation. Subjects with co-morbidities such as cancer,
hypertension, diabetes, coronary disease, depression,
and allergies were compared with subjects without a
history of chronic illness using PCA score analysis.
This was done to evaluate if co-morbidities were likely
to affect the test result.

Biological significance

To investigate the biological significance of pro-
teins encoded by the selected gene assays pathway
analyses were performed. The pathway analyses were
performed using Ingenuity Pathway Analysis soft-
ware (IPA, Ingenuity Systems, Redwood City, CA).
Benjamini-Hochberg multiple testing correction [53]
at p < 0.05 was used to correct for multiple testing
when identifying biological functions and canoni-
cal pathways significantly associated with assay sets.
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Table 1
Demographic distribution of subjects (n = 66) used in the development of the disease model

Stable MCI MCI converters
n = 32 n = 34

Educational level Primary/secondary school (up to 9 y) 1 (3%) 2 (6%)
High school (up to 12 y) 9 (28%) 7 (21%)
College and university 11 (34%) 15 (44%)
Unknown 11 (34%) 10 (29%)

Gender Male 14 (44%) 15 (44%)
Female 18 (56%) 19 (56%)

Baseline MMSE Mean 28 28
Range (min-max) (23–30) (23–30)

MMSE (1 y visit) Mean 28 27
Range (min-max) (24–30) (22–30)

MMSE (2 y visit) Mean 28 26
Range (min-max) (22–30) (19–29)

Baseline CDR Mean 0.5 0.5
Range (min-max) (0.0–1.0) (0.5−0.5)

CDR (1 y visit) Mean 0.5 0.5
Range (min-max) (0.0–1.0) (0.5–1.0)

CDR (2 y visit) Mean 0.5 0.5
Range (min-max) (0.5−0.5) (0.5–1.0)

Baseline CDR-SOB Mean 1 1
Range (min-max) (0–5) (1–4)

CDR-SOB (1 y visit) Mean 1 2
Range (min-max) (0–5) (1–6)

CDR-SOB (2 y visit) Mean 1 3
Range (min-max) (1–4) (1–7)

Age (y) Mean 67.4 71.5
Range (min-max) (52–81) (52–84)

MCI, mild cognitive impairment; MMSE, Mini-Mental Status Examination; CDR, Clinical Dementia
Rating, SOB, sum of boxes.

The functional categories used in IPA were devel-
oped by Ingenuity staff of Ph.D. scientists who are
experts across various domains of biology. These cat-
egories strive to encompass all types of biological
functions that are most important to researchers using
IPA.

The dynamic Canonical Pathways are well-
characterized metabolic and cell signaling pathways
that have been curated and hand-drawn by Ph.D. level
scientists based on previous literature findings. The
information contained in Canonical Pathways comes
from specific journal articles, review articles, text
books, and HumanCyc.

RESULTS

Subject characteristics

The included individuals in this study were recruited
through DiaGenic blood collection studies at 8 clinical
centers in Norway and Sweden using a standardized
protocol. Clinical and demographic features of the
study population are shown in Table 1. A total of 66
subjects were included in the present study and blood

collected at baseline was used to investigate the gene
expression signature.

Prediction of MCI that evolves into AD dementia
within two years in subjects with aMCI

For development of the gene expression algorithm,
PLSR and LOO-CV were used both to build the model
and to estimate the diagnostic performance of the gen-
erated models. A number of models were developed
and evaluated, and, similarly, a number of differ-
ent datasets were investigated. The selection of these
datasets is described below.

Our first model was developed using the complete
dataset compiled of gene expression data obtained
from 1,123 assays. Using the gene expression data
from the stable MCI and the MCI converters, a PLSR
model was developed discriminating the two classes.
The model was evaluated by LOO-CV from which a
prediction accuracy of 74% was demonstrated. The
model performance characteristics are summarized in
Table 2.

A large assay set of 1,123 assays is unpractical and
costly for clinical use. A reduction of the number of
assays used by investigating a subset of the data was
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explored aiming at maintaining the most informative
assays. Using a jack-knife procedure, a total of 225
of the most informative or significant assays (p < 0.2)
were identified. The gene expression data obtained
from this data subset was used for statistical modeling
using PLSR for the discrimination of stable MCI from
MCI converters. A model demonstrating a prediction
accuracy of 77% following LOO-CV was obtained.
The performance characteristics of this model based
on the 225 assay set are summarized in Table 2.

No further jack-knife reduction was performed for
the present dataset as subsequent product develop-
ment did not aim at final assay selection at that time.
For product development, further adaptation of the
qPCR protocol for regulatory approval purposes is
planned prior to locking of the algorithm; moreover
a larger number of assays into the optimization phase
is preferred. However, in this study we wanted to inves-
tigate a subset of 20 informative assays that we have
previously identified in independent in-house studies
(results not shown) during the development of ADtect®

[34, 35]. The identification of these assays was based
on the discrimination of AD and cognitively healthy
controls. Based on this, these 20 assays were included
as part of the complete assay set in the present study.
Hence, the 20 assays were not a jack-knife product of
the complete assay set as the 225 assays. The applica-
bility of these 20 informative assays for the prediction
of MCI that evolves into AD dementia within 2 years
in an aMCI population was investigated. Using this
exploratory dataset, a PLSR model was developed
using the gene expression data for the discrimination of
stable MCI from MCI converters. The developed algo-
rithm using the 20 informative assays selected based
on AD pathology demonstrated a prediction accuracy
of 77%. The model performance when discriminat-
ing MCI converters from stable MCI is summarized in
Table 2. This demonstrates that it is possible to retain
the same level of prediction accuracy even when reduc-
ing the assay set to only a fraction of the initial dataset,
in this case 20 assays. A summary of the origin of the
investigated assay sets is shown in Fig. 2.

Clinical interferences

In the present study, the possibility of co-morbidity
interferences was investigated, including a history of,
for example, cancer, hypertension, diabetes, coronary
disease, depression, and allergies. In the cohort of sta-
ble MCI patients, 11 of the 34 subjects reported a
history of chronic disease. Similarly, 13 of 32 of the
MCI converters had a history of chronic disease.

Table 2
Summary of model performances

Performance Complete Reduced Exploratory
parameter dataset dataset dataset

(1123 assays) % (225 assays) % (20 assays) %

Prediction 74 77 77
accuracy

Sensitivity 70 73 70
Specificity 77 81 84

Fig. 2. Summary of origin of investigated assay sets.

PCA scores revealed no clear effect for individuals
suffering from at least one co-morbidity. It was there-
fore concluded that co-morbidities did not affect the
results in the present study.

The use of medication could not be investigated in
the present study as only 3 of 32 stable MCI and 3 of 32
MCI converters were on acetylcholinesterase inhibitor.

Biological significance

For all assays selected, i.e., both the complete dataset
and data subsets, the assays were chosen based on the
predictive ability in an algorithm and not selected based
on the individual informative nature of the genetic ori-
gin of the targeted transcripts. Still, we find that a
majority of the genes included in the whole assay set as
well as in the 225 assay set and the 20 assay set encode
proteins with biological functions associated with AD
and AD-related biological processes.

Of the 225 assays, 207 encode proteins with
known identity. Adjusting for multiple testing using
Benjamini-Hochberg correction [53], A� processing is
the canonical pathway that separates from other canon-
ical pathways with the lowest p-value (−log 3.599).
Seven of the 54 proteins (ratio = 0.13) included in this
canonical pathway are among the 207 proteins with a
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Fig. 3. Canonical pathways associated with the proteins encoded by the 225 assay set. Blue bars: −log (Benjamini-Hochberg p-value); Orange
squares: Ratio of the number of proteins in the pathway represented by the assay set/total number of proteins in the pathway. Orange horizontal
line denotes the cutoff for significance (p-value of 0.05).

Fig. 4. Biological functions associated with the proteins encoded by the 225 assay set. Blue bars: −log (Benjamini-Hochberg p-value); Orange
horizontal line denotes the cutoff for significance (p-value of 0.05).

known identity (Fig. 3) suggesting that this pathway
has a pronounced influence on the model. Cell death
and survival is the most significant biological function
represented by these proteins (Fig. 4). Of the proteins,
73 are associated with cell death and survival and 64
of these proteins are associated with apoptosis.

Due to the limited number of proteins encoded by the
20 assays, no reliable analysis of significant canonical

pathways or biological functions represented by these
proteins could be done. Therefore the pathway analysis
was done on the larger 225 assay set. Of the proteins
encoded by the 20 assay set, 10 are directly associated
with and cover all biological processes that have been
listed above for the 225 assay set.

Among the 207 proteins with known identity,
157 are directly associated with AD-related proteins
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according to KEGG or with biological processes that
have been associated with the disease (data not shown).
These processes include neurodegeneration, amyloid-
�, and tau processing, mitochondria transport and
function, inflammation, apoptosis, and calcium signal-
ing. Our findings of transcript profiles in blood suggest
that these disease-related processes are not affected
only in CNS tissue but also in other parts of the body.

DISCUSSION

We and others have previously shown that disease
biomarkers to classify AD with dementia from cog-
nitively healthy individuals are present in blood [16,
23, 35] and an algorithm based on the gene expres-
sion of a selected set of genes can be used to identify
those with an AD dementia [34–36]. We have now fur-
ther extended these findings to also include AD in the
pre-dementia stage of the disease. The results of the
present study demonstrate that information to classify
MCI due to AD in an aMCI population is present in
blood. The results show the potential of using a predic-
tion algorithm based on the expression of a limited set
of expressed genes in blood for identification of MCI
that evolves into AD dementia within 2 years among
individuals with aMCI. When balancing the sensitiv-
ity and specificity, a prediction accuracy ranging from
74% to 77% was obtained for PLSR models built using
gene expression data from stable MCI and MCI that
evolves into AD dementia within 2 years.

A majority of the gene assays included in both the
225 assay set and in the 20 assay set encode proteins
that are directly associated with biological processes
that has been associated with AD. This suggests that
these processes not only are affected in brain tissue but
also are reflected in a systemic response that can be
detected using gene expression in blood. This is also
well in agreement with similar findings in previous AD
studies [34–38]. The results also support the concept of
AD as a multifactorial sporadic disorder [54] with mul-
tiple genes and alterations in gene expression involved
[55, 56]. A� processing appears to be a significant
canonical pathway and apoptosis a significant biolog-
ical function represented among the proteins encoded
by the 225 assay set. However, it is worth noting that
there are several proteins encoded by the assay set that
do not appear to be involved in any of the processes
that has been associated with AD and it could be of
interest to explore these proteins further to see if novel
biological functions may be found that are essential to
extend our understanding of the development of this
devastating disease.

The clinical applicability of a multivariate index
assay test based on gene expression in blood as
described here is as a selection tool in clinical trials
by enriching the MCI population with higher risk to
progress to AD within the next few years as well as
a clinician tool as an aid in the diagnosis for early
treatment, future planning, and disease management.
A blood-based biomarker is a patient-friendly, less
invasive, and more affordable alternative to other inves-
tigated biomarkers such as CSF biomarkers or amyloid
imaging using PET that are either invasive or very
expensive [12, 14].

In the present study the possibility of co-morbidity
interferences was investigated, but not found to affect
the results. However, it cannot be ruled out that some
of the co-morbidities may result in an alteration in gene
expression. Future investigation may reveal clearer
which co-morbidity has the highest impact of gene
expression and if the magnitude has an effect on results
from downstream analysis.

Parnetti et al. recently developed CSF biomarker
models based on logistic regression analysis for the
prediction of MCI that evolves into AD dementia
within 2 years among individuals with MCI [57].
Using the CSF biomarkers A�1-42 and p-tau for the
model development, they obtained a sensitivity of
75% and specificity of 96%. In a multimodal classi-
fication approach combining PET-FDG, MR features
following volumetric MR imaging, and the level of
selected CSF biomarkers, Zhang et al. achieved a sen-
sitivity of 92% and specificity of 73% which was
superior to the performance obtained when investigat-
ing the individual modality of biomarkers [58]. The
sensitivity and specificity using either CSF or CSF
in combination with PET-FDG and volumetric MRI
are higher than what is achieved with either of our
blood-based gene expression models. However, our
prodromal AD biomarker is the first blood-based gene
expression biomarker described, and further refine-
ment of the biomarker both by assay selection and
increased sample size may demonstrate the full poten-
tial of such a biomarker. Still, the use of a blood-based
gene biomarker is both a non-invasive low-risk pro-
cedure as well as cost effective compared to that of
lumbar puncture, making blood-based gene expres-
sion biomarker tests an attractive alternative to CSF
biomarkers.

In the present study a few donors had been followed
beyond the 3rd visit. Of these there were 5 donors
with stable MCI for 2 years that were diagnosed with
AD at the 4th visit (3 years after baseline) during the
longitudinal trial. The present PLSR model predicted
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all of these donors as stable MCI. However, all these
subjects may be considered slow converters that possi-
bly is somewhere in between the stable MCI and MCI
converters. The subgroup of stable MCI is likely a het-
erogeneous group and as time passes a fraction of these
are expected to progress to AD. The prediction accu-
racy is therefore dependent on where the follow-up
cutoff is set. For the present study we have chosen
2 year follow-up as a cut-off to identify MCI in an
aMCI population that will progress to AD within 2
years. Although a substantial portion of MCI progress
to AD within 1–2 years, the progression from MCI
to AD has been demonstrated to take as much as 10
years [59]. Compared to CSF biomarkers, our pro-
dromal AD biomarker has a dynamic characteristics
compared to the more static feature of CSF biomark-
ers. Our test predicts changes to occur within 2 years,
which is a relatively short period of time. CSF biomark-
ers may have a longer time perspective. This static
feature was recently reported by Buchhave et al. [59]
who demonstrated that baseline CSF A�42 levels were
equally reduced in patients with MCI who converted
to AD within 0 to 5 years (early converters) compared
with those who converted between 5 and 10 years (late
converters).

When building a PLSR model including only the
available clinical parameters (scores from the neu-
ropsychological test battery), a prediction accuracy of
67% was obtained, which is inferior to that obtained
for the gene expression model. Including the clin-
ical parameters in the gene expression model only
marginally improved the diagnostic performance by
increasing the prediction accuracy from 74% to 75%.
This is in contrast to that observed by Gomar et al.
[60]. They obtained a prediction accuracy of 71% using
cognitive markers only and concluded these to be gen-
erally stronger predictors than investigated biomarkers
including brain volume, CSF biomarkers, and APOE
genotype.

The present study was a pilot study with a lim-
ited number of samples. The aim of the study was
to demonstrate the potential of using the prodromal
AD gene expression signature for the development of
a multivariate index assay test for the prediction of
MCI that evolves into AD dementia within 2 years in
an aMCI population. The regulatory requirement to
further optimize, technically verify and clinically val-
idate the prodromal AD gene expression signature is
strongly emphasized.

To conclude, we have shown for the first time that it
is possible to detect MCI that evolves into AD dementia
within 2 years before the onset of dementia by analysis

of the gene expression in blood and that gene expres-
sion in peripheral blood is sensitive to a pathological
process manifesting in the brain.
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K, Hansson O (2012) Cerebrospinal fluid levels of �-amyloid
1-42, but not of tau, are fully changed already 5 to 10 years
before the onset of Alzheimer dementia. Arch Gen Psychiatry
69, 98-106.

[60] Gomar JJ, Bobes-Bascaran MT, Conejero-Goldberg C,
Davies P, Goldberg TE (2011) Utility of combinations of
biomarkers, cognitive markers, and risk factors to predict con-
version from mild cognitive impairment to Alzheimer disease
in patients in the Alzheimer’s Disease Neuroimaging Initia-
tive. Arch Gen Psychiatry 68, 961-969.


