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Abstract. A marker of Alzheimer’s disease (AD) that can accurately diagnose disease at the earliest stage would significantly
support efforts to develop treatments for early intervention. We have sought to determine the sensitivity and specificity of
peripheral blood gene expression as a diagnostic marker of AD using data generated on HT-12v3 BeadChips. We first developed
an AD diagnostic classifier in a training cohort of 78 AD and 78 control blood samples and then tested its performance in
a validation group of 26 AD and 26 control and 118 mild cognitive impairment (MCI) subjects who were likely to have an
AD-endpoint. A 48 gene classifier achieved an accuracy of 75% in the AD and control validation group. Comparisons were made
with a classifier developed using structural MRI measures, where both measures were available in the same individuals. In AD
and control subjects, the gene expression classifier achieved an accuracy of 70% compared to 85% using MRI. Bootstrapping
validation produced expression and MRI classifiers with mean accuracies of 76% and 82%, respectively, demonstrating better
concordance between these two classifiers than achieved in a single validation population. We conclude there is potential for
blood expression to be a marker for AD. The classifier also predicts a large number of people with MCI, who are likely to develop
AD, are more AD-like than normal with 76% of subjects classified as AD rather than control. Many of these people do not have
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overt brain atrophy, which is known to emerge around the time of AD diagnosis, suggesting the expression classifier may detect
AD earlier in the prodromal phase. However, we accept these results could also represent a marker of diseases sharing common
etiology.

Keywords: Alzheimer’s disease, biomarkers, blood, diagnosis, gene expression pattern analysis, leukocytes, magnetic resonance
imaging, mild cognitive impairment
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INTRODUCTION

Alzheimer’s disease (AD) is a common chronic
neurodegenerative disorder, accounting for ∼60% of
dementia cases. Dementia affects 63 million patients
worldwide with numbers set to rise to 114 million by
2050 resulting in dramatic social and economic con-
sequences as our care systems struggle to cope [1].
Although much progress has been made in understand-
ing the molecular pathology of AD, the treatments
currently available only temporarily alleviate some
symptoms and do not modify pathology. The use of
biomarkers for identification of individuals with AD
prior to the appearance of clinical symptoms, the so-
called pre-dementia phase of the disease [2], will be
essential to the development of drugs for early inter-
vention [3–5]. Furthermore, if sufficiently powered,
some biomarkers could be used as part of a screening
program for at-risk elderly people [6].

By the time an individual is diagnosed with AD,
there is already considerable neuronal cell loss, plaque
deposition, and neurofibrillary tangles within the brain
[7, 8], which may have emerged up to 10 years or
more before clinical diagnosis [9–11]. Biomarkers
linked to the pathophysiological process in AD can
greatly increase the confidence of concluding a person
will have an AD-endpoint even in the pre-dementia
phase [12]. Cerebrospinal fluid (CSF) biomarkers such
as increased tau and decreased levels of amyloid-�
(A�)1-42 in the CSF correlate with postmortem AD
pathology [13, 14]. These measurements together not
only differentiate AD from normal elderly controls
with high accuracy, but can also predict which sub-
jects with mild cognitive impairment (MCI) are likely
to progress to AD within 5 years [15]. However, a lum-
bar puncture to collect CSF is an invasive procedure,
which may not be suitable for use in large-scale trials
or for screening populations. Similarly, positron emis-
sion tomography (PET) imaging of amyloid burden
in the brain correlates with clinical diagnosis of AD,
A� neuropathology at autopsy [13, 14, 16], and CSF
A�1-42 levels [17–20]. PET imaging is expensive and

impractical to be used in large groups of frail elderly
patients and is restricted to specialist centers.

Although AD is a disease of the brain, it is increas-
ingly accepted that there is communication between the
brain and the periphery, and we therefore hypothesize
that there will be blood-associated changes detectable
in disease which could be used to develop a diagnos-
tic marker. Blood is easily obtainable in frail elderly
people and relatively inexpensive to analyze, mak-
ing it an attractive source for developing a biomarker
[21]. Many studies, including those from our own
group, have identified AD- and/or MCI-related protein
changes in blood plasma using 2DGE/Mass Spec-
trometry and luminex technology [22–30]. They are
undergoing further rounds of testing to establish their
validity as the basis for an accurate marker. Companies
specializing in AD diagnostics have recently published
reports of gene expression changes in blood that are
able to distinguish AD subjects from cognitively nor-
mal people. Diagenic ASA published a discovery and
validation study consisting of a 96 gene classifier with
72% accuracy for AD diagnosis. The marker could also
correctly predict the outcome of 7 out of 10 MCI sub-
jects after a 2 year follow-up. Although these numbers
are too small to draw firm conclusions about its per-
formance in identifying pre-dementia in MCI subjects,
they are encouraging [31, 32]. ExonHit Therapeu-
tics used the additional splice variant discriminatory
power of Genome-Wide Splice Arrays to identify a
blood expression classifier consisting of 133 genes
able to distinguish AD from normal elderly control
subjects with 98% accuracy [33]. Combining blood
measures across different modalities such as proteins,
metabolites, and gene expression may further improve
biomarker accuracy, although the outcomes of these
studies have yet to be reported.

Our aim was to first identify and validate an AD
diagnostic gene expression marker in blood able to
distinguish people clinically diagnosed with AD from
normal elderly controls with high sensitivity and
specificity. We then sought to evaluate its specificity
and sensitivity compared to another marker which
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incorporates structural magnetic resonance imaging
(MRI) measures of regional brain atrophy and corti-
cal thickness assessed in the same individuals, using
a hypothesis-free approach. To date, the outcome of
comparing a gene expression marker of AD alongside
a classifier using measures of brain atrophy has not yet
been reported. Classifiers combining measures of cor-
tical thickness and/or regional brain atrophy changes
in AD have previously been shown to very accurately
distinguish AD from normal elderly controls [34].
Structural brain changes can also be used to iden-
tify people with MCI who will subsequently receive
a diagnosis of AD or experience a more rapid drop
in Mini-Mental Status Examination (MMSE) score
over time [35, 36]. Structural brain changes generally
appear after changes in other modalities such as CSF
A� and tau and coincide with neuronal cell loss and
the onset of clinical symptoms [11, 37].

Individuals with MCI are likely to have an AD-
endpoint and therefore are more likely to be classified
as AD-like rather than normal using an appropriate
biomarker. The proportion of people with MCI having
prodromal AD varies between studies as it depends on
the method of ascertainment, the criteria for identify-
ing people with MCI, the period of follow-up, and the
confirmatory methods for subsequent AD diagnosis.
Typical estimates suggest around ∼40–75% of people
who have cognitive symptoms consistent with MCI
will eventually progress to pathologically confirmed
AD [38–40], with only ∼5% “reverting” to normal
[41, 42] and ∼30–55% developing other dementias
[43–45]. We were therefore interested to investigate
whether a set of blood gene expression changes found
in AD patients also exist in a MCI population and
whether or not there was any distinction between MCI
subjects close to receiving a clinical diagnosis of AD
and those who remained MCI within a subsequent two
year follow-up period. While our AD diagnostic classi-
fier was adequately powered, we did not have sufficient
power to build a separate predictive classifier within
our MCI population to determine which subjects would
develop AD within two years.

METHODS AND MATERIALS

Clinical subjects and samples

Subjects used were from AddNeuroMed, a
large cross-European prospective biomarker study
(2005–2007) [46, 47]. Informed consent was obtained
for all subjects according to the Declaration of Helsinki

(1991) and protocols and procedures were approved
by the relevant local ethical committees at each site.
Subjects were excluded from the study if they were
younger than 65 years, had significant neurological or
psychiatric illness other than AD, significant unsta-
ble systematic illness or organ failure, or a geriatric
depression rating scale score ≥4/5 [48].

Normal elderly control subjects were recruited from
non-related family members of AD patients, care-
givers’ relatives, social centers for the elderly, or GP
surgeries and had no evidence of cognitive impair-
ment. A small number of individuals recruited in this
way met the MCI criteria detailed below and were
therefore included in the MCI cohort for analyses.
AD and MCI subjects were recruited primarily from
local memory clinics, and as such the MCI cohort was
expected to be composed largely of subjects with a
likely AD-endpoint. AD subjects were diagnosed using
the National Institute of Neurological and Commu-
nicative Disease and Stroke and Alzheimer’s disease
(NINCDS-ADRDA) [49] and Diagnostic and Statisti-
cal Manual of Mental Disorders (DSM-IV) [50] criteria
for possible or probable AD. All MCI subjects reported
problems with memory, corroborated by an informant,
but had normal activities of daily living as specified
in the Petersen’s criteria for amnestic MCI [51, 52].
MCI subjects scored 0.5 on the total Clinical Demen-
tia Rating Scale or had a memory score of 0.5 or 1 [53].
Within 2 years of the baseline visit, some MCI subjects
progressed to a clinical diagnosis of AD (MCIc), while
others remained MCI (MCInc). Diagnoses were made
by trained researchers following a previously validated
protocol [54].

All subjects underwent a structured interview and
a battery of neuropsychological assessments includ-
ing the Mini Mental State Examination (MMSE) [55],
Global Deterioration Scale (GDS) [56], and Clini-
cal Dementia Rating Scale (CDR) [53] by trained
researchers. Control and MCI subjects were further
assessed using the CERAD battery [57]. Detailed
information on subject recruitment and assessments
can be found in other published studies [46, 47].
Where possible, whole blood samples were collected
from each subject for DNA (APOE genotyping) and
RNA analyses (gene expression). Consecutive subjects
who met MRI inclusion criteria (no claustrophobia, no
trauma or surgery which may have left ferromagnetic
material in the body, ferromagnetic implants or pace-
makers, and the ability to lie still for at least one hour)
were invited to undertake an MRI scan until a total
of ∼20 subjects per diagnostic group per center were
scanned.
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Whole blood RNA extraction

Venous blood (2.5 ml) was collected into a
PAXgene™ Blood RNA tube (BD) for RNA analysis
from subjects who had fasted 2 hours prior to col-
lection. The sample was frozen at −20◦C overnight
and then transferred to −80◦C for long-term storage.
Prior to RNA extraction, samples were thawed at room
temperature overnight. RNA was extracted using the
PAXgene™ Blood RNA Kit (Qiagen), according to
the manufacturer’s protocol. The yield and quality of
extracted RNA were assessed using the NanoDrop™

1000 spectrophotometer (NanoDrop Technologies)
and the Agilent 2100 Bioanalyzer (Agilent Technolo-
gies) respectively. Only samples with an RNA Integrity
Number ≥7.0 were analyzed in this study.

Microarray analysis

Illumina Human HT-12 v3 Expression BeadChips
(Illumina) were used to analyze whole genome tran-
script expression according to the protocol supplied
by the manufacturer in 356 subjects (116 control,
127 MCI, and 113 AD). Samples from subjects who
had also undergone an MRI scan or who had sub-
sequently changed their diagnosis from MCI to AD
within 2 years of the sample being analyzed were prior-
itized for inclusion. The remaining control, MCI, and
AD subjects were randomly chosen from the cohort
available at the time of analysis to provide roughly
equal numbers across the three groups with the final
number chosen for practical reasons. The beadchips
contained 48,803 probes designed using data from
RefSeq (Build 36.2, Rel 22) and the UniGene (Build
199) databases. Briefly, the TotalPrep RNA Amplifi-
cation Kit (Ambion) was used to synthesize cDNA
from 200 ng total RNA followed by amplification
and biotinylation of cRNA and hybridization. Fol-
lowing hybridization, gene expression values were
variance-stabilization transformed and quantile nor-
malized using the R Bioconductor package lumi [58].
A total of 30 chips were excluded from further analysis
for a number of reasons including very low BeadChip
detection rate, disparity in XIST gene expression gen-
der calling (Illumina probe ID: ILMN 1764573) with
recorded gender and/or gender markers derived from
SNP chip data from the same individuals or diagnos-
tic re-classification at subsequent visits prior to final
data analysis (other than MCI-AD). This left a total
of 326 subjects (104 AD, 118 MCI [77 MCInc, 41
MCIc], and 104 normal elderly control subjects) which
were used for classifier development and validation.

Probes that were not expressed in any samples were
removed from further analysis, leaving 38,311 probes
for classification purposes. Data were adjusted for the
independent variables of age, gender, collection site,
and RNA quality (RIN).

Neuroimaging

Highly automated bilateral regional cortical thick-
ness measures from 34 areas and regional brain volume
measures from 41 areas totaling 109 measures were
obtained from subjects who underwent MRI (Sup-
plementary Table 1). Detailed information about data
acquisition, pre-processing, and quality control assess-
ment have been described for this cohort in detail
elsewhere [34, 36, 47, 59, 60]. Data from 91 AD,
92 MCI, and 90 control subjects were included in the
analyses.

Diagnostic classifier development

Using the clinical diagnosis of AD as the diagnos-
tic standard, we developed a classifier containing those
measures of blood gene expression able to achieve the
greatest sensitivity and specificity in a training cohort.
We based our methods on those recommended by the
MicroArray Quality Control II (MAQC-II) study [61].
Samples from AD and normal elderly control subjects
were randomly divided in to a 75% training cohort
(78 AD, 78 Control; Table 1) and a 25% independent
validation cohort (26 AD, 26 Control; Table 1). Ini-
tially a t-test was performed in the training cohort to
reduce the number of gene expression features, leaving
a total of 203 probes with p-value <0.01 (False dis-
covery rate (FDR)-corrected). These 203 probes were
then used to optimize the parameters of a random for-
est model as the Random Jungle [62] implementation
requires. In the optimization procedure, various com-
binations of the random forest parameters including
mTry (number of randomly selected variables) and
nTrees (number of trees) were used. In addition, we
applied the Meng score as a measure of variable impor-
tance [63], backward elimination, and a conditional
importance setting of 0.8, which was kept constant
throughout the optimization procedure. The best train-
ing result was achieved by a setting of nTrees = 750
and mTry = 15, with 50 probes included in the model.
These settings and the 50 highest ranked probes were
taken further into the final model. The final optimized
random forest parameters, 50 highest ranked probes,
and all samples in the training cohort were then used
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Table 1
Subject characteristics of the out of bag (training) and validation (test) cohorts used in the development of an AD-Control classifier

AD-Control classifier subject Out of bag cohort (Training) Validation cohort (Test)
characteristics

Control AD Control MCInc MCIc AD

Samples used in analysis 78 78 26 77 41 26
Gender (F/M) 45/33 52/26 17/9 38/39 27/14 20/6
No. with MRI measures 67 68 23 73 19 23
Age in years (±SD) 72.1 (6.2) 75.5 (6.9) 73.2 (7.0) 74.3 (5.7) 75.0 (6.2) 75.1 (6.4)
Disease duration in years (±SD) N/A 3.7 (2.5) N/A N/A N/A 4.0 (2.3)
MMSE (±SD) 29.0 (1.2) 21.1 (4.4) 29.2 (1.3) 27.3 (1.7) 26.2 (2.2) 20.5 (5.1)
ADAS-Cog (±SD) N/A 23.6 (9.4) N/A N/A N/A 22.9 (11.2)
CDR sum of boxes (±SD) 0.1 (0.2) 6.4 (3.0) 0.1 (0.2) 1.3 (0.8) 2.1 (1.1) 7.0 (3.7)

to build a final random forest model, which was then
tested with the independent validation cohort.

In order to allow us to directly compare the pre-
dictive power of gene expression with sMRI, we
re-developed the expression classifier to include only
those samples for which both imaging and gene expres-
sion data were available. AD and normal elderly
control subjects were divided in to a 75% training
cohort (68 AD, 67 Control; Table 1) and a 25% inde-
pendent validation cohort (23 AD, 26 Control; Table 1),
maintaining sample groups as before and removing
those where only expression data were available in
order to achieve a similar sample distribution across
training and test cohorts. The reduced training cohort
was then used to develop three additional diagnostic
models; the first included only sMRI imaging mea-
sures, the second included sMRI and gene expression,
and the third only gene expression in these samples.
For all three models, MCI samples were included with
the validation cohort. For imaging classifier devel-
opment, the 109 structural brain measures derived
from MRI were used to optimize the parameters of
a random forest model as before with the 20 highest
ranked measures taken further in to the final model.
For the combined sMRI and gene expression model,
30 imaging and 45 gene expression measures were in
the model and for the gene expression model using
samples with available sMRI measures, there were 50
measures. The sample workflow, analysis, and model
development scheme for classification is illustrated in
Fig. 1.

All four diagnostic models were further validated
by bootstrapping. First the data set was randomly
split into a bootstrap training-set (75% of samples)
and a bootstrap test-set (25% of samples). Each boot-
strap training-set was used to build a random forest
model, which was subsequently tested in the bootstrap
test-set. Thus overall, 200 bootstrap random forest
models were generated and tested. The bootstrapping

procedure generated a list summarizing and ranking
probes based on their importance and predictive power
across the 200 bootstrap models.

Using the R package MVpower (http://cran.r-
project.org/web/packages/MVpower/MVpower.pdf)
in the above approach, we estimate that for effect
sizes of 0.7 and 0.2 we have power of 100 and 80%
respectively to develop a Random Forest classifier
with 203 features and 50 probes based on sample
sizes of 78 in each group. Our effect size of 0.7 was
based on differences between cases and controls in the
selected 203 features, 0.2 was chosen as a conservative
lower limit.

RESULTS

Performance of diagnostic classifier
in distinguishing AD from normal elderly control
subjects

We sought to identify and evaluate a blood gene
expression diagnostic classifier of AD that could dis-
tinguish people with AD from normal elderly control
subjects. We found 48 genes, represented by 50 Illu-
mina probes selected through backward elimination
of 203 probes identified by t-tests (Supplementary
Table 2; available online: http://www.j-alz.com/
issues/33/vol33-3.html#supplementarydata03), and
achieved the highest “out of bag” accuracy in our
training cohort. The 50 probes along with their Meng
score of relative importance within the classifier are
listed in Table 2. When this AD-Control classifier
was applied to the independent validation group of
samples, it was able to correctly classify 39/52 sub-
jects (75.0% accuracy), of which 21/26 AD subjects
were correctly classified (80.8% sensitivity) and
18/26 normal elderly control subjects were correctly
excluded (69.2% specificity) (Table 3A), achieving a
positive predictive value (PPV) of 72.4% and negative

http://cran.r-project.org/web/packages/MVpower/MVpower.pdf
http://www.j-alz.com/issues/33/vol33-3.html#supplementarydata03
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Fig. 1. Sample flow, model development, and model validation scheme for classification. Samples with a minimum RNA integrity number
of 7 were selected from AddNeuroMed participants, with priority given to those who had undergone MRI scans and MCI subjects known to
have converted from MCI to AD. The remaining control, MCI, and AD subjects were randomly chosen from available samples to provide
approximately equal numbers across the three groups. When generating the AD-Control classifier, AD and Control samples were randomly
categorized as training (out of bag) (75%) or validation (25%) from samples passing quality control. Samples from all MCI subjects were
examined as part of the validation cohort to assess how they were categorized relative to AD and normal elderly control subjects. Each classifier
was developed in the training cohort and then tested in the validation cohorts to generate a final probe (gene) or imaging measure list along
with a measure of accuracy, sensitivity, and specificity. Finally data underwent bootstrapping, whereby in each bootstrap iteration (total of 200)
a new development and validation set was drawn from the complete data set used for each model. In each round of bootstrapping, the training
set was used to build a classification model, which was then assessed with the validation set. This method gives a range of classifier accuracies,
reflecting variation in the population, and allowing an additional assessment to the traditional independent test set approach.
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Table 2
The 50 Illumina probes (48 genes) that best classify AD from control samples in the training cohort

Gene symbol Illumina probe Meng scorea q-valueb Bootstrap countc

RPS27A ILMN 2048326 1.87E-02 2.11E-05 200
CHMP4A ILMN 1715607 1.71E-02 4.10E-03 200
SFRS17A ILMN 1807737 1.68E-02 1.97E-03 198
POMP ILMN 1693287 1.67E-02 3.62E-05 147
C5ORF41 ILMN 2195821 1.66E-02 9.41E-05 142
FTHL7 ILMN 2234016 1.65E-02 2.28E-03 67
LOC401206 ILMN 1792528 1.59E-02 3.62E-05 115
AK2 ILMN 1716053 1.58E-02 2.34E-03 161
UQCRB ILMN 1759453 1.55E-02 3.64E-03 200
LOC653505 ILMN 1776260 1.55E-02 4.95E-05 134
PGS1 ILMN 2075051 1.51E-02 2.34E-03 58
NRBP2 ILMN 1733248 1.50E-02 1.85E-03 197
UTP14A ILMN 2095820 1.47E-02 2.34E-03 57
DICER1 ILMN 1772692 1.46E-02 4.32E-04 180
RPL36AL ILMN 2189936 1.44E-02 3.62E-05 200
ATP5EP2 ILMN 2225887 1.42E-02 5.76E-03 145
SIRPG ILMN 1771801 1.39E-02 2.34E-03 20
LSM3 ILMN 2229242 1.36E-02 8.15E-03 200
APBB3 ILMN 2320513 1.33E-02 2.89E-03 177
MRPL51 ILMN 2097421 1.32E-02 2.19E-07 200
RELL2 ILMN 1652540 1.30E-02 5.10E-03 187
CETN2 ILMN 1695645 1.29E-02 2.11E-05 195
PWP1 ILMN 1743049 1.18E-02 5.07E-03 81
KIAA0146 ILMN 1887174 1.15E-02 7.55E-04 100
LOC388720 ILMN 1754990 1.14E-02 2.12E-04 101
CIP29 ILMN 1680967 1.11E-02 5.41E-03 191
LOC388621 ILMN 1677262 1.11E-02 4.75E-03 139
SFRS17A ILMN 2117716 1.10E-02 4.87E-04 182
PCBP1 ILMN 1673215 1.09E-02 4.23E-04 100
ATP5J2 ILMN 2310621 1.08E-02 3.09E-05 65
H2AFY ILMN 2373495 1.07E-02 6.30E-03 163
COX17 ILMN 2187718 1.07E-02 1.21E-05 5
IDS ILMN 1758626 1.07E-02 2.34E-03 162
SHFM1 ILMN 2128128 1.07E-02 2.80E-04 173
LOC651064 ILMN 1782417 1.03E-02 6.09E-03 53
STX16 ILMN 1741942 9.95E-03 1.91E-03 160
GDPD1 ILMN 2106265 9.93E-03 4.88E-03 179
C6ORF166 ILMN 2148847 9.85E-03 5.31E-03 27
ING3 ILMN 2237746 9.83E-03 5.42E-03 158
CACNA2D4 ILMN 1696317 9.61E-03 7.73E-03 47
PLEK ILMN 1795762 9.22E-03 2.84E-03 3
NDUFA1 ILMN 1784286 9.04E-03 2.45E-06 198
CDKN1B ILMN 1722811 7.90E-03 7.93E-03 199
RGS19 ILMN 1677085 7.62E-03 5.48E-03 165
RPS27A ILMN 1755883 7.61E-03 2.77E-04 180
LOC731640 ILMN 1661174 7.41E-03 8.33E-03 66
AHSA1 ILMN 1703617 6.98E-03 1.74E-03 58
BXDC1 ILMN 1664167 6.43E-03 4.29E-04 0
KARS ILMN 1777584 5.54E-03 2.56E-03 5
UBE2G1 ILMN 1814465 –4.62E-04 1.74E-03 105

aAn estimate of variable (probe) importance in the AD versus Control classifier Random Forest model. bq-value
from a t-test comparing AD and control samples. cThe number of times each probe from the out of bag classifier
appeared in the 200 bootstrap iterations.

predictive value (NPV) of 78.3%. As APOE�4 dosage
is a known risk factor for developing AD, we repeated
the model creation step including the APOE�4
genotype in the list of attributes. During backward
elimination, we found this attribute was removed in

the early rounds of the iterative process and therefore
excluded it from further analysis. As the accuracy of a
classifier varies depending on the population sampled,
we bootstrapped the sampled population 200 times
to assess the accuracy of the 203 probes identified
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Table 3
Classifiers’ performance in out of bag and validation data sets following Random Forests modeling, implemented in Random Jungle

(A) Performance of AD-Control classifier Accuracy Sensitivity Specificity PPV (%) NPV (%)
in AD and Control samples

Total AD Control
correctly correctly correctly
classified % classified % classified %

AD–Control training cohort (expression) 128/156 82.1 68/78 87.2 60/78 76.9 79.7 85.7
AD–Control validation cohort (expression) 39/52 75.0 21/26 80.8 18/26 69.2 72.4 78.3
AD–Control validation cohort (expression + imaging) 36/46 78.3 19/23 82.6 17/23 73.9 76.0 81.0
AD–Control validation cohort (imaging) 39/46 84.8 20/23 87.0 19/23 82.6 83.3 86.4
AD–Control validation cohort (expression [in imaging subset]) 32/46 69.6 16/23 69.6 16/23 69.6 69.6 69.6

Mean 95% CI Mean 95% CI Mean 95% CI

AD–Control bootstrappinga (expression) 78.2 77.4–79.0 79.6 78.4–80.8 76.8 75.7–77.9
AD–Control bootstrappinga (expression + imaging) 84.0 83.3–84.7 84.4 83.4–85.4 83.5 82.4–84.6
AD–Control bootstrappinga (imaging) 82.0 81.3–82.7 80.0 78.9–81.1 84.0 82.9–85.1
AD–Control bootstrappinga (expression [in imaging subset]) 76.0 75.1–76.9 76.4 75.1–77.7 75.4 74.1–76.7

(B) Performance of AD-Control classifier Accuracy Sensitivity Sensitivity
in MCI samples

MCI classified MCIc classified MCInc classified
as AD-like % as AD-like % as AD-like %

MCI cohort (expression) 90/118 76.3 32/41 78.0 58/77 75.3
MCI cohort (expression + imaging) 57/92 67.8 15/19 78.9 42/73 57.5
MCI cohort (imaging) 45/92 48.9 12/19 63.2 33/73 45.2
MCI cohort (expression [in imaging subset]) 64/92 69.6 16/19 84.2 48/73 65.8

Mean 95% CI Mean 95% CI Mean 95% CI

MCI bootstrappinga (expression) 86.0 84.6–87.4 87.2 85.9–88.5 85.5 84.0–87.0
MCI bootstrappinga (expression + imaging) 61.5 61.1–61.9 83.6 79.8–87.4 55.8 55.4–56.2
MCI bootstrappinga (imaging) 47.2 46.8–47.6 71.0 70.0–72.0 41.0 40.6–41.4
MCI bootstrappinga (expression [in imaging subset]) 70.4 69.8–71.0 89.0 88.4–89.7 65.6 65.0–66.2
aFor bootstrapped data, the mean value and 95% confidence interval (95% CI), measured over 200 models is shown.
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Fig. 2. Bootstrap results for AD-Control classifier in classifying AD and Control samples. The graphs demonstrate the mean accuracy of the
classifier measured from bootstrapping (short dashed line) and the accuracy measured using the “out of bag” classifier in the validation cohort
(long dashed line). Results are shown for (A) expression classifier alone, (B) expression and imaging classifiers combined, (C) imaging classifier
alone, and (D) expression classifier alone in the subset of individuals with sMRI measures.

by t-tests in the original training cohort. Using this
method, the accuracy of the expression classifiers
was slightly higher than we had estimated, with a
mean accuracy of 78.2% (95% CI, 77.4–79.0%), a
sensitivity of 79.6% (95% CI, 78.4–80.8%), and a
specificity of 76.8% (95% CI, 75.7–77.9%) (Fig. 2A;
Table 3A).

Structural MRI is able to accurately detect sub-
tle changes in the thickness or volume of particular
brain areas that occur during AD pathogenesis and is
believed to be associated with the onset of neuronal
dysfunction and cell loss. We first investigated the
power of sMRI to classify the AD and control subjects
using 68 local cortical thickness and 41 brain vol-
ume MRI measures collected in a subset of our cohort
around the time of blood sampling [34, 36, 59, 60]
(Supplementary Table 1). As six patients used in our
expression validation cohort did not have neuroimag-

ing measures, we initially re-evaluated our 203 probes
on this subset of 46 patients. Accuracy, sensitivity,
specificity, PPV, and NPV were all 69.6%, indicating a
small drop in performance in this subgroup. However,
when bootstrapping, the mean accuracy achieved was
76.0% accuracy (95% CI, 75.1–76.9%), with a sensi-
tivity of 76.4% (95% CI, 75.1–77.7%) and specificity
of 75.4% (95% CI, 74.1–76.7%) (Fig. 2D; Table 3A),
values similar to that observed in the larger expres-
sion cohort (Fig. 2A; Table 3A) and demonstrating
that bootstrapping is important for assessing the true
variation in accuracy within a population. The sMRI
measures correctly classified 39 people out of 46 tested
in the validation cohort (84.8% accuracy), correspond-
ing to 20 out of 23 AD subjects correctly included
(87.0% sensitivity), and 19 out of 23 control subjects
correctly excluded (82.6% specificity) (Table 3A). The
mean accuracy from bootstrapping was lower (82.0%;
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95% CI, 81.3–82.7%), due to fewer AD subjects being
correctly classified over the 200 models (80.0% mean
sensitivity; 95% CI, 78.9–81.1%), although speci-
ficity was slightly improved (84.0% specificity; 95%
CI, 82.9–85.1%) (Fig. 2C; Table 3A). The Kappa
coefficient was 0.31 (p-value <0.05) demonstrating
good agreement between the imaging and expression
classifiers.

Combining the expression and imaging measures
resulted in a small increase in mean accuracy following
bootstrapping (84.0; 95% CI, 83.3–84.7%) (Fig. 2B;
Table 3A). This was due to a small increase in the num-
ber of AD subjects being correctly classified (84.4%
mean sensitivity; 95% CI, 83.4–85.4%), than achieved
with imaging or expression alone.

Performance of diagnostic classifier in MCI
subjects

To evaluate whether our diagnostic blood gene
expression classifier could be an early marker of cog-
nitive dysfunction, we tested it in 118 MCI subjects
to see how many subjects would be classified as “AD-
like” rather than as controls, and whether there was
any preference for subjects who subsequently received
an AD diagnosis within 2 years (MCIc) compared to
those had not received an AD diagnosis (MCInc), but
nevertheless were likely to have an AD-endpoint. It
categorized the majority of MCI subjects as “AD-like”
(90/118 subjects, 76.3%) rather than as controls, which
corresponded to 32/41 MCIc (78.0%) and 58/77 MCInc
(75.3%) (Table 3B). When bootstrapped, the mean
accuracy was higher (86.0; 95% CI, 84.6–87.4%), with
a similar proportion of MCInc and MCIc being classi-
fied as AD-like (mean 87.2 and 85.5%, respectively)
(Fig. 3A; Table 3B).

Although there were only a limited number of MCIc
subjects with sMRI scans available for analysis (only
19 subjects with imaging compared to 41 available with
expression), we assessed the performance of our diag-
nostic expression classifier in the MCIc and MCInc
groups separately and compared this to the perfor-
mance with sMRI based models in 92 individuals for
which sMRI and expression data were both available.
Of the 92 people with MCI, 64 were classified as
AD-like (69.6%) using the expression classifier, cor-
responding to 48/73 MCInc (65.8%) and 16/19 MCIc
(84.2%). When the sample cohort was bootstrapped,
the mean accuracy was 70.4% (95% CI, 69.8–71.0%).
Compared to the whole expression cohort, accuracy in
this subpopulation was lower and while the mean sen-
sitivity in classifying MCIc was high (89.0%; 95% CI,

88.4–89.7%), the mean sensitivity to classify MCInc
as AD-like was far lower than in the whole popula-
tion analyzed (65.6%; 95% CI, 65.0–66.2%) (Fig. 3D;
Table 3B).

sMRI alone appeared less able to classify MCIc as
“AD-like” (63.2%) compared to the expression classi-
fier (84.2%), classifying only 12 out of 19 patients as
AD-like, suggesting imaging is not as sensitive at iden-
tifying potential prodromal AD subjects compared to
the expression classifier, even when these individuals
were within two years of receiving an AD diagnosis. In
the MCInc group, the imaging classifier was no better
than chance (33/73; 45.2%) at classifying individuals
as “AD-like” or control, whereas the expression classi-
fier identified more “AD-like” individuals in the MCInc
population (65.8%) (Table 3B).

DISCUSSION

We have shown that there may be potential in using
blood expression as a diagnostic classifier for AD.
Specifically, we have identified 48 genes (50 probes)
which can distinguish between AD and normal elderly
control subjects with an accuracy of 75% in a validation
cohort. This performance is consistent with previ-
ously reported accuracies using blood gene expression
measures [31–33] and is similar to other single or mul-
tivariate classifiers incorporating measures from CSF
and/or neuroimaging [64–68].

No marker would be expected to achieve perfect
accuracy when tested in a population of people clini-
cally diagnosed with AD as AD is a very heterogeneous
disease with symptoms similar to other dementias and
is therefore not always correctly diagnosed by a set of
clinical symptoms alone. Clinical diagnosis generally
achieves 80–90% accuracy against a postmortem AD
diagnosis [54]. Furthermore, some of the pathologi-
cally relevant changes detected by a marker may occur
before symptoms emerge in apparently normal people,
leading to their apparent misclassification. Amyloid
deposition is not only possible to detect in people with
MCI, but is also present in 20–40% of cognitively nor-
mal elderly people, up to 10 years before AD diagnosis
[11, 14, 15, 20, 69–75]. Some of the normal elderly sub-
jects in our study displayed blood expression changes
characteristic of people with AD. Although specula-
tive, this may not be misclassification by the marker,
but could instead represent subtle peripheral changes
occurring in pre-clinical disease.

Of the 39 genes included in the classifier with known
function, eight are associated with mitochondrial
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Fig. 3. Bootstrap results for the AD-Control classifier in classifying MCI samples. The graphs demonstrate the mean accuracy of the classifier
measured from bootstrapping (short dashed line), and the accuracy measured with the “out of bag” classifier in the validation cohort (long dashed
line). Results are shown for (A) expression classifier alone, (B) expression and imaging classifiers combined, (C) imaging classifier alone, and
(D) expression classifier alone in the subset of individuals with sMRI measures.

activity and oxidative phosphorylation including sub-
units of the electron transport chain or constituents
of mitochondrial ribosomes and 12 are involved in
translation. Changes in the expression of genes asso-
ciated with these processes in AD blood was recently
described in detail by us [76] and genes involved in
these processes are enriched in other AD gene expres-
sion classifiers [32, 33]. These processes are also
significantly altered in the brains of people with AD
[77–80], which may represent a common response to
the same disease-associated signal(s).

There are a number of limitations to this study,
namely the sample size for validation and the lack
of additional cohorts to further test the classifier. By
performing power calculations using the MVPower R
package, we have shown that our sample size has 80%

power with a conservative effect size estimate of 0.2
and 100% with an effect size of 0.7 as derived from
our data. We have addressed the second issue by apply-
ing a robust bootstrapping approach, considered by the
community to be the most appropriate approach for
evaluating a classifier when a second cohort is unavail-
able [61]. When new datasets become available to us
we will be able to test the performance of our classifier
in additional samples. We are confident that the find-
ings will replicate, as the predictive genes are known
to be AD-related and these processes have been previ-
ously identified in AD classifier studies, as described
above.

In order to further explore the performance of
the blood expression classifier we developed, we
analyzed measures of cortical thickness and local
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brain atrophy determined by MRI where avail-
able in the same subjects. Measures of brain
atrophy correlate with the severity of cognitive impair-
ment and rates of neuronal and synaptic loss in AD [60,
81, 82]. Our best neuroimaging classifier achieved an
accuracy of 85%, similar to what has been reported
previously [34, 83] and only slightly better than the
blood expression classifier. Overall these results add
weight to the diagnostic validity of using the blood
expression classifier we have developed for diagnosing
AD independently of information provided by other
methods such as structural MRI measures. However,
further evaluation is needed to validate its performance
in independent samples.

While a diagnostic marker to back up a clinical diag-
nosis of AD is of value, an arguably more important
goal is to improve the likelihood of identifying people
with prodromal AD as early as possible in the course of
their disease, which will reduce variability in clinical
trials and allow recruitment and eventually treatments
to begin as close as possible to disease onset before
irreversible brain changes occur. This is an enormous
challenge as there are no obvious transition points to
AD. Markers are likely to be far more sensitive at pick-
ing up early disease-relevant changes than phenotypic
measures. In practice, it is likely that multimodal mark-
ers will be used in combination to build up a profile
of disease likelihood for each individual. One of the
earliest indications of AD pathology that have been
reported is decreased CSF A�1-42 levels and increased
brain A� plaque deposition, which can be observed in
pre-clinical disease in some individuals. The connec-
tion between CSF A�1-42 and AD pathology is well
established, with CSF A�1-42 correlating with post-
mortem plaque [14], tangle number [84], aggregate
deposition evaluated by PIB-PET and FDDNP-PET
[20], and atrophy measured by CT [85].

Pathophysiological changes emerging in the course
of AD are believed to be associated with a dynamic
temporal sequence of changes in the brain and other
biological fluids [12, 86]. Our data adds weight to the
body of evidence suggesting there may be potential
for markers capturing peripheral blood changes occur-
ring in early prodromal AD, as a high percentage of
people with MCI who were expected to have a likely
AD-endpoint displayed changes sufficiently different
from normal to classify them as “AD-like” rather than
as controls. The AD classifier appeared to make only a
small distinction in favor of classifying MCI subjects
who were close to receiving a diagnosis of AD as AD-
like than those who did not receive an AD diagnosis
over the same short follow-up period of two years. This

is in contrast to the performance of the imaging marker
that classified far fewer MCI subjects overall as AD-
like compared to the gene expression classifier, even
those subjects who subsequently received an AD diag-
nosis within two years. This may suggest measures of
structural brain changes have less sensitivity early in
disease compared to the expression marker in blood
we describe, but this will be uncertain until the MCI
non-converters have been followed for a longer period.
Changes detected by sMRI appear to occur at a later
stage of disease than changes in A� and tau [11, 12,
87–89], and it will therefore be important in the future
to evaluate our blood expression classifier alongside
measures of CSF or brain A� to see if the high classi-
fication of AD among the MCI subjects reflects early
detection of prodromal disease and to map the dynamic
onset of changes we observe.

Due to small sample numbers and therefore insuffi-
cient statistical power when we divided the MCI group
in to those who subsequently received an AD diagno-
sis within two years and those who did not, we were
unable to develop a classifier able to distinguish these
two groups. However, the majority of MCI subjects
had peripheral blood gene expression changes in com-
mon with AD patients including those who did and did
not receive an AD diagnosis within two years. This is
a finding we have previously observed in a study of
cell based proteins in blood comparing AD and MCI
subjects [23] and is similar to the profile of reduced
A�1-42 observed in the CSF in some control and many
MCI subjects, which is believed to represent a patho-
physiological process that significantly departs from
normality [37]. Two factors are likely to contribute to
this observation; first, around half of the subjects in
the MCI cohort were selected for analysis because we
knew they had subsequently converted to a probable
AD diagnosis. Second, our MCI sample population are
drawn from specialist memory clinics and are there-
fore more likely to represent people with established
cognitive problems resulting from prodromal AD than
might be expected from a cohort drawn from a com-
munity population, as we previously reported from a
meta-analysis of longitudinal studies of MCI [90].

Alternatively, our blood expression marker may rep-
resent an endophenotype shared by a group of diseases
with related etiology. Our two year follow-up period
is insufficient to confirm which of the normal elderly
control or MCInc subjects have prodromal AD and will
therefore eventually receive a clinical diagnosis of AD.
Pathological confirmation of an AD diagnosis will take
longer still. We know of no existing studies with blood
collected for RNA purposes where postmortem diag-
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nosis confirming AD would allow such analyses. While
confirming the specificity of our marker is an impor-
tant goal, the existence of an endophenotype, defined
here as a disease-associated expression phenotype even
though not necessarily specific to or present in all indi-
viduals still has clinical relevance. Such a marker can
assist in the development of drugs targeting relevant
and common disease endophenotypes and does not
necessitate unique disease association to achieve effi-
cacy in a relevant disease population. It could also be
useful as part of a staged diagnostic approach, provid-
ing a cost effective method of identifying individuals
with a greater likelihood of developing disease who
could subsequently be referred for more expensive
diagnostic tests.

Blood is emerging as a very promising tissue in
which to achieve a non-invasive and relatively inex-
pensive assay for detection of AD. In addition to
changes in blood gene expression [31–33, 91], plasma
protein panels have been described which accurately
distinguish AD from normal elderly control people
and/or MCI subjects who convert versus those who
remain stable, or for predicting disease progression
[92]. There are also many reports of individual proteins
with altered abundance in AD plasma suggesting blood
is a realistic tissue in which to identify markers of AD
[23, 93–102]. However, there are still technical issues
to overcome as not all protein measures reliably change
across studies [103]. In the future, it will be important
to explore the performance of different combinations
of measures to achieve the most accurate biomarker
for diagnosis and compare blood markers with more
established biomarkers linked to pathophysiology and
establish relative temporal patterns of change during
disease progression across different biomarker modal-
ities.

In conclusion, we have shown that peripheral blood
shows promise as an AD-associated diagnostic blood
gene expression marker that may be useful very early
in pre-clinical disease. It performed similarly to using
neuroimaging measures alone in AD and normal
elderly control samples. Future work will evaluate this
blood expression marker in subjects from which CSF
measures of A�1-42 and/or PET amyloid have been
measured in order to further explore the specificity
and timing of these changes. The existence of such
a marker in an accessible tissue such as blood would
contribute significantly toward efforts to identify and
treat people with AD very early in their disease before
significant neuronal loss has occurred. For example,
CSF A�1-42 and tau measurements to enrich for likely
AD are predicted to reduce sample size by 67% and

costs by 60% in a clinical trial compared to a trial
with unselected MCI subjects [104]. Evaluation of the
marker in related diseases will establish whether the
changes we see are specific to AD or are shared across
similar diseases. A lack of disease specificity would
not diminish the value of a marker able to capture a
common disease-associated endophenotype for which
a specific treatment with real clinical value could be
developed.
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