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For the sake of clarity, this document is organized
following the same structure as the main text. Only
sections for which there are relevant supplementary
details are included here.

MATERIALS AND METHODS

Selection of variables

The variables included in the scenarios are described
in the following paragraphs:

• Scenario 1: Cerebrospinal fluid (CSF) amyloid-�
(A�)42 protein concentration [1, 2] (one variable).

1Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.ucla.edu/). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or
writing of this report. A complete listing of ADNI investiga-
tors can be found at: http://adni.loni.ucla.edu/wp-content/uploads/
how to apply/ADNI Acknowledgement List.pdf.

∗Correspondence to: Javier Escudero, School of Computing and
Mathematics, Plymouth University, Drake Circus, Plymouth, PL4
8AA, UK. Tel.: +44 1752 586295; E-mail: javier.escudero@
ieee.org.

In the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI), the A�42 level—together with
those of total tau (tTau) and phosphorylated tau
(pTau181p) proteins—were measured with a mul-
tiplex immunoassay platform from a CSF sample
obtained with a lumbar puncture after overnight
fast. Additional details appear elsewhere [1].

• Scenario 2: Mean 2-fluorodeoxy-D-glucose
(FDG)-positron emission tomography (PET)
glucose uptake level in two regions: left mid-
dle/inferior temporal and bilateral posterior
cingulate gyri [2–5]. These two regions were
generated from a literature review [4]. They were
selected for being the only areas where mild
cognitive impairment (MCI) patients showed
a tendency toward greater annual decline than
cognitively normal (CN) subjects in [4].

• Scenario 3: Atrophy of the magnetic resonance
imaging (MRI) hippocampal volume and entorhi-
nal cortical thickness [2, 6–9]. We consider the
average of the left and right hippocampal volumes,
normalized by the intra-cranial volume, and left
and right entorhinal cortical thickness. The results
were reviewed and minimally edited for accuracy
in [8], where further details can be found.
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• Scenario 4: CSF tTau and pTau181p protein con-
centrations [1, 2, 10] (two variables), which were
measured from the CSF acquired as described in
scenario 1.

• Scenario 5: Two neuropsychological scores: the
Mini-Mental State Examination (MMSE) and the
Alzheimer’s Disease Assessment Scale-cognitive
subscale (ADAS-Cog). These scores are two of
the most widespread clinical tests for Alzheimer’s
disease (AD). They account for the last period of
AD evolution, when the symptoms of dementia
become apparent [11, 12].

• Scenario 6: A combination of baseline data from
all previous five scenarios (all nine variables) was
used to create a sixth scenario which contains all
data modalities.

An ADNI subject is included in as many scenarios as
relevant. For instance, a person for whom FDG-PET,
MRI, and neuropsychological scores were measured
would be included in scenarios 2, 3 and 5, but not in
1, 4, and 6. The total numbers of subjects included in
scenarios 1 to 6 are 414, 403, 737, 409, 817, and 186,
respectively. Additional information about the ADNI
sample and its procedures is detailed elsewhere [11].
The supplementary Table 1 contains the main charac-
teristics of the subjects included in each scenario.

Clustering with k-means

This section presents a more detailed description of
the algorithmic procedures of k-means clustering.

Formally, k-means minimizes the sum-of-squared-
error criterion [13]:

J (�,M) =
k∑

i=1

N∑
j=1

γij

∥∥xj − mi

∥∥2 (S1)

where � = {
γij

}
is a partition matrix that indicates to

which cluster each instance belongs:

γij =
{

1 if xj ∈ cluster i

0 otherwise
, (S2)

∑K

i=1
γij = 1∀j. (S3)

The matrix M = [m1, . . . ,mK] contains the clus-
ter centroids computed as the mean of all objects
assigned to the cluster:

mi = 1

Ni

N∑
j=1

γij xj. (S4)

In Equations (S1) and (S4), N and Ni denote the total
number of subjects in the dataset and in the cluster i,
respectively [13].

k-means may be trapped in local minima if the ini-
tial partition is not appropriate [13–15]. To avoid this
problem, we have applied k-means to the data ten
times with different random initial centroids. After-
wards, we selected the solution with the lowest value of
J (�,M).

Experiment 1: Bioprofiles of AD

To clarify the steps followed in experiment 1, supple-
mentary Figure 1 shows a block diagram. In addition to
the analyses detailed in the article, in experiment 1 we
also carry out additional procedures to: 1) minimize
the risk of over-fitting and 2) assess the consistency
of the assignments of subjects to the Bioprofile of AD
or the Bioprofile of normality. These are described in
the following paragraphs.

The risk of over-fitting is low because the diagnosis
is not used to find the clusters. However, 100 complete
runs of a stratified ten-fold cross-validation [14] are
applied in this experiment. This means that, in each of
the runs, the dataset is randomly divided into ten folds.
Nine of these folds are used to find the clusters (i.e.,
Bioprofiles). Then, the subjects in the left-out fold are
assigned to the Bioprofile of AD or normality accord-
ingly to the clusters derived in the training step. The
results are aggregated over all folds.

The previously described process also enables us to
check the consistency of the assignment of a subject
to the Bioprofile. This is necessary to ensure that the
Bioprofiles do not depend on the initial conditions of
k-means. If that were the case, those 100 runs of the
cross-validation would result in very different assign-
ments to the Bioprofiles: sometimes a subject would
be assigned to the Bioprofile of AD and sometimes he
or she would be assigned to the Bioprofile of normal-
ity. To check that the Bioprofile does not suffer from
this problem, we consider all 4,950 possible pairs out
of the 100 realizations and, for each pair, we compute
the proportion of subjects that are assigned to the same
Bioprofile in both executions of the pair.

Experiment 2: Link between the Bioprofile and a
model of AD evolution

To clarify the steps followed in experiment 2, sup-
plementary Figure 2 shows a block diagram.
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Supplementary Table 1

Basic baseline data for the six scenarios given as mean ± standard deviation (SD) in all cases apart from
the gender distribution (number of males (M) and females (F)) and ApoE �4 alleles (number of subjects

with 0, 1, and 2 alleles)

Scenario 1: CSF A�42

(n = 414) CN (n = 114) MCI (n = 198) AD (n = 102)

Gender distribution 58 M/56 F 132 M/66 F 59 M/43 F
ApoE �4 alleles 87/25/2 92/85/21 31/48/23
Age 76.14 ± 5.21 75.08 ± 7.50 75.53 ± 7.88
Years of education 15.72 ± 2.83 15.80 ± 2.99 15.16 ± 3.30
A�42 205.59 ± 55.09 163.66 ± 54.89 142.98 ± 40.79

Scenario 2: FDG-PET

(n = 403) CN (n = 103) MCI (n = 203) AD (n = 97)

Gender distribution 62 M/41F 137 M/66 F 58 M/39 F
ApoE �4 alleles 77/24/2 95/82/26 33/49/15
Age 76.39 ± 4.80 75.52 ± 7.21 76.23 ± 7.36
Years of education 15.82 ± 3.10 15.79 ± 2.88 14.65 ± 3.21
Left middle/inferior temporal 1.227 ± 0.132 1.161 ± 0.144 1.041 ± 0.159
Bilateral posterior cingulate 1.379 ± 0.165 1.285 ± 0.173 1.132 ± 0.146

Scenario 3: MRI

(n = 737) CN (n = 218) MCI (n = 356) AD (n = 163)

Gender distribution 115 M/103 F 226 M/130 F 82 M/81 F
ApoE �4 alleles 158/55/5 162/151/43 54/78/31
Age 76.47 ± 5.09 75.09 ± 7.43 75.34 ± 7.63
Years of education 16.05 ± 2.86 15.66 ± 3.04 14.78 ± 3.19
Hippocampal volume ×104 24.91 ± 2.69 22.02 ± 3.29 20.38 ± 3.30
Entorhinal cortical thickness 3.251 ± 0.302 2.926 ± 0.468 2.592 ± 0.443

Scenario 4: CSF tau

(n = 409) CN (n = 114) MCI (n = 195) AD (n = 100)

Gender distribution 58 M/ 56 F 130 M/65 F 58 M/42 F
ApoE �4 alleles 87/25/2 90/84/21 21/46/23
Age 76.14 ± 5.21 75.07 ± 7.49 75.43 ± 7.90
Years of education 15.72 ± 2.83 15.82 ± 3.00 15.11 ± 3.30
tTau 69.68 ± 30.37 103.56 ± 60.91 121.61 ± 57.57
pTau181p 24.86 ± 14.58 35.67 ± 18.13 41.70 ± 19.98

Scenario 5: Neuropsychological scores

(n = 817) CN (n = 229) MCI (n = 397) AD (n = 191)

Gender distribution 119 M/110 F 256 M/141 F 101 M/90 F
ApoE �4 alleles 168/56/5 185/165/47 65/90/36
Age 76.51 ± 5.03 75.38 ± 7.44 75.93 ± 7.49
Years of education 16.03 ± 2.85 15.67 ± 3.04 14.71 ± 3.15
ADAS-Cog 6.20 ± 2.91 11.50 ± 4.42 18.60 ± 6.31
MMSE 29.11 ± 1.00 27.03 ± 1.78 23.39 ± 2.02

Scenario 6: All variables

(n = 186) CN (n = 49) MCI (n = 90) AD (n = 47)

Gender distribution 32 M/17 F 59 M/31 F 30 M/17 F
ApoE �4 alleles 35/14/0 41/39/10 11/24/12
Age 75.69 ± 5.21 75.51 ± 7.01 75.80 ± 7.66
Years of education 15.69 ± 3.14 15.80 ± 2.90 14.83 ± 3.58

Experiment 3: Relationship between the Bioprofile
of AD and the risk of developing AD at the MCI
stage

To clarify the steps followed in experiment 3, sup-
plementary Figure 3 shows a block diagram.

For the sake of a fair comparison between the
unsupervised Bioprofile approach and supervised tech-
niques in the prediction of the progression from MCI
to AD, we used a state-of-the-art supervised clas-
sifier (support vector machine, SVM) [6, 11, 16,
17] to separate MCI converters (cMCI, MCI patients
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Supplementary Figure 1. Block diagram of the steps carried out to
compute the Bioprofile results in experiment 1.

who declined from MCI to AD at a later follow-up)
from MCI non-converters (nMCI, MCI subjects who
remained as MCI in the future). Following the same
approach as with the Bioprofile-based approach of
experiment 3, the supervised classifiers were trained

with CN and AD subjects’ data and they were evalu-
ated in terms of Area Under the ROC Curve (AUC) and
accuracy for the separation of cMCI versus nMCI. The
SVMs were optimized using a cross-validated grid-
search approach on the training set varying the value
of C, the kernel (polynomial or Gaussian), and a kernel
parameter (degree of the polynomial kernel or value of
gamma for the Gaussian one) [14, 17].

Experiment 4: Evolution of the Bioindices with
time

To clarify the steps followed in experiment 4, sup-
plementary Figure 4 shows a block diagram.

This experiment requires the acquisition of the
biomarkers at two or more follow-ups so that the sig-
moidal function can be fit to the data. This reduces the
number of cases available for analysis, as not all sub-
jects have enough validated follow-up acquisitions of
the biomarkers, especially for CSF measurements.

RESULTS

Experiment 1: Bioprofiles of AD

In order to verify that the Bioprofiles are consistent
and that they do not depend on the random initializa-
tion of k-means, we ran 100 different realizations of
the ten-fold cross-validation. For all possible pairs out
of the 100 realizations, we computed the proportion
of subjects that were found in the same Bioprofile.
These results are given in supplementary Table 2 as

Supplementary Figure 2. Block diagram of the steps carried out to compute the Bioprofile results in experiment 2.
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Supplementary Figure 3. Block diagram of the steps carried out to compute the Bioprofile results in experiment 3.

Supplementary Figure 4. Block diagram of the steps carried out to
compute the Bioprofile results in experiment 4.

mean ± standard deviation (SD) and [minimum, max-
imum] range of those proportions for each scenario.
The results indicate that the average level of agreement
was about or over 0.974 in all scenarios, suggesting that
the assignment to the Bioprofiles of AD or normality
is consistent and it has very little dependence on the
initial conditions of k-means.

Experiment 2: Link between the Bioprofile and a
model of AD evolution

Here, we detail which pairs of comparisons were
significantly different (significance level: � = 0.05) in
experiment 2 (see Fig. 2 in the main text).

In the case of CN, the Bioindices computed for CSF
A�42 were significantly higher than those obtained
for MRI, CSF tau, and the neuropsychological scores.
The Bioindices for FDG-PET were significantly higher
than those for CSF tau and the scores.

As for the Bioindices for the MCIs, the values
for CSF A�42 were significantly higher than for any
other scenario. The Bioindices for FDG-PET were
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Supplementary Table 2
Consistency of k-means in the assignment of subjects to the Bioprofiles over 100 runs of a ten-fold cross-validation. Results are given as

mean ± SD and [minimum, maximum]

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

0.998 ± 0.002 0.980 ± 0.007 0.993 ± 0.003 0.981 ± 0.007 0.993 ± 0.002 0.974 ± 0.010
[0.990, 1.000] [0.948, 1.000] [0.985, 1.000] [0.954, 1.000] [0.984, 1.000] [0.930, 1.000]

Supplementary Table 3
AUC and accuracy values and optimized set-up for the supervised SVM-based classification of cMCI versus nMCI subjects in experiment 3

Optimal Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

set-up for Polynomial kernel, Polynomial kernel, Polynomial kernel, Gaussian kernel, Polynomial kernel, Gaussian kernel,
the SVM degree = 1, C = 100.5 degree = 2, C = 101 degree = 2, C = 101.5 gamma = 1, C = 101 degree = 2, C = 102 gamma = 1, C = 100.5

AUC 0.659 0.651 0.619 0.649 0.646 0.591
Accuracy 0.631 0.645 0.615 0.646 0.642 0.586

significantly higher than for CSF tau and the scores,
and even the Bioindices of MRI data were significantly
different from those of CSF tau.

For the ADs, CSF tau had significantly lower
Bioindices than any other scenario. CSF A�42 and
the neuropsychological scores provided significantly
higher Bioindices than MRI.

Experiment 3: Relationship between the Bioprofile
of AD and the risk of developing AD at the MCI
stage

Here, we report the results obtained with an opti-
mized SVM [6, 11, 16, 17] in the separation of cMCI
from nMCI in each scenario. The objective is to
compare the performance of the unsupervised Bio-
profile approach with that of an optimized supervised
classifier.

Supplementary Table 3 contains the correspond-
ing results for the supervised methodology, together
with the optimal set-up of each SVM computed with
a grid-search optimization. The corresponding results
for the unsupervised Bioprofile approach are detailed
in Table 3 in the main text.

The results showed that the unsupervised approach
provided similar performances to those of the super-
vised SVM, even though clustering is a simpler
algorithm easier to interpret by the medical commu-
nity. However, we acknowledge that the Bioprofile
methodology should be further developed to be used in
clinical practice and that accuracies of about 65% are
not high enough for clinical diagnosis. In any case, it
is important to note that the estimation of progression
from MCI to AD is a far more difficult problem that
the separation of CN against AD subjects [6].

ACKNOWLEDGMENTS

This supplementary data presents independent
research commissioned by the NIHR under its Pro-
gramme Grants for Applied Research Programme
(Grant Reference Number RP-PG-0707-10124). The
views expressed in this article are those of the authors
and not necessarily those of the NHS, the NIHR or the
Department of Health.

This article was funded by the National Institute for
Health Research (NIHR) under its Programme Grants
for Applied Research Programme (Grant Reference
Number RP-PG-0707-10124.

Data collection and sharing for this project was
funded by the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) (National Institutes of Health
Grant U01 AG024904). ADNI is funded by the
National Institute on Aging, the National Institute of
Biomedical Imaging and Bioengineering, and through
generous contributions from the following: Abbott;
Alzheimer’s Association; Alzheimer’s Drug Discovery
Foundation; Amorfix Life Sciences Ltd.; AstraZeneca;
Bayer HealthCare; BioClinica, Inc.; Biogen Idec
Inc.; Bristol-Myers Squibb Company; Eisai Inc.;
Elan Pharmaceuticals Inc.; Eli Lilly and Company;
F. Hoffmann-La Roche Ltd and its affiliated com-
pany Genentech, Inc.; GE Healthcare; Innogenetics,
N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy
Research & Development, LLC.; Johnson & John-
son Pharmaceutical Research & Development LLC.;
Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diag-
nostics, LLC.; Novartis Pharmaceuticals Corporation;
Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharma-
ceutical Company. The Canadian Institutes of Health
Research is providing funds to support ADNI clinical



J. Escudero et al. / Bioprofile Analysis for AD Biodata 7

sites in Canada. Private sector contributions are facil-
itated by the Foundation for the National Institutes of
Health (www.fnih.org). The grantee organization is the
Northern California Institute for Research and Educa-
tion, and the study is coordinated by the Alzheimer’s
Disease Cooperative Study at the University of Cali-
fornia, San Diego. ADNI data are disseminated by the
Laboratory for Neuro Imaging at the University of Cal-
ifornia, Los Angeles. This research was also supported
by NIH grants P30 AG010129 and K01 AG030514.

REFERENCES

[1] Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM,
Aisen PS, Petersen RC, Blennow K, Soares H, Simon A,
Lewczuk P, Dean R, Siemers E, Potter W, Lee VM-Y, Tro-
janowski JQ (2009) Cerebrospinal fluid biomarker signature
in Alzheimer’s Disease Neuroimaging Initiative subjects. Ann
Neurol 65, 403-413.

[2] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S,
Fagan AM, Iwatsubo T, Jack CR, Kaye J, Montine TJ, Park
DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K,
Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV,
Phelps CH (2011) Toward defining the preclinical stages of
Alzheimer’s disease: Recommendations from the National
Institute on Aging-Alzheimer’s Association workgroups on
diagnostic guidelines for Alzheimer’s disease. Alzheimers
Dement 7, 280-292.

[3] Chen K, Ayutyanont N, Langbaum JBS, Fleisher AS, Reschke
C, Lee W, Liu X, Bandy D, Alexander GE, Thompson PM,
Shaw L, Trojanowski JQ, Jack CR Jr, Landau SM, Fos-
ter NL, Harvey DJ, Weiner MW, Koeppe RA, Jagust WJ,
Reiman EM (2011) Characterizing Alzheimer’s disease using
a hypometabolic convergence index. NeuroImage 56, 52-60.

[4] Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman
EM, Foster NL, Weiner MW, Jagust WJ (2011) Associations
between cognitive, functional, and FDG-PET measures of
decline in AD and MCI. Neurobiol Aging 32, 1207-1218.

[5] Nordberg A, Rinne JO, Kadir A, Langstrom B (2010) The use
of PET in Alzheimer disease. Nat Rev Neurol 6, 78-87.

[6] Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy
S, Habert M-O, Chupin M, Benali H, Colliot O (2011)

Automatic classification of patients with Alzheimer’s disease
from structural MRI: A comparison of ten methods using the
ADNI database. NeuroImage 56, 766-781.

[7] Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM
(2010) The clinical use of structural MRI in Alzheimer dis-
ease. Nat Rev Neurol 6, 67-77.

[8] Holland D, Brewer JB, Hagler DJ, Fennema-Notestine C,
Dale AM, the Alzheimer’s Disease Neuroimaging Initiative
(2009) Subregional neuroanatomical change as a biomarker
for Alzheimer’s disease. Proc Natl Acad Sci U S A 106, 20954-
20959.

[9] Drago V, Babiloni C, Bartrés-Faz D, Caroli A, Bosch B,
Hensch T, Didic M, Klafki H-W, Pievani M, Jovicich J, Ven-
turi L, Spitzer P, Vecchio F, Schoenknecht P, Wiltfang J,
Redolfi A, Forloni G, Blin O, Irving E, Davis C, Hårdemark H,
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